0613ge

1 In trapezoid $R S T V$ with bases $\overline{R S}$ and $\overline{V T}$, diagonals $\overline{R T}$ and $\overline{S V}$ intersect at Q.

If trapezoid $R S T V$ is not isosceles, which triangle is equal in area to $\triangle R S V$?

1) $\triangle R Q V$
2) $\triangle R S T$
3) $\triangle R V T$
4) $\triangle S V T$

2 In the diagram below, $\triangle X Y V \cong \triangle T S V$.

Which statement can not be proven?

1) $\angle X V Y \cong \angle T V S$
2) $\angle V Y X \cong \angle V U T$
3) $\overline{X Y} \cong \overline{T S}$
4) $\overline{Y V} \cong \overline{S V}$

3 In a park, two straight paths intersect. The city wants to install lampposts that are both equidistant from each path and also 15 feet from the intersection of the paths. How many lampposts are needed?

1) 1
2) 2
3) 3
4) 4

4 What are the coordinates of A^{\prime}, the image of $A(-3,4)$, after a rotation of 180° about the origin?

1) $(4,-3)$
2) $(-4,-3)$
3) $(3,4)$
4) $(3,-4)$

5 Based on the construction below, which conclusion is not always true?

1) $\overline{A B} \perp \overline{C D}$
2) $A B=C D$
3) $A E=E B$
4) $C E=D E$

6 Which equation represents the circle whose center is $(-5,3)$ and that passes through the point $(-1,3)$?

1) $(x+1)^{2}+(y-3)^{2}=16$
2) $(x-1)^{2}+(y+3)^{2}=16$
3) $(x+5)^{2}+(y-3)^{2}=16$
4) $(x-5)^{2}+(y+3)^{2}=16$

7 As shown in the diagram below, when right triangle $D A B$ is reflected over the x-axis, its image is triangle $D C B$.

Which statement justifies why $\overline{A B} \cong \overline{C B}$?

1) Distance is preserved under reflection.
2) Orientation is preserved under reflection.
3) Points on the line of reflection remain invariant.
4) Right angles remain congruent under reflection.

8 In $\triangle A B C, \mathrm{~m} \angle A=3 x+1, \mathrm{~m} \angle B=4 x-17$, and $\mathrm{m} \angle C=5 x-20$. Which type of triangle is $\triangle A B C$?

1) right
2) scalene
3) isosceles
4) equilateral

9 What is the equation for circle O shown in the graph below?

1) $(x-3)^{2}+(y+1)^{2}=6$
2) $(x+3)^{2}+(y-1)^{2}=6$
3) $(x-3)^{2}+(y+1)^{2}=9$
4) $(x+3)^{2}+(y-1)^{2}=9$

10 Point A is on line m. How many distinct planes will be perpendicular to line m and pass through point A ?

1) one
2) two
3) zero
4) infinite

11 In $\triangle A B C, D$ is the midpoint of $\overline{A B}$ and E is the midpoint of $\overline{B C}$. If $A C=3 x-15$ and $D E=6$, what is the value of x ?

1) 6
2) 7
3) 9
4) 12

12 What are the coordinates of the center of a circle if the endpoints of its diameter are $A(8,-4)$ and $B(-3,2)$?

1) $(2.5,1)$
2) $(2.5,-1)$
3) $(5.5,-3)$
4) $(5.5,3)$

13 Which graph could be used to find the solution to the following system of equations?

$$
y=(x+3)^{2}-1
$$

$$
x+y=2
$$

1)

2)

3)
4)

14 What is the converse of "If an angle measures 90 degrees, then it is a right angle"?

1) If an angle is a right angle, then it measures 90 degrees.
2) An angle is a right angle if it measures 90 degrees.
3) If an angle is not a right angle, then it does not measure 90 degrees.
4) If an angle does not measure 90 degrees, then it is not a right angle.

15 As shown in the diagram below, a right pyramid has a square base, $A B C D$, and $\overline{E F}$ is the slant height.

Which statement is not true?

1) $\overline{E A} \cong \overline{E C}$
2) $\overline{E B} \cong \overline{E F}$
3) $\triangle A E B \cong \triangle B E C$
4) $\triangle C E D$ is isosceles

16 The volume of a sphere is approximately 44.6022 cubic centimeters. What is the radius of the sphere, to the nearest tenth of a centimeter?

1) 2.2
2) 3.3
3) 4.4
4) 4.7

17 What is the equation of a line passing through the point $(6,1)$ and parallel to the line whose equation is $3 x=2 y+4$?

1) $y=-\frac{2}{3} x+5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{3}{2} x-8$
4) $y=\frac{3}{2} x-5$

18 Points $A(5,3)$ and $B(7,6)$ lie on $\overleftrightarrow{A B}$. Points $C(6,4)$ and $D(9,0)$ lie on $\overleftrightarrow{C D}$. Which statement is true?

1) $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$
2) $\overleftrightarrow{A B} \perp \overleftrightarrow{C D}$
3) $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are the same line.
4) $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect, but are not perpendicular.

19 Which set of equations represents two circles that have the same center?

1) $x^{2}+(y+4)^{2}=16$ and $(x+4)^{2}+y^{2}=16$
2) $(x+3)^{2}+(y-3)^{2}=16$ and $(x-3)^{2}+(y+3)^{2}=25$
3) $(x-7)^{2}+(y-2)^{2}=16$ and $(x+7)^{2}+(y+2)^{2}=25$
4) $(x-2)^{2}+(y-5)^{2}=16$ and $(x-2)^{2}+(y-5)^{2}=25$

20 Transversal $\overleftrightarrow{E F}$ intersects $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$, as shown in the diagram below.

Which statement could always be used to prove $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$?

1) $\angle 2 \cong \angle 4$
2) $\angle 7 \cong \angle 8$
3) $\angle 3$ and $\angle 6$ are supplementary
4) $\angle 1$ and $\angle 5$ are supplementary

21 In $\triangle A B C, \mathrm{~m} \angle A=60, \mathrm{~m} \angle B=80$, and $\mathrm{m} \angle C=40$. Which inequality is true?

1) $A B>B C$
2) $A C>B C$
3) $A C<B A$
4) $B C<B A$

22 Circle O with $\angle A O C$ and $\angle A B C$ is shown in the diagram below.

What is the ratio of $\mathrm{m} \angle A O C$ to $\mathrm{m} \angle A B C$?

1) $1: 1$
2) $2: 1$
3) $3: 1$
4) $1: 2$

23 A rectangular prism has a base with a length of 25 , a width of 9 , and a height of 12 . A second prism has a square base with a side of 15 . If the volumes of the two prisms are equal, what is the height of the second prism?

1) 6
2) 8
3) 12
4) 15

24 In triangles $A B C$ and $D E F, A B=4, A C=5$, $D E=8, D F=10$, and $\angle A \cong \angle D$. Which method could be used to prove $\triangle A B C \sim \triangle D E F$?

1) AA
2) SAS
3) SSS
4) ASA

25 Which graph represents a circle whose equation is
$x^{2}+(y-1)^{2}=9$?
1)

4)

26 What is the perimeter of a rhombus whose diagonals are 16 and 30 ?

1) 92
2) 68
3) 60
4) 17

27 In right triangle $A B C$ shown in the diagram below, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}, C D=12$, and $A D=3$.

What is the length of $\overline{A B}$?

1) $5 \sqrt{3}$
2) 6
3) $3 \sqrt{5}$
4) 9

28 Secants $\overline{J K L}$ and $\overline{J M N}$ are drawn to circle O from an external point, J. If $J K=8, L K=4$, and $J M=6$, what is the length of $\overline{J N}$?

1) 16
2) 12
3) 10
4) 8

29 A right circular cylinder has a height of 7 inches and the base has a diameter of 6 inches. Determine the lateral area, in square inches, of the cylinder in terms of π.

30 Determine, in degrees, the measure of each interior angle of a regular octagon.

31 Triangle $A B C$ has vertices at $A(3,0), B(9,-5)$, and $C(7,-8)$. Find the length of $\overline{A C}$ in simplest radical form.

32 On the ray drawn below, using a compass and straightedge, construct an equilateral triangle with a vertex at R. The length of a side of the triangle must be equal to a length of the diagonal of rectangle $A B C D$.

R

33 On the set of axes below, graph the locus of points 4 units from the x-axis and equidistant from the points whose coordinates are $(-2,0)$ and $(8,0)$. Mark with an \mathbf{X} all points that satisfy both conditions.

34 The coordinates of two vertices of square $A B C D$ are $A(2,1)$ and $B(4,4)$. Determine the slope of side $\overline{B C}$.

35 The coordinates of the vertices of parallelogram $S W A N$ are $S(2,-2), W(-2,-4), A(-4,6)$, and $N(0,8)$. State and label the coordinates of parallelogram $S^{\prime \prime} W^{\prime \prime} A^{\prime \prime} N^{\prime \prime}$, the image of $S W A N$ after the transformation $T_{4,-2} \circ D_{\frac{1}{2}}$. [The use of the set of axes below is optional.]

36 In circle O shown below, chords $\overline{A B}$ and $\overline{C D}$ and radius $\overline{O A}$ are drawn, such that $\overline{A B} \cong \overline{C D}$, $\overline{O E} \perp \overline{A B}, \overline{O F} \perp \overline{C D}, O F=16, C F=y+10$, and $C D=4 y-20$.

Determine the length of $\overline{D F}$. Determine the length of $\overline{O A}$.

37 If $\triangle R S T \sim \triangle A B C, \mathrm{~m} \angle A=x^{2}-8 x, \mathrm{~m} \angle C=4 x-5$, and $\mathrm{m} \angle R=5 x+30$, find $\mathrm{m} \angle C$. [Only an algebraic solution can receive full credit.]

38 In the diagram of $\triangle M A H$ below, $\overline{M H} \cong \overline{A H}$ and medians $\overline{A B}$ and $\overline{M T}$ are drawn.
Prove: $\angle M B A \cong \angle A T M$

0613ge

Answer Section
1 ANS: 2
Isosceles or not, $\triangle R S V$ and $\triangle R S T$ have a common base, and since $\overline{R S}$ and $\overline{V T}$ are bases, congruent altitudes.
PTS: 2 REF: 061301ge STA: G.G. 40 TOP: Trapezoids
2 ANS: 2
(1) is true because of vertical angles. (3) and (4) are true because CPCTC.

PTS: 2 REF: 061302ge STA: G.G. 29 TOP: Triangle Congruency
3 ANS: 4 PTS: 2 REF: 061303ge STA: G.G. 22
TOP: Locus
4 ANS: 4
$(x, y) \rightarrow(-x,-y)$
PTS: 2
5 ANS: 2
REF: 061304ge
STA: G.G. 54
TOP: Rotations
TOP: Constructions
6 ANS: $3 \quad$ PTS: 2
REF: 061305ge
STA: G.G. 18

TOP: Equations of Circles
7 ANS: $1 \quad$ PTS: 2
REF: 061306ge STA: G.G. 71
REF: 061307ge STA: G.G. 55
TOP: Properties of Transformations
8 ANS: 3
$3 x+1+4 x-17+5 x-20=180.3(18)+1=55$
$12 x-36=180 \quad 4(18)-17=55$
$12 x=216 \quad 5(18)-20=70$
$x=18$
PTS: 2
REF: 061308ge
STA: G.G. 30
9 ANS: 3
PTS: 2
REF: 061309ge
TOP: Equations of Circles
10 ANS: 1
PTS: 2
REF: 061310ge
TOP: Interior and Exterior Angles of Triangles
STA: G.G. 72

TOP: Planes
11 ANS: 3
$3 x-15=2(6)$
$3 x=27$
$x=9$

PTS: 2
REF: 061311ge
STA: G.G. 42
TOP: Midsegments

12 ANS: 2
$M_{x}=\frac{8+(-3)}{2}=2.5 . M_{Y}=\frac{-4+2}{2}=-1$.
PTS: 2
REF: 061312ge
13 ANS: 2
PTS: 2
TOP: Quadratic-Linear Systems
14 ANS: $1 \quad$ PTS: 2
TOP: Converse and Biconditional
15 ANS: $2 \quad$ PTS: 2
TOP: Solids
16 ANS: 1

$$
V=\frac{4}{3} \pi r^{3}
$$

$44.6022=\frac{4}{3} \pi r^{3}$
$10.648 \approx r^{3}$

$$
2.2 \approx r
$$

PTS: 2
REF: 061317ge
STA: G.G. 16
Av: 3
$2 y=3 x-4 . \quad 1=\frac{3}{2}(6)+b$
$y=\frac{3}{2} x-2 \quad 1=9+b$

$$
-8=b
$$

PTS: 2
REF: 061316ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
18 ANS: 4
$m_{A B}^{\overleftrightarrow{~}}=\frac{6-3}{7-5}=\frac{3}{2} \cdot m_{C D}^{\overleftrightarrow{~}}=\frac{4-0}{6-9}=\frac{4}{-3}$
PTS: 2
REF: 061318ge
19 ANS: 4
PTS: 2
TOP: Equations of Circles
20 ANS: $3 \quad$ PTS: 2
TOP: Parallel Lines and Transversals
21 ANS: 2
PTS: 2
TOP: Angle Side Relationship
22 ANS: 2
PTS: 2
TOP: Arcs Determined by Angles

STA: G.G. 66
REF: 061313ge
REF: 061314ge
REF: 061315ge

STA: G.G. 13
TOP: Midpoint
STA: G.G. 70
STA: G.G. 26

TOP: Volume and Surface Area

STA: G.G. 63
REF: 061319ge
REF: 061320ge
REF: 061321ge STA: G.G. 34
REF: 061322ge
KEY: inscribed

TOP: Parallel and Perpendicular Lines
STA: G.G. 73
STA: G.G. 35

STA: G.G. 51

23 ANS: 3

$$
\begin{aligned}
25 \times 9 \times 12 & =15^{2} h \\
2700 & =15^{2} h \\
12 & =h
\end{aligned}
$$

PTS: 2
24 ANS: 2
TOP: Similarity Proofs
25 ANS: $1 \quad$ PTS: 2
TOP: Graphing Circles
26 ANS: 2
$\sqrt{8^{2}+15^{2}}=17$
PTS: 2
27 ANS: 3
$x^{2}=3 \times 12 . \sqrt{6^{2}+3^{2}}=\sqrt{45}=\sqrt{9} \sqrt{5}=3 \sqrt{5}$
$x=6$
PTS: 2
REF: 061327ge STA: G.G. 47
KEY: altitude
28
ANS: 1
$12(8)=x(6)$
$96=6 x$
$16=x$
PTS: 2
KEY: two secants
29 ANS:
$L=2 \pi r h=2 \pi \cdot 3 \cdot 7=42 \pi$
PTS: 2
REF: 061329ge
STA: G.G. 14
TOP: Volume and Lateral Area
30 ANS:
$(n-2) 180=(8-2) 180=1080 . \frac{1080}{8}=135$.
PTS: 2
REF: 061330ge STA: G.G. 37
ANS:
$\sqrt{(7-3)^{2}+(-8-0)^{2}}=\sqrt{16+64}=\sqrt{80}=4 \sqrt{5}$
PTS: 2
REF: 061331ge
STA: G.G. 69

TOP: Volume
STA: G.G. 44
STA: G.G. 74
REF: 061325ge
STA: G.G. 11
REF: 061324ge

32 ANS:

PTS: 2
REF: 061332ge
STA: G.G. 20
TOP: Constructions
33 ANS:

PTS: 2
REF: 061333ge
STA: G.G. 23
TOP: Locus
34 ANS:
$m_{\overline{A B}}=\frac{4-1}{4-2}=\frac{3}{2} \cdot m_{\overline{B C}}=-\frac{2}{3}$
PTS: 4
REF: 061334ge
STA: G.G. 69
TOP: Quadrilaterals in the Coordinate Plane
35 ANS:

$$
S^{\prime \prime}(5,-3), W^{\prime \prime}(3,-4), A^{\prime \prime}(2,1), \text { and } N^{\prime \prime}(4,2)
$$

PTS: 4
REF: 061335ge STA: G.G. 58
TOP: Compositions of Transformations KEY: grids

36
ANS:

$$
\begin{aligned}
2(y+10) & =4 y-20 . \overline{D F}=y+10=20+10=30 . \overline{O A}=\overline{O D}=\sqrt{16^{2}+30^{2}}=34 \\
2 y+20 & =4 y-20 \\
40 & =2 y \\
20 & =y
\end{aligned}
$$

PTS: 4 REF: 061336ge STA: G.G. 49 TOP: Chords
37 ANS:

$$
\begin{aligned}
x^{2}-8 x & =5 x+30 . \mathrm{m} \angle C=4(15)-5=55 \\
x^{2}-13 x-30 & =0 \\
(x-15)(x+2) & =0 \\
x & =15
\end{aligned}
$$

PTS: 4 REF: 061337ge STA: G.G. 45 TOP: Similarity KEY: basic
ANS:
$\triangle M A H, \overline{M H} \cong \overline{A H}$ and medians $\overline{A B}$ and $\overline{M T}$ are given. $\overline{M A} \cong \overline{A M}$ (reflexive property). $\triangle M A H$ is an isosceles triangle (definition of isosceles triangle). $\angle A M B \cong \angle M A T$ (isosceles triangle theorem). B is the midpoint of $\overline{M H}$ and T is the midpoint of $\overline{A H}$ (definition of median). $\mathrm{m} \overline{M B}=\frac{1}{2} \mathrm{~m} \overline{M H}$ and $\mathrm{m} \overline{A T}=\frac{1}{2} \mathrm{~m} \overline{A H}$ (definition of midpoint). $\overline{M B} \cong \overline{A T}$ (multiplication postulate). $\triangle M B A \cong \triangle A T M$ (SAS). $\angle M B A \cong \angle A T M$ (CPCTC).

PTS: 6
REF: 061338ge
STA: G.G. 27
TOP: Triangle Proofs

