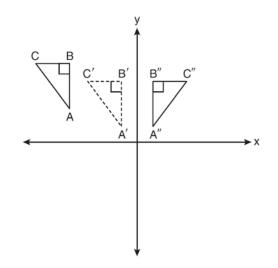
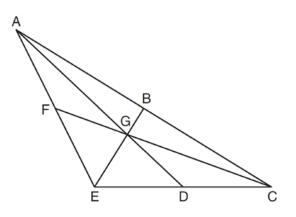

0611ge

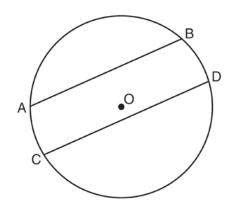

1 Line segment *AB* is shown in the diagram below.

Which two sets of construction marks, labeled I, II, III, and IV, are part of the construction of the perpendicular bisector of line segment *AB*?

- 1) I and II
- 2) I and III
- 3) II and III
- 4) II and IV
- 2 If $\Delta JKL \cong \Delta MNO$, which statement is always true?
 - 1) $\angle KLJ \cong \angle NMO$
 - 2) $\angle KJL \cong \angle MON$
 - 3) $JL \cong MO$
 - 4) $\overline{JK} \cong \overline{ON}$

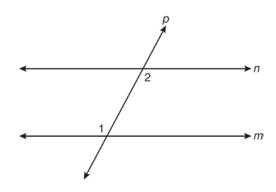

3 In the diagram below, $\Delta A'B'C'$ is a transformation of ΔABC , and $\Delta A''B''C''$ is a transformation of $\Delta A'B'C'$.

The composite transformation of $\triangle ABC$ to $\triangle A''B''C''$ is an example of a

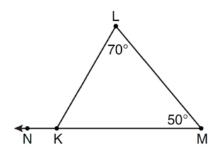

- 1) reflection followed by a rotation
- 2) reflection followed by a translation
- 3) translation followed by a rotation
- 4) translation followed by a reflection

4 In the diagram below of $\triangle ACE$, medians \overline{AD} , \overline{EB} , and \overline{CF} intersect at G. The length of \overline{FG} is 12 cm.

What is the length, in centimeters, of GC?

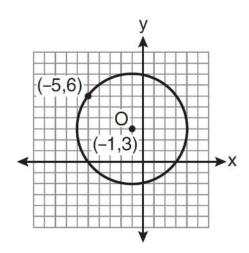

- 1) 24
- 2) 12
- 3) 6
- 4) 4
- 5 In the diagram below of circle *O*, chord \overline{AB} is parallel to chord \overline{CD} .

Which statement must be true?

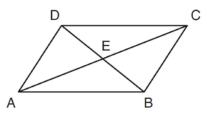

- 1) $\widehat{AC} \cong \widehat{BD}$
- 2) $\widehat{AB} \cong \widehat{CD}$
- 3) $\overline{AB} \cong \overline{CD}$
- 4) $\widehat{ABD} \cong \widehat{CDB}$

6 In the diagram below, line p intersects line m and line n.

If $m \angle 1 = 7x$ and $m \angle 2 = 5x + 30$, lines *m* and *n* are parallel when *x* equals


- 1) 12.5
- 2) 15
- 3) 87.5
- 4) 105
- 7 In the diagram of ΔKLM below, m $\angle L = 70$, m $\angle M = 50$, and \overline{MK} is extended through N.

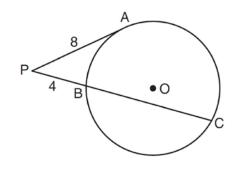
What is the measure of $\angle LKN$?


- 1) 60°
- 2) 120°
- 3) 180°
- 4) 300°

- 8 If two distinct planes, *A* and *B*, are perpendicular to line *c*, then which statement is true?
 - 1) Planes \mathcal{A} and \mathcal{B} are parallel to each other.
 - 2) Planes \mathcal{A} and \mathcal{B} are perpendicular to each other.
 - The intersection of planes A and B is a line parallel to line c.
 - 4) The intersection of planes A and B is a line perpendicular to line c.
- 9 What is the length of the line segment whose endpoints are A(-1,9) and B(7,4)?
 - 1) $\sqrt{61}$
 - 2) $\sqrt{89}$
 - 3) $\sqrt{205}$
 - 4) $\sqrt{233}$
- 10 What is an equation of circle *O* shown in the graph below?

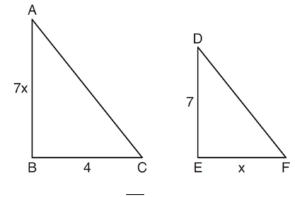
- 1) $(x+1)^2 + (y-3)^2 = 25$
- 2) $(x-1)^2 + (y+3)^2 = 25$
- 3) $(x-5)^2 + (y+6)^2 = 25$
- 4) $(x+5)^2 + (y-6)^2 = 25$

11 In the diagram below, parallelogram *ABCD* has diagonals \overline{AC} and \overline{BD} that intersect at point *E*.

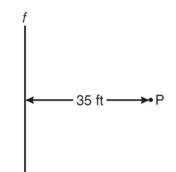

Which expression is not always true?

- 1) $\angle DAE \cong \angle BCE$
- 2) $\angle DEC \cong \angle BEA$
- $3) \quad AC \cong DB$
- 4) $DE \cong EB$
- 12 The volume, in cubic centimeters, of a sphere whose diameter is 6 centimeters is
 - 1) 12π
 - 36π
 - 3) 48π
 - 4) 288π

13 The equation of line k is $y = \frac{1}{3}x - 2$. The equation of line m is -2x + 6y = 18. Lines k and m are

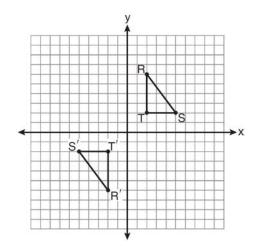

- 1) parallel
- 2) perpendicular
- 3) the same line
- 4) neither parallel nor perpendicular
- 14 What are the center and the radius of the circle whose equation is $(x-5)^2 + (y+3)^2 = 16$?
 - 1) (-5,3) and 16
 - 2) (5, -3) and 16
 - 3) (-5,3) and 4
 - 4) (5, -3) and 4
- 15 Triangle *ABC* has vertices A(0,0), B(3,2), and C(0,4). The triangle may be classified as
 - 1) equilateral
 - 2) isosceles
 - 3) right
 - 4) scalene

- 16 In rhombus *ABCD*, the diagonals \overline{AC} and \overline{BD} intersect at *E*. If AE = 5 and BE = 12, what is the length of \overline{AB} ?
 - 1) 7
 - 2) 10
 - 3) 13
 - 4) 17
- 17 In the diagram below of circle O, \overline{PA} is tangent to circle O at A, and \overline{PBC} is a secant with points B and C on the circle.


- If PA = 8 and PB = 4, what is the length of BC? 1) 20
- 2) 16
- 3) 15
- 4) 12
- 18 Lines *m* and *n* intersect at point *A*. Line *k* is perpendicular to both lines *m* and *n* at point *A*. Which statement *must* be true?
 - 1) Lines *m*, *n*, and *k* are in the same plane.
 - 2) Lines *m* and *n* are in two different planes.
 - 3) Lines *m* and *n* are perpendicular to each other.
 - 4) Line *k* is perpendicular to the plane containing lines *m* and *n*.
- 19 In $\triangle DEF$, m $\angle D = 3x + 5$, m $\angle E = 4x 15$, and m $\angle F = 2x + 10$. Which statement is true?
 - 1) DF = FE
 - $2) \quad DE = FE$
 - 3) $m \angle E = m \angle F$
 - 4) $m \angle D = m \angle F$

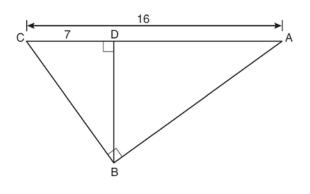
20 As shown in the diagram below, $\triangle ABC \sim \triangle DEF$, AB = 7x, BC = 4, DE = 7, and EF = x.

What is the length of \overline{AB} ?


- 1) 28
- 2) 2
- 3) 14
- 4) 4
- 21 A man wants to place a new bird bath in his yard so that it is 30 feet from a fence, *f*, and also 10 feet from a light pole, *P*. As shown in the diagram below, the light pole is 35 feet away from the fence.

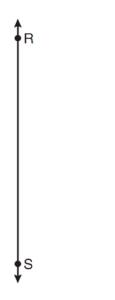
How many locations are possible for the bird bath?

- 1) 1
- 2) 2
- 3) 3
- 4) 0

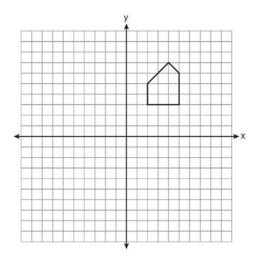

22 As shown on the graph below, $\Delta R'S'T'$ is the image of ΔRST under a single transformation.

Which transformation does this graph represent?

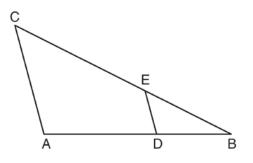
- 1) glide reflection
- 2) line reflection
- 3) rotation
- 4) translation
- 23 Which line is parallel to the line whose equation is 4x + 3y = 7 and also passes through the point (-5, 2)?
 - 1) 4x + 3y = -26
 - 2) 4x + 3y = -14
 - 3) 3x + 4y = -7
 - 4) 3x + 4y = 14
- 24 If the vertex angles of two isosceles triangles are congruent, then the triangles must be
 - 1) acute
 - 2) congruent
 - 3) right
 - 4) similar
- 25 Which quadrilateral has diagonals that always bisect its angles and also bisect each other?
 - 1) rhombus
 - 2) rectangle
 - 3) parallelogram
 - 4) isosceles trapezoid


- 26 When $\triangle ABC$ is dilated by a scale factor of 2, its image is $\triangle A'B'C'$. Which statement is true?
 - 1) $\overline{AC} \cong A'C'$
 - 2) $\angle A \cong \angle A'$
 - 3) perimeter of $\triangle ABC$ = perimeter of $\triangle A'B'C'$
 - 4) 2(area of $\triangle ABC$) = area of $\triangle A'B'C'$
- 27 What is the slope of a line that is perpendicular to the line whose equation is 3x + 5y = 4?
 - 1) $-\frac{3}{5}$ 2) $\frac{3}{5}$ 3) $-\frac{5}{3}$ 4) $\frac{5}{3}$
- 28 In the diagram below of right triangle *ABC*, altitude \overline{BD} is drawn to hypotenuse \overline{AC} , AC = 16, and CD = 7.

What is the length of \overline{BD} ?

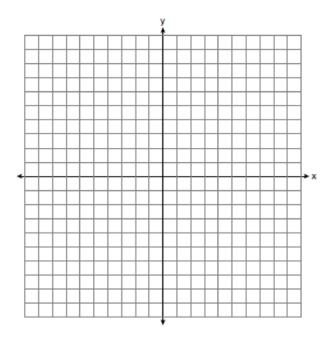

- 1) $3\sqrt{7}$
- 2) $4\sqrt{7}$
- 3) $7\sqrt{3}$
- 4) 12
- 29 Given the true statement, "The medians of a triangle are concurrent," write the negation of the statement and give the truth value for the negation.

30 Using a compass and straightedge, on the diagram \overrightarrow{BRS} , construct an equilateral triangle with \overrightarrow{RS} as one side. [Leave all construction marks.]

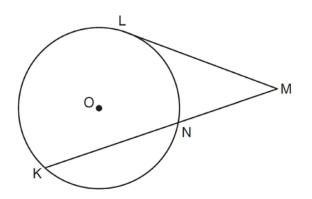


31 The Parkside Packing Company needs a rectangular shipping box. The box must have a length of 11 inches and a width of 8 inches. Find, to the *nearest tenth of an inch*, the minimum height of the box such that the volume is *at least* 800 cubic inches.

32 A pentagon is drawn on the set of axes below. If the pentagon is reflected over the *y*-axis, determine if this transformation is an isometry. Justify your answer. [The use of the set of axes is optional.]

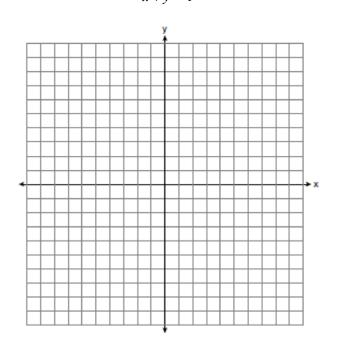


33 In the diagram below of $\triangle ABC$, *D* is a point on \overline{AB} , *E* is a point on \overline{BC} , $\overline{AC} \parallel \overline{DE}$, CE = 25 inches, AD = 18 inches, and DB = 12 inches. Find, to the *nearest tenth of an inch*, the length of \overline{EB} .

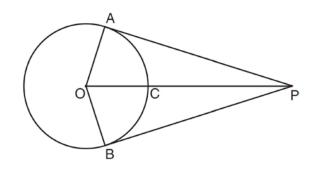


34 In circle *O*, diameter *RS* has endpoints R(3a, 2b-1) and S(a-6, 4b+5). Find the coordinates of point *O*, in terms of *a* and *b*. Express your answer in simplest form.

35 On the set of coordinate axes below, graph the locus of points that are equidistant from the lines y = 6 and y = 2 and also graph the locus of points that are 3 units from the *y*-axis. State the coordinates of *all* points that satisfy *both* conditions.



36 In the diagram below, tangent \overline{ML} and secant \overline{MNK} are drawn to circle O. The ratio $\widehat{mLN} : \widehat{mNK} : \widehat{mKL}$ is 3:4:5. Find $\underline{m\angle LMK}$.



37 Solve the following system of equations graphically.

38 In the diagram below, \overline{PA} and \overline{PB} are tangent to circle O, \overline{OA} and \overline{OB} are radii, and \overline{OP} intersects the circle at C. Prove: $\angle AOP \cong \angle BOP$

0611ge Answer Section

1	ANS: 2 TOP: Construction		REF:	061101ge	STA:	G.G.18
2	ANS: 3 TOP: Triangle Co	PTS: 2	REF:	061102ge	STA:	G.G.29
3	ANS: 4 TOP: Identifying	PTS: 2	REF:	061103ge	STA:	G.G.60
4	ANS: 1 TOP: Centroid	PTS: 2	REF:	061104ge	STA:	G.G.43
5	ANS: 1 Parallel lines inter	cept congruent arcs.				
6	PTS: 2 ANS: 2 7x = 5x + 30	REF: 061105ge	STA:	G.G.52	TOP:	Chords
	2x = 30					
	<i>x</i> = 15					
_		REF: 061106ge				Parallel Lines and Transversals
1	ANS: 2 TOP: Exterior An	PTS: 2 ngle Theorem	REF:	061107ge	STA:	G.G.32
8	ANS: 1	PTS: 2	REF:	061108ge	STA:	G.G.9
0	TOP: Planes ANS: 2					
9	Ans. 2 $d = \sqrt{(-1-7)^2 + (9-4)^2} = \sqrt{64+25} = \sqrt{89}$					
	PTS: 2	REF: 061109ge	STA:	G.G.67	TOP:	Distance
10	KEY: general ANS: 1	PTS: 2	RFF∙	061110ge	STA	G.G.72
10	TOP: Equations of		ILLI .	00111050	0111.	0.0.72
11	ANS: 3 TOP: Parallelogr	PTS: 2	REF:	061111ge	STA:	G.G.38
12	TOP: Parallelograms ANS: 2					
	$V = \frac{4}{3} \pi r^3 = \frac{4}{3} \pi \cdot$	$3^3 = 36\pi$				
	PTS: 2	REF: 061112ge	STA:	G.G.16	TOP:	Volume and Surface Area
13	ANS: 1	PTS: 2	REF:	061113ge	STA:	G.G.63
14	TOP: Parallel and ANS: 4	d Perpendicular Lines PTS: 2	REF	061114ge	STA ·	G.G.73
11	TOP: Equations of		111/1 .	00111150	J1/1.	0.0.15
15	ANS: 2 TOP: Triangles in	PTS: 2 n the Coordinate Plane		061115ge	STA:	G.G.69

16 ANS: 3 $\sqrt{5^2 + 12^2} = 13$ PTS: 2 REF: 061116ge STA: G.G.39 **TOP:** Special Parallelograms 17 ANS: 4 $4(x+4) = 8^2$ 4x + 16 = 644x = 48x = 12TOP: Segments Intercepted by Circle PTS: 2 REF: 061117ge STA: G.G.53 KEY: tangent and secant 18 ANS: 4 PTS: 2 REF: 061118ge STA: G.G.1 TOP: Planes 19 ANS: 1 3x + 5 + 4x - 15 + 2x + 10 = 180. m $\angle D = 3(20) + 5 = 65$. m $\angle E = 4(20) - 15 = 65$. 9x = 180x = 20PTS: 2 REF: 061119ge STA: G.G.30 TOP: Interior and Exterior Angles of Triangles 20 ANS: 3 $\frac{7x}{4} = \frac{7}{x}$. 7(2) = 14 $7x^2 = 28$ *x* = 2 STA: G.G.45 PTS: 2 REF: 061120ge **TOP:** Similarity KEY: basic 21 ANS: 2 PTS: 2 REF: 061121ge STA: G.G.22 TOP: Locus 22 ANS: 3 PTS: 2 REF: 061122ge STA: G.G.56 TOP: Identifying Transformations 23 ANS: 2 The slope of a line in standard form is $\frac{-A}{B}$, so the slope of this line is $\frac{-4}{3}$. A parallel line would also have a slope of $\frac{-4}{3}$. Since the answers are in standard form, use the point-slope formula. $y-2 = -\frac{4}{3}(x+5)$ 3y - 6 = -4x - 204x + 3y = -14PTS: 2 REF: 061123ge STA: G.G.65 TOP: Parallel and Perpendicular Lines STA: G.G.31 24 ANS: 4 PTS: 2 REF: 061124ge TOP: Isosceles Triangle Theorem

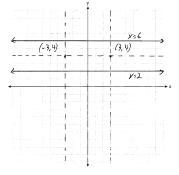
25 ANS: 1 REF: 061125ge PTS: 2 STA: G.G.39 TOP: Special Parallelograms 26 ANS: 2 PTS: 2 REF: 061126ge STA: G.G.59 TOP: Properties of Transformations 27 ANS: 4 The slope of 3x + 5y = 4 is $m = \frac{-A}{B} = \frac{-3}{5}$. $m_{\perp} = \frac{5}{3}$. REF: 061127ge PTS: 2 STA: G.G.62 TOP: Parallel and Perpendicular Lines 28 ANS: 1 $x^2 = 7(16 - 7)$ $x^2 = 63$ $x = \sqrt{9}\sqrt{7}$ $x = 3\sqrt{7}$ REF: 061128ge TOP: Similarity PTS: 2 STA: G.G.47 KEY: altitude 29 ANS: The medians of a triangle are not concurrent. False. PTS: 2 REF: 061129ge STA: G.G.24 TOP: Negations 30 ANS: R S PTS: 2 REF: 061130ge STA: G.G.20 **TOP:** Constructions 31 ANS: 9.1. (11)(8)h = 800

 $h \approx 9.1$

PTS: 2 REF: 061131ge STA: G.G.12 TOP: Volume

32 ANS:

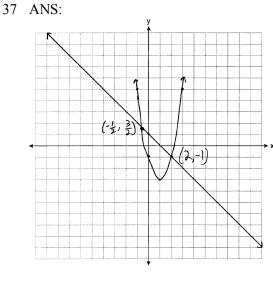
Yes. A reflection is an isometry.


PTS: 2 REF: 061132ge STA: G.G.55 TOP: Properties of Transformations 33 ANS: 16.7. $\frac{x}{25} = \frac{12}{18}$

$$5.7. \quad \frac{x}{25} = \frac{12}{18}$$
$$18x = 300$$
$$x \approx 16.7$$

PTS: 2 REF: 061133ge STA: G.G.46 TOP: Side Splitter Theorem 34 ANS:

$$(2a-3,3b+2). \left(\frac{3a+a-6}{2},\frac{2b-1+4b+5}{2}\right) = \left(\frac{4a-6}{2},\frac{6b+4}{2}\right) = (2a-3,3b+2)$$


PTS: 2 REF: 061134ge STA: G.G.66 TOP: Midpoint 35 ANS:

PTS: 4 REF: 061135ge STA: G.G.23 TOP: Locus 36 ANS:

30. 3x + 4x + 5x = 360. $\widehat{mLN} : \widehat{mNK} : \widehat{mKL} = 90 : 120 : 150$. $\frac{150 - 90}{2} = 30$ x = 20

PTS: 4 REF: 061136ge STA: G.G.51 TOP: Arcs Determined by Angles KEY: outside circle

38 ANS:

 $\overrightarrow{OA} \cong \overrightarrow{OB}$ because all radii are equal. $\overrightarrow{OP} \cong \overrightarrow{OP}$ because of the reflexive property. $\overrightarrow{OA} \perp \overrightarrow{PA}$ and $\overrightarrow{OB} \perp \overrightarrow{PB}$ because tangents to a circle are perpendicular to a radius at a point on a circle. $\angle PAO$ and $\angle PBO$ are right angles because of the definition of perpendicular. $\angle PAO \cong \angle PBO$ because all right angles are congruent. $\triangle AOP \cong \triangle BOP$ because of HL. $\angle AOP \cong \angle BOP$ because of CPCTC.

PTS: 6 REF: 061138ge STA: G.G.27 TOP: Circle Proofs