Geometry Regents Exam 0615 www.jmap.org

0615ge

- 1 Quadrilateral *ABCD* undergoes a transformation, producing quadrilateral A'B'C'D'. For which transformation would the area of A'B'C'D' not be equal to the area of *ABCD*?
 - 1) a rotation of 90° about the origin
 - 2) a reflection over the *y*-axis
 - 3) a dilation by a scale factor of 2
 - 4) a translation defined by $(x, y) \rightarrow (x + 4, y 1)$
- 2 The diameter of a sphere is 12 inches. What is the volume of the sphere to the *nearest cubic inch*?
 - 1) 288
 - 2) 452
 - 3) 905
 - 4) 7,238
- 3 A right rectangular prism is shown in the diagram below.

Which line segments are coplanar?

- 1) EF and BC
- 2) \overline{HD} and \overline{FG}
- 3) \overline{GH} and \overline{FB}
- 4) \overline{EA} and \overline{GC}
- 4 What are the coordinates of the image of point A(2,-7) under the translation $(x,y) \rightarrow (x-3,y+5)$?
 - 1) (-1,-2)
 - 2) (-1,2)
 - 3) (5,-12)
 - 4) (5,12)

- 5 Point *M* is the midpoint of \overline{AB} . If the coordinates of *M* are (2, 8) and the coordinates of *A* are (10, 12), what are the coordinates of *B*?
 - 1) (6,10)
 - 2) (-6,4)
 - 3) (-8,-4)
 - 4) (18, 16)
- 6 In the diagram below, \overline{QM} is an altitude of right triangle PQR, PM = 8, and RM = 18.

What is the length of \overline{QM} ?

- 1) 20
- 2) 16
- 3) 12
- 4) 10
- 7 What is an equation of the line that passes through the point (2, 4) and is perpendicular to the line whose equation is 3y = 6x + 3?
 - 1) $y = -\frac{1}{2}x + 5$ 2) $y = -\frac{1}{2}x + 4$
 - 3) y = 2x 64) y = 2x

Geometry Regents Exam 0615 www.jmap.org

- 8 In all isosceles triangles, the exterior angle of a base angle must always be
 - 1) a right angle
 - 2) an acute angle
 - 3) an obtuse angle
 - 4) equal to the vertex angle
- 9 If $\Delta W'X'Y'$ is the image of ΔWXY after the transformation R_{90° , which statement is *false*?
 - 1) XY = X'Y'
 - 2) $\overline{WX} \parallel \overline{W'X'}$
 - 3) $\Delta WXY \cong \Delta W'X'Y'$
 - 4) $m \angle XWY = m \angle X'W'Y'$
- 10 Which equation represents the circle shown in the graph below?

- 1) $(x-2)^2 + y^2 = 9$
- 2) $(x+2)^2 + y^2 = 9$
- 3) $(x-2)^2 + y^2 = 3$
- 4) $(x+2)^2 + y^2 = 3$

- 11 In quadrilateral *ABCD*, each diagonal bisects opposite angles. If $m \angle DAB = 70$, then *ABCD* must be a
 - 1) rectangle
 - 2) trapezoid
 - 3) rhombus
 - 4) square
- 12 Which diagram illustrates a correct construction of an altitude of ΔABC ?

- 13 From external point *A*, two tangents to circle *O* are drawn. The points of tangency are *B* and *C*. Chord \overline{BC} is drawn to form $\triangle ABC$. If $m \angle ABC = 66$, what is $m \angle A$?
 - 1) 33
 - 2) 48
 - 3) 57
 - 4) 66

Geometry Regents Exam 0615 www.jmap.org

- 14 Point A lies on plane \mathcal{P} . How many distinct lines passing through point A are perpendicular to plane $\mathcal{P}?$
 - 1)
 - 1 2) 2
 - 3) 0
 - 4) infinite
- 15 Students made four statements about a circle.

A: The coordinates of its center are (4, -3).

- B: The coordinates of its center are (-4, 3).
- C: The length of its radius is $5\sqrt{2}$.
- D: The length of its radius is 25.

If the equation of the circle is

 $(x+4)^{2} + (y-3)^{2} = 50$, which statements are correct?

- 1) A and C
- 2) A and D
- 3) B and C
- 4) B and D
- 16 Points A, B, C, and D are located on circle O, forming trapezoid *ABCD* with $AB \parallel DC$. Which statement must be true?
 - $AB \cong DC$ 1)
 - 2) $\widehat{AD} \cong \widehat{BC}$
 - $\angle A \cong \angle D$ 3)
 - $\widehat{AB} \cong \widehat{DC}$ 4)
- 17 If $\triangle ABC \sim \triangle LMN$, which statement is *not* always true?
 - 1) $m \angle A \cong m \angle N$
 - $m \angle B \cong m \angle M$ 2)
 - $\frac{\text{area of } \Delta ABC}{\text{area of } \Delta LMN} = \frac{(AC)^2}{(LN)^2}$ 3)
 - $\frac{\text{perimeter of } \Delta ABC}{\text{perimeter of } \Delta LMN} = \frac{AB}{LM}$ 4)

18 The equations of lines k, m, and n are given below. k: 3y + 6 = 2x

$$m: 3y + 2x + 6 = 0$$
$$n: 2y = 3x + 6$$
ent is true?

- Which statem
- $k \parallel m$ 1)
- $n \parallel m$ 2)
- 3) $m \perp k$
- 4) $m \perp n$
- A regular polygon with an exterior angle of 40° is a 19
 - 1) pentagon
 - 2) hexagon
 - 3) nonagon
 - 4) decagon
- 20 In $\triangle ABC$ shown below, L is the midpoint of BC, M is the midpoint of AB, and N is the midpoint of AC.

If MN = 8, ML = 5, and NL = 6, the perimeter of trapezoid BMNC is

- 1) 26 28
- 2) 30
- 3) 35
- 4)
- The sum of the interior angles of a regular polygon 21 is 720°. How many sides does the polygon have?
 - 1) 8
 - 2) 6
 - 3) 5
 - 4) 4

22 In the prism shown below, $\overline{AD} \perp \overline{AE}$ and $\overline{AD} \perp \overline{AB}$.

Which plane is perpendicular to \overline{AD} ?

- 1) HEA
- 2) BAD
- 3) EAB
- 4) EHG
- 23 In $\triangle ABC$, $m \angle A = 65$ and $m \angle B$ is greater than $m \angle A$. The lengths of the sides of $\triangle ABC$ in order from smallest to largest are
 - 1) AB, BC, AC
 - 2) BC, AB, AC
 - 3) $\overline{AC}, \overline{BC}, \overline{AB}$
 - 4) AB, AC, BC
- 24 Which equation represents a circle whose center is the origin and that passes through the point (-4, 0)?
 - 1) $x^2 + y^2 = 8$
 - 2) $x^2 + y^2 = 16$
 - 3) $(x+4)^2 + y^2 = 8$
 - 4) $(x+4)^2 + y^2 = 16$
- 25 The lengths of two sides of a triangle are 7 and 11. Which inequality represents all possible values for *x*, the length of the third side of the triangle?
 - 1) $4 \le x \le 18$
 - 2) $4 < x \le 18$
 - $3) \quad 4 \le x < 18$
 - 4) 4 < x < 18

- 26 Which statement is the inverse of "If x + 3 = 7, then x = 4"?
 - 1) If x = 4, then x + 3 = 7.
 - 2) If $x \neq 4$, then $x + 3 \neq 7$.
 - 3) If $x + 3 \neq 7$, then $x \neq 4$.
 - 4) If x + 3 = 7, then $x \neq 4$.
- 27 In the diagram below of ΔMAR , medians MN, AT, and \overline{RH} intersect at O.

If TO = 10, what is the length of TA?

- 1) 30
- 2) 25
- 3) 20
- 4) 15
- 28 What is an equation of the line that passes through the point (4, 5) and is parallel to the line whose

equation is
$$y = \frac{2}{3}x - 4?$$

- 1) 2y + 3x = 11
- 2) 2y + 3x = 22
- 3) 3y 2x = 2
- 4) 3y 2x = 7
- 29 The measures of the angles of a triangle are in the ratio 5:6:7. Determine the measure, in degrees, of the *smallest* angle of the triangle.

30 Triangle *ABC* has vertices A(-1, 1), B(1, 3), and C(4, 1). The image of $\triangle ABC$ after the transformation $r_{y=x}$ is $\triangle A'B'C'$. State and label the coordinates of $\triangle A'B'C'$. [The use of the set of axes below is optional.]

31 As shown in the diagram below, a right circular cone has a height of 12 and a radius of 5.

Determine, in terms of π , the lateral area of the right circular cone.

32 Using a compass and straightedge, locate the midpoint of \overline{AB} by construction. [Leave all construction marks.]

- 33 The coordinates of the endpoints of \overline{CD} are C(3,8)and D(6,-1). Find the length of \overline{CD} in simplest radical form.
- 34 In the diagram below, point *B* is the incenter of ΔFEC , and \overline{EBR} , \overline{CBD} , and \overline{FB} are drawn.

If $m \angle FEC = 84$ and $m \angle ECF = 28$, determine and state $m \angle BRC$.

Geometry Regents Exam 0615 www.jmap.org

35 Solve the following system of equations graphically. State the coordinates of all points in the solution.

$$y + 4x = x^2 + 5$$
$$x + y = 5$$

36 In parallelogram *ABCD*, with diagonal \overline{AC} drawn, $m\angle BCA = 4x + 2$, $m\angle DAC = 6x - 6$, $m\angle BAC = 5y - 1$, and $m\angle DCA = 7y - 15$. Determine $m\angle B$. 37 Point *P* is 5 units from line *j*. Sketch the locus of points that are 3 units from line *j* and also sketch the locus of points that are 8 units from *P*. Label with an X all points that satisfy *both* conditions.

38 The diagram below shows square <u>ABCD</u> where E and F are points on <u>BC</u> such that $\overline{BE} \cong \overline{FC}$, and segments <u>AF</u> and <u>DE</u> are drawn. Prove that $\overline{AF} \cong \overline{DE}$.

0615ge Answer Section

1 ANS: 3 PTS: 2 REF: 061501ge STA: G.G.61 TOP: Analytical Representations of Transformations 2 ANS: 3 $V = \frac{2}{3} \pi \left(\frac{12}{2}\right)^3 \approx 905$ PTS: 2 STA: G.G.16 REF: 061502ge TOP: Volume and Surface Area 3 ANS: 4 PTS: 2 REF: 061503ge STA: G.G.10 TOP: Solids 4 ANS: 1 $(2,-7) \rightarrow (2-3,-7+5) = (-1,-2)$ PTS: 2 REF: 061504ge STA: G.G.61 TOP: Analytical Representations of Transformations 5 ANS: 2 $2 = \frac{10+x}{2}, \quad 8 = \frac{12+y}{2}$ 4 = 10 + x 16 = 12 + y-6 = x4 = vPTS: 2 REF: 061505ge STA: G.G.66 TOP: Midpoint 6 ANS: 3 $x^2 = 8 \times 18$ $x^2 = 144$ *x* = 12 PTS: 2 REF: 061506ge STA: G.G.47 TOP: Similarity KEY: altitude 7 ANS: 1 $m = \frac{6}{3} = 2$ $m_{\perp} = -\frac{1}{2}$ $4 = -\frac{1}{2}(2) + b$ 4 = -1 + b5 = bPTS: 2 REF: 061507ge STA: G.G.64 TOP: Parallel and Perpendicular Lines 8 ANS: 3 REF: 061508ge STA: G.G.32 PTS: 2 TOP: Exterior Angle Theorem 9 ANS: 2 PTS: 2 REF: 061509ge STA: G.G.55 TOP: Properties of Transformations 10 ANS: 1 PTS: 2 REF: 061510ge STA: G.G.72 TOP: Equations of Circles

11 ANS: 3

PTS: 2

Diagonals of rectangles and trapezoids do not bisect opposite angles. $m \angle DAB = 90$ if ABCD is a square.

PTS: 2 REF: 061511ge STA: G.G.39 **TOP:** Special Parallelograms 12 ANS: 2 PTS: 2 REF: 061512ge STA: G.G.19 **TOP:** Constructions 13 ANS: 2 180 - 2(66) = 48STA: G.G.50 PTS: 2 REF: 061513ge TOP: Tangents KEY: two tangents 14 ANS: 1 REF: 061514ge PTS: 2 STA: G.G.3 TOP: Planes 15 ANS: 3 $r^2 = 50$ $r = \sqrt{50} = \sqrt{25} \sqrt{2} = 5\sqrt{2}$ PTS: 2 REF: 061515ge STA: G.G.73 TOP: Equations of Circles 16 ANS: 2 STA: G.G.52 PTS: 2 REF: 061516ge TOP: Chords PTS: 2 17 ANS: 1 REF: 061517ge STA: G.G.45 KEY: perimeter and area TOP: Similarity 18 ANS: 4 $k: m = \frac{2}{3}$ $m: m = \frac{-A}{B} = \frac{-2}{3}$ $n: m = \frac{3}{2}$ PTS: 2 REF: 061518ge STA: G.G.63 TOP: Parallel and Perpendicular Lines 19 ANS: 3 $180 - \frac{(n-2)180}{n} = 40$ 180n - 180n + 360 = 40n360 = 40nn = 9PTS: 2 REF: 061519ge STA: G.G.37 TOP: Interior and Exterior Angles of Polygons 20 ANS: 4

REF: 061520ge STA: G.G.42 TOP: Midsegments

21 ANS: 2 180(n-2) = 720n - 2 = 4*n* = 6 STA: G.G.37 PTS: 2 REF: 061521ge TOP: Interior and Exterior Angles of Polygons 22 ANS: 3 PTS: 2 REF: 061522ge STA: G.G.1 TOP: Planes 23 ANS: 1 REF: 061523ge STA: G.G.34 PTS: 2 TOP: Angle Side Relationship 24 ANS: 2 PTS: 2 REF: 061524ge STA: G.G.71 TOP: Equations of Circles 25 ANS: 4 11 - 7 = 4, 11 + 7 = 18STA: G.G.33 PTS: 2 REF: 061525ge TOP: Triangle Inequality Theorem 26 ANS: 3 PTS: 2 REF: 061526ge STA: G.G.26 TOP: Inverse 27 ANS: 1 PTS: 2 REF: 061527ge STA: G.G.43 TOP: Centroid 28 ANS: 4 $\frac{2}{3}\left(x-4\right)=y-5$ 2x - 8 = 3y - 157 = 3y - 2xPTS: 2 REF: 061528ge STA: G.G.65 TOP: Parallel and Perpendicular Lines 29 ANS: $\frac{5}{5+6+7} \cdot 180 = 50$ PTS: 2 REF: 061529ge STA: G.G.30 TOP: Interior and Exterior Angles of Triangles 30 ANS: REF: 061530ge STA: G.G.54 **TOP:** Reflections PTS: 2 KEY: grids

ID: A

31 ANS:
$$l = \sqrt{12^2 + 5^2} = \sqrt{169} = 13$$
 $L = \pi r l = \pi (5)(13) = 65\pi$

PTS: 2 REF: 061531ge STA: G.G.15 TOP: Volume and Lateral Area 32 ANS:

PTS: 2 REF: 061532ge STA: G.G.18 TOP: Constructions 33 ANS: $\sqrt{(6-3)^2 + (-1-8)^2} = \sqrt{9+81} = \sqrt{90} = \sqrt{9}\sqrt{10} = 3\sqrt{10}$. PTS: 2 REF: 061533ge STA: G.G.67 TOP: Distance 34 ANS: $180 - \left(\frac{84}{2} + 28\right) = 180 - 70 = 110$

PTS: 2 REF: 061534ge STA: G.G.21 TOP: Centroid, Orthocenter, Incenter and Circumcenter

35 ANS:

STA: G.G.70

TOP: Quadratic-Linear Systems

36 ANS:

 $6x - 6 = 4x + 2 \quad \text{m} \angle BCA = 4(4) + 2 = 18 \quad 7y - 15 = 5y - 1 \quad \text{m} \angle BAC = 5(7) - 1 = 34 \quad \text{m} \angle B = 180 - (18 + 34) = 128$ $2x = 8 \qquad \qquad 2y = 14$ $x = 4 \qquad \qquad y = 7$

PTS: 4 REF: 061536ge STA: G.G.38 TOP: Parallelograms

PTS: 6 REF: 061538ge STA: G.G.27 TOP: Quadrilateral Proofs