0614ge

1 Plane \mathscr{P} is parallel to plane Q. If plane \mathscr{P} is perpendicular to line ℓ, then plane Q

1) contains line ℓ
2) is parallel to line ℓ
3) is perpendicular to line ℓ
4) intersects, but is not perpendicular to line ℓ

2 In the diagram below, quadrilateral $A B C D$ has vertices $A(-5,1), B(6,-1), C(3,5)$, and $D(-2,7)$.

What are the coordinates of the midpoint of diagonal $\overline{A C}$?

1) $(-1,3)$
2) $(1,3)$
3) $(1,4)$
4) $(2,3)$

3 In the diagram below, transversal $\overleftrightarrow{T U}$ intersects $\overleftrightarrow{P Q}$ and $\overleftrightarrow{R S}$ at V and W, respectively

If $\mathrm{m} \angle T V Q=5 x-22$ and $\mathrm{m} \angle V W S=3 x+10$, for which value of x is $\overleftrightarrow{P Q} \| \overleftrightarrow{R S}$?

1) 6
2) 16
3) 24
4) 28

4 The measures of the angles of a triangle are in the ratio $2: 3: 4$. In degrees, the measure of the largest angle of the triangle is

1) 20
2) 40
3) 80
4) 100

5 The diameter of the base of a right circular cylinder is 6 cm and its height is 15 cm . In square centimeters, the lateral area of the cylinder is

1) 180π
2) 135π
3) 90π
4) 45π

6 When the system of equations $y+2 x=x^{2}$ and $y=x$ is graphed on a set of axes, what is the total number of points of intersection?

1) 1
2) 2
3) 3
4) 0

7 The vertex angle of an isosceles triangle measures 15 degrees more than one of its base angles. How many degrees are there in a base angle of the triangle?

1) 50
2) 55
3) 65
4) 70

8 Circle O is graphed on the set of axes below. Which equation represents circle O ?

1) $(x+1)^{2}+(y-3)^{2}=9$
2) $(x-1)^{2}+(y+3)^{2}=9$
3) $(x+1)^{2}+(y-3)^{2}=6$
4) $(x-1)^{2}+(y+3)^{2}=6$

9 In the diagram of the circle shown below, chords $\overline{A C}$ and $\overline{B D}$ intersect at Q, and chords $\overline{A E}$ and $\overline{B D}$ are parallel.

Which statement must always be true?

1) $\overparen{A B} \cong \overparen{C D}$
2) $\overparen{D E} \cong \overparen{C D}$
3) $\overparen{A B} \cong \overparen{D E}$
4) $\overparen{B D} \cong \overparen{A E}$

10 In the diagram below, $\triangle A E C \cong \triangle B E D$.

Which statement is not always true?

1) $\overline{A C} \cong \overline{B D}$
2) $\overline{C E} \cong \overline{D E}$
3) $\angle E A C \cong \angle E B D$
4) $\angle A C E \cong \angle D B E$

11 What is the length of $\overline{R S}$ with $R(-2,3)$ and $S(4,5)$?

1) $2 \sqrt{2}$
2) 40
3) $2 \sqrt{10}$
4) $2 \sqrt{17}$

12 What are the truth values of the statement "Two is prime" and its negation?

1) The statement is false and its negation is true.
2) The statement is false and its negation is false.
3) The statement is true and its negation is true.
4) The statement is true and its negation is false.

13 A regular polygon has an exterior angle that measures 45°. How many sides does the polygon have?

1) 10
2) 8
3) 6
4) 4

14 In rhombus $A B C D$, with diagonals $\overline{A C}$ and $\overline{D B}$, $A D=10$.

If the length of diagonal $\overline{A C}$ is 12 , what is the length of $\overline{D B}$?

1) 8
2) 16
3) $\sqrt{44}$
4) $\sqrt{136}$

15 If the surface area of a sphere is 144π square centimeters, what is the length of the diameter of the sphere, in centimeters?

1) 36
2) 18
3) 12
4) 6

16 Which numbers could represent the lengths of the sides of a triangle?

1) $5,9,14$
2) $7,7,15$
3) $1,2,4$
4) $3,6,8$

17 The equation of a line is $3 y+2 x=12$. What is the slope of the line perpendicular to the given line?

1) $\frac{2}{3}$
2) $\frac{3}{2}$
3) $-\frac{2}{3}$
4) $-\frac{3}{2}$

18 In the diagram below, point K is in plane \mathscr{P}.

How many lines can be drawn through K, perpendicular to plane \mathscr{P} ?

1) 1
2) 2
3) 0
4) an infinite number

19 In the diagram below, $\overline{A B}$ and $\overline{C D}$ are bases of trapezoid $A B C D$.

(Not drawn to scale)
If $\mathrm{m} \angle B=123$ and $\mathrm{m} \angle D=75$, what is $\mathrm{m} \angle C$?

1) 57
2) 75
3) 105
4) 123

20 What is the equation of a line passing through the point $(4,-1)$ and parallel to the line whose equation is $2 y-x=8$?

1) $y=\frac{1}{2} x-3$
2) $y=\frac{1}{2} x-1$
3) $y=-2 x+7$
4) $y=-2 x+2$

21 The image of rhombus $V W X Y$ preserves which properties under the transformation $T_{2,-3}$?

1) parallelism, only
2) orientation, only
3) both parallelism and orientation
4) neither parallelism nor orientation

22 The equation of a circle is $(x-3)^{2}+y^{2}=8$. The coordinates of its center and the length of its radius are

1) $(-3,0)$ and 4
2) $(3,0)$ and 4
3) $(-3,0)$ and $2 \sqrt{2}$
4) $(3,0)$ and $2 \sqrt{2}$

23 Which statement has the same truth value as the statement "If a quadrilateral is a square, then it is a rectangle"?

1) If a quadrilateral is a rectangle, then it is a square.
2) If a quadrilateral is a rectangle, then it is not a square.
3) If a quadrilateral is not a square, then it is not a rectangle.
4) If a quadrilateral is not a rectangle, then it is not a square.

24 The three medians of a triangle intersect at a point. Which measurements could represent the segments of one of the medians?

1) 2 and 3
2) 3 and 4.5
3) 3 and 6
4) 3 and 9

25 In the diagram of $\triangle P Q R$ shown below, $\overline{P R}$ is extended to $S, \mathrm{~m} \angle P=110, \mathrm{~m} \angle Q=4 x$, and $\mathrm{m} \angle Q R S=x^{2}+5 x$.

What is $\mathrm{m} \angle Q$?

1) 44
2) 40
3) 11
4) 10

26 Triangle $P Q T$ with $\overline{R S} \| \overline{Q T}$ is shown below.

If $P R=12, R Q=8$, and $P S=21$, what is the length of $\overline{P T}$?

1) 14
2) 17
3) 35
4) 38

27 In the diagram of $\overline{W X Y Z}$ below, $\overline{W Y} \cong \overline{X Z}$.

Which reasons can be used to prove $\overline{W X} \cong \overline{Y Z}$?

1) reflexive property and addition postulate
2) reflexive property and subtraction postulate
3) transitive property and addition postulate
4) transitive property and subtraction postulate

28 The coordinates of the endpoints of the diameter of a circle are $(2,0)$ and $(2,-8)$. What is the equation of the circle?

1) $(x-2)^{2}+(y+4)^{2}=16$
2) $(x+2)^{2}+(y-4)^{2}=16$
3) $(x-2)^{2}+(y+4)^{2}=8$
4) $(x+2)^{2}+(y-4)^{2}=8$

29 The coordinates of the endpoints of $\overline{B C}$ are $B(5,1)$ and $C(-3,-2)$. Under the transformation R_{90}, the image of $\overline{B C}$ is $\overline{B^{\prime} C^{\prime}}$. State the coordinates of points B^{\prime} and C^{\prime}.

30 As shown in the diagram below, $\overline{A S}$ is a diagonal of trapezoid STAR, $\overline{R A} \| \overline{S T}, \mathrm{~m} \angle A T S=48$, $\mathrm{m} \angle R S A=47$, and $\mathrm{m} \angle A R S=68$.

Determine and state the longest side of $\triangle S A T$.
31 In right triangle $A B C$ shown below, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}$.

If $A D=8$ and $D C=10$, determine and state the length of $\overline{A B}$.

32 Two prisms with equal altitudes have equal volumes. The base of one prism is a square with a side length of 5 inches. The base of the second prism is a rectangle with a side length of 10 inches. Determine and state, in inches, the measure of the width of the rectangle.
 $\overline{B A}$ and $\overline{B C}$ are drawn from external point B to circle O. Radii $\overline{O A}$ and $\overline{O C}$ are drawn.

If $O A=7$ and $D B=18$, determine and state the length of $\overline{A B}$.

34 Triangle $R S T$ is similar to $\triangle X Y Z$ with $R S=3$ inches and $X Y=2$ inches. If the area of $\triangle R S T$ is 27 square inches, determine and state the area of $\triangle X Y Z$, in square inches.

35 The graph below shows $\Delta A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after it was reflected over the y-axis. Graph and label $\triangle A B C$, the pre-image of $\Delta A^{\prime} B^{\prime} C^{\prime}$. Graph and label $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\Delta A^{\prime} B^{\prime} C^{\prime}$ after it is reflected through the origin. State a single transformation that will map $\triangle A B C$ onto $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

36 On the set of axes below, sketch the locus of points 2 units from the x-axis and sketch the locus of points 6 units from the point $(0,4)$. Label with an \mathbf{X} all points that satisfy both conditions.

37 Using a compass and straightedge, construct an equilateral triangle with $\overline{A B}$ as a side. Using this triangle, construct a 30° angle with its vertex at A. [Leave all construction marks.]

$$
A \longrightarrow B
$$

38 The vertices of quadrilateral $J K L M$ have coordinates $J(-3,1), K(1,-5), L(7,-2)$, and $M(3,4)$. Prove that $J K L M$ is a parallelogram. Prove that $J K L M$ is not a rhombus. [The use of the set of axes below is optional.]

0614ge

Answer Section

1 ANS: 3
PTS: 2
REF: 061401ge
STA: G.G. 9

TOP: Planes
2 ANS: 1

$$
M_{x}=\frac{-5+3}{2}=\frac{-2}{2}=-1 . M_{y}=\frac{1+5}{2}=\frac{6}{2}=3 .
$$

PTS: 2
3 ANS: 2

$$
\begin{aligned}
5 x-22 & =3 x+10 \\
2 x & =32 \\
x & =16
\end{aligned}
$$

PTS: 2
REF: 061403ge
STA: G.G. 35
4 ANS: 3
$\frac{4}{2+3+4} \times 180=80$
PTS: 2
REF: 061404ge
STA: G.G. 30
5 ANS: 3
$L=2 \pi r h=2 \pi \cdot \frac{6}{2} \cdot 15=90 \pi$
PTS: 2
REF: 061405ge
STA: G.G. 14
6 ANS: 2

$$
\begin{aligned}
x+2 x & =x^{2} \quad(0,0),(3,3) \\
0 & =x^{2}-3 x \\
0 & =x(x-3) \\
x & =0,3
\end{aligned}
$$

PTS: 2
REF: 061406ge STA: G.G. 70
7 ANS: 2

$$
\begin{aligned}
x+x+x+15 & =180 \\
3 x+15 & =180 \\
3 x & =165 \\
x & =15
\end{aligned}
$$

PTS: 2
REF: 061407ge
8 ANS: 1
PTS: 2
TOP: Equations of Circles

STA: G.G. 31
REF: 061408ge

TOP: Isosceles Triangle Theorem
STA: G.G. 72

9 ANS: 3
Parallel lines intercept congruent arcs.
PTS: 2 REF: 061409ge
STA: G.G. 52
REF: 061410ge
TOP: Triangle Congruency
11 ANS: 3
$d=\sqrt{(-2-4)^{2}+(3-5)^{2}}=\sqrt{36+4}=\sqrt{40}=2 \sqrt{10}$
PTS: 2
REF: 061411ge
STA: G.G. 67
TOP: Distance
KEY: general
12 ANS: 4
PTS: 2
REF: 061412ge
STA: G.G. 24
TOP: Negations
13 ANS: 2

$$
\begin{aligned}
180-\frac{(n-2) 180}{n} & =45 . \\
180 n-180 n+360 & =45 n \\
360 & =45 n \\
n & =8
\end{aligned}
$$

PTS: 2
REF: 061413ge
STA: G.G. 37
TOP: Interior and Exterior Angles of Polygons
14 ANS: 2

PTS: 2
REF: 061414ge
STA: G.G. 39
TOP: Special Parallelograms
15 ANS: 3
$144 \pi=4 \pi r^{2}$

$$
\begin{gathered}
36=r^{2} \\
6=r
\end{gathered}
$$

PTS: 2
REF: 061415ge
STA: G.G. 16
TOP: Volume and Surface Area
16 ANS: 4
$3+6>8$
PTS: 2
REF: 061416ge
STA: G.G. 33
TOP: Triangle Inequality Theorem
17 ANS: 2
$m=\frac{-A}{B}=\frac{-2}{3} \quad m_{\perp}=\frac{3}{2}$
PTS: 2
REF: 061417ge STA: G.G. 62

18 ANS: 1 PTS: 2 REF: 061418ge STA: G.G. 3
TOP: Planes
19 ANS: 1
$180-123=57$
PTS: 2 REF: 061419ge STA: G.G. 40 TOP: Trapezoids
20 ANS: 1
$m=\frac{-A}{B}=\frac{1}{2}-1=\frac{1}{2}(4)+b$

$$
\begin{aligned}
& -1=2+b \\
& -3=b
\end{aligned}
$$

PTS: 2
21 ANS: 3
TOP: Properties of Transformations
22 ANS: 4
PTS: 2
TOP: Equations of Circles
23 ANS: 4 PTS: 2
TOP: Compound Statements
24 ANS: 3
TOP: Centroid
25 ANS: 2

$$
\begin{aligned}
x^{2}+5 x & =4 x+110 \mathrm{~m} \angle Q=4(10)=40 \\
x^{2}+x-110 & =0 \\
(x+11)(x-10) & =0 \\
10 & =x
\end{aligned}
$$

PTS: 2
REF: 061425ge
STA: G.G. 32
TOP: Exterior Angle Theorem
26 ANS: 3
$\frac{12}{8}=\frac{21}{x} \quad 21+14=35$
$12 x=168$
$x=14$
PTS: 2 REF: 061426ge STA: G.G. 46
27 ANS: 2
TOP: Line Proofs
28 ANS: 1

$$
\begin{aligned}
\left(\frac{2+2}{2}, \frac{0+(-8)}{2}\right)=(2,-4) \sqrt{(2-2)^{2}+(-8-0)^{2}} & =8=d \\
4 & =r \\
16 & =r^{2}
\end{aligned}
$$

PTS: 2
REF: 061428ge
STA: G.G. 71

TOP: Parallel and Perpendicular Lines
STA: G.G. 55
REF: 061422ge STA: G.G. 73
REF: 061423ge STA: G.G. 25
KEY: conditional
REF: 061424ge
STA: G.G. 43

PTS: 2
REF: 061427ge
TOP: Side Splitter Theorem
STA: G.G. 27

TOP: Equations of Circles

29 ANS:

$$
\begin{aligned}
(x, y) & \rightarrow(-y, x) \\
B(5,1) & \rightarrow B^{\prime}(-1,5) \\
C(-3,-2) & \rightarrow C^{\prime}(2,-3)
\end{aligned}
$$

PTS: 2 REF: 061429ge STA: G.G. 54 TOP: Rotations
30 ANS:

PTS: 2
REF: 061430ge STA: G.G. 34
TOP: Angle Side Relationship
31 ANS:
$x^{2}=8(10+8)$
$x^{2}=144$
$x=12$

PTS: 2
REF: 061431ge
STA: G.G. 47
TOP: Similarity
KEY: leg
32 ANS:
$5 \cdot 5=10 w$
$25=10 w$
$2.5=w$
PTS: 2
REF: 061432ge
STA: G.G. 11
TOP: Volume
33 ANS:
$x^{2}+7^{2}=25^{2}$
$x^{2}+49=625$
$x^{2}=576$
$x=24$

PTS: 2
REF: 061433ge
STA: G.G. 50
TOP: Tangents
KEY: point of tangency

34 ANS:

$$
\begin{aligned}
\left(\frac{3}{2}\right)^{2} & =\frac{27}{A} \\
\frac{9}{4} & =\frac{27}{A} \\
9 A & =108 \\
A & =12
\end{aligned}
$$

PTS: 2
REF: 061434ge
KEY: perimeter and area
35 ANS:

PTS: 4
REF: 061435ge
STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids
36

PTS: 4
REF: 061436ge
STA: G.G. 23
TOP: Locus

37 ANS:

PTS: 4
REF: 061437ge
STA: G.G. 17
TOP: Constructions
38 ANS:
$m_{\overline{J M}}=\frac{1-4}{-3-3}=\frac{-3}{-6}=\frac{1}{2} \quad$ Since both opposite sides have equal slopes and are parallel, JKLM is a
$m_{=\overline{M L}}=\frac{4--2}{3-7}=\frac{6}{-4}=-\frac{3}{2}$
$m_{L K}=\frac{-2--5}{7-1}=\frac{3}{6}=\frac{1}{2}$
$m_{K J}=\frac{-5-1}{1--3}=\frac{-6}{4}=-\frac{3}{2}$
parallelogram. $\overline{J M}=\sqrt{(-3-3)^{2}+(1-4)^{2}}=\sqrt{45} \cdot \overline{J M}$ is not congruent to $\overline{M L}$, so $J K L M$ is not a rhombus since

$$
\overline{M L}=\sqrt{(7-3)^{2}+(-2-4)^{2}}=\sqrt{52}
$$

not all sides are congruent.
PTS: 6 REF: 061438ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane

