0615ge

1 Quadrilateral $A B C D$ undergoes a transformation, producing quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. For which transformation would the area of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ not be equal to the area of $A B C D$?

1) a rotation of 90° about the origin
2) a reflection over the y-axis
3) a dilation by a scale factor of 2
4) a translation defined by $(x, y) \rightarrow(x+4, y-1)$

2 The diameter of a sphere is 12 inches. What is the volume of the sphere to the nearest cubic inch?

1) 288
2) 452
3) 905
4) 7,238

3 A right rectangular prism is shown in the diagram below.

Which line segments are coplanar?

1) $\overline{E F}$ and $\overline{B C}$
2) $\overline{H D}$ and $\overline{F G}$
3) $\overline{G H}$ and $\overline{F B}$
4) $\overline{E A}$ and $\overline{G C}$

4 What are the coordinates of the image of point $A(2,-7)$ under the translation $(x, y) \rightarrow(x-3, y+5)$?

1) $(-1,-2)$
2) $(-1,2)$
3) $(5,-12)$
4) $(5,12)$

5 Point M is the midpoint of $\overline{A B}$. If the coordinates of M are $(2,8)$ and the coordinates of A are $(10,12)$, what are the coordinates of B ?

1) $(6,10)$
2) $(-6,4)$
3) $(-8,-4)$
4) $(18,16)$

6 In the diagram below, $\overline{Q M}$ is an altitude of right triangle $P Q R, P M=8$, and $R M=18$.

What is the length of $\overline{Q M}$?

1) 20
2) 16
3) 12
4) 10

7 What is an equation of the line that passes through the point $(2,4)$ and is perpendicular to the line whose equation is $3 y=6 x+3$?

1) $y=-\frac{1}{2} x+5$
2) $y=-\frac{1}{2} x+4$
3) $y=2 x-6$
4) $y=2 x$

8 In all isosceles triangles, the exterior angle of a base angle must always be

1) a right angle
2) an acute angle
3) an obtuse angle
4) equal to the vertex angle

9 If $\Delta W^{\prime} X^{\prime} Y^{\prime}$ is the image of $\Delta W X Y$ after the transformation $R_{90^{\circ}}$, which statement is false?

1) $X Y=X^{\prime} Y^{\prime}$
2) $\overline{W X} \| \overline{W^{\prime} X^{\prime}}$
3) $\Delta W X Y \cong \Delta W^{\prime} X^{\prime} Y^{\prime}$
4) $\mathrm{m} \angle X W Y=\mathrm{m} \angle X^{\prime} W^{\prime} Y^{\prime}$

10 Which equation represents the circle shown in the graph below?

1) $(x-2)^{2}+y^{2}=9$
2) $(x+2)^{2}+y^{2}=9$
3) $(x-2)^{2}+y^{2}=3$
4) $(x+2)^{2}+y^{2}=3$

11 In quadrilateral $A B C D$, each diagonal bisects opposite angles. If $\mathrm{m} \angle D A B=70$, then $A B C D$ must be a

1) rectangle
2) trapezoid
3) rhombus
4) square

12 Which diagram illustrates a correct construction of an altitude of $\triangle A B C$?
1)

3)

4)

13 From external point A, two tangents to circle O are drawn. The points of tangency are B and C. Chord $\overline{B C}$ is drawn to form $\triangle A B C$. If $\mathrm{m} \angle A B C=66$, what is $\mathrm{m} \angle A$?

1) 33
2) 48
3) 57
4) 66

14 Point A lies on plane \mathscr{P}. How many distinct lines passing through point A are perpendicular to plane \mathscr{P} ?

1) 1
2) 2
3) 0
4) infinite

15 Students made four statements about a circle.
A : The coordinates of its center are $(4,-3)$.
B : The coordinates of its center are $(-4,3)$.
C : The length of its radius is $5 \sqrt{2}$.
D : The length of its radius is 25 .
If the equation of the circle is
$(x+4)^{2}+(y-3)^{2}=50$, which statements are correct?

1) A and C
2) A and D
3) B and C
4) $\quad B$ and D

16 Points A, B, C, and D are located on circle O, forming trapezoid $A B C D$ with $\overline{A B} \| \overline{D C}$. Which statement must be true?

1) $\overline{A B} \cong \overline{D C}$
2) $\overparen{A D} \cong \overparen{B C}$
3) $\angle A \cong \angle D$
4) $\overparen{A B} \cong \overparen{D C}$

17 If $\triangle A B C \sim \triangle L M N$, which statement is not always true?

1) $\mathrm{m} \angle A \cong \mathrm{~m} \angle N$
2) $\mathrm{m} \angle B \cong \mathrm{~m} \angle M$
3) $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle L M N}=\frac{(A C)^{2}}{(L N)^{2}}$
4) $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle L M N}=\frac{A B}{L M}$

18 The equations of lines k, m, and n are given below.

$$
\begin{aligned}
& k: 3 y+6=2 x \\
& m: 3 y+2 x+6=0 \\
& n: 2 y=3 x+6
\end{aligned}
$$

Which statement is true?

1) $k \| m$
2) $n \| m$
3) $m \perp k$
4) $m \perp n$

19 A regular polygon with an exterior angle of 40° is a

1) pentagon
2) hexagon
3) nonagon
4) decagon

20 In $\triangle A B C$ shown below, L is the midpoint of $\overline{B C}, M$ is the midpoint of $\overline{A B}$, and N is the midpoint of $\overline{A C}$.

If $M N=8, M L=5$, and $N L=6$, the perimeter of trapezoid $B M N C$ is

1) 26
2) 28
3) 30
4) 35

21 The sum of the interior angles of a regular polygon is 720°. How many sides does the polygon have?

1) 8
2) 6
3) 5
4) 4

22 In the prism shown below, $\overline{A D} \perp \overline{A E}$ and $\overline{A D} \perp \overline{A B}$.

Which plane is perpendicular to $\overline{A D}$?

1) HEA
2) BAD
3) EAB
4) EHG

23 In $\triangle A B C, \mathrm{~m} \angle A=65$ and $\mathrm{m} \angle B$ is greater than $\mathrm{m} \angle A$. The lengths of the sides of $\triangle A B C$ in order from smallest to largest are

1) $\overline{A B}, \overline{B C}, \overline{A C}$
2) $\overline{B C}, \overline{A B}, \overline{A C}$
3) $\overline{A C}, \overline{B C}, \overline{A B}$
4) $\overline{A B}, \overline{A C}, \overline{B C}$

24 Which equation represents a circle whose center is the origin and that passes through the point $(-4,0)$?

1) $x^{2}+y^{2}=8$
2) $x^{2}+y^{2}=16$
3) $(x+4)^{2}+y^{2}=8$
4) $(x+4)^{2}+y^{2}=16$

25 The lengths of two sides of a triangle are 7 and 11. Which inequality represents all possible values for x, the length of the third side of the triangle?

1) $4 \leq x \leq 18$
2) $4<x \leq 18$
3) $4 \leq x<18$
4) $4<x<18$

26 Which statement is the inverse of "If $x+3=7$, then $x=4$ "?

1) If $x=4$, then $x+3=7$.
2) If $x \neq 4$, then $x+3 \neq 7$.
3) If $x+3 \neq 7$, then $x \neq 4$.
4) If $x+3=7$, then $x \neq 4$.

27 In the diagram below of $\triangle M A R$, medians $\overline{M N}, \overline{A T}$, and $\overline{R H}$ intersect at O.

If $T O=10$, what is the length of $\overline{T A}$?

1) 30
2) 25
3) 20
4) 15

28 What is an equation of the line that passes through the point $(4,5)$ and is parallel to the line whose equation is $y=\frac{2}{3} x-4$?

1) $2 y+3 x=11$
2) $2 y+3 x=22$
3) $3 y-2 x=2$
4) $3 y-2 x=7$

29 The measures of the angles of a triangle are in the ratio 5:6:7. Determine the measure, in degrees, of the smallest angle of the triangle.

30 Triangle $A B C$ has vertices $A(-1,1), B(1,3)$, and $C(4,1)$. The image of $\triangle A B C$ after the transformation $r_{y=x}$ is $\Delta A^{\prime} B^{\prime} C^{\prime}$. State and label the coordinates of $\Delta A^{\prime} B^{\prime} C^{\prime}$. [The use of the set of axes below is optional.]

31 As shown in the diagram below, a right circular cone has a height of 12 and a radius of 5 .

Determine, in terms of π, the lateral area of the right circular cone.

32 Using a compass and straightedge, locate the midpoint of $\overline{A B}$ by construction. [Leave all construction marks.]

33 The coordinates of the endpoints of $\overline{C D}$ are $C(3,8)$ and $D(6,-1)$. Find the length of $\overline{C D}$ in simplest radical form.

34 In the diagram below, point B is the incenter of $\triangle F E C$, and $\overline{E B R}, \overline{C B D}$, and $\overline{F B}$ are drawn.

If $\mathrm{m} \angle F E C=84$ and $\mathrm{m} \angle E C F=28$, determine and state $\mathrm{m} \angle B R C$.

35 Solve the following system of equations graphically. State the coordinates of all points in the solution.

$$
\begin{aligned}
y+4 x & =x^{2}+5 \\
x+y & =5
\end{aligned}
$$

36 In parallelogram $A B C D$, with diagonal $\overline{A C}$ drawn, $\mathrm{m} \angle B C A=4 x+2, \mathrm{~m} \angle D A C=6 x-6$, $\mathrm{m} \angle B A C=5 y-1$, and $\mathrm{m} \angle D C A=7 y-15$.
Determine $\mathrm{m} \angle B$.

37 Point P is 5 units from line j. Sketch the locus of points that are 3 units from line j and also sketch the locus of points that are 8 units from P. Label with an \mathbf{X} all points that satisfy both conditions.

38 The diagram below shows square $A B C D$ where E and F are points on $\overline{B C}$ such that $\overline{B E} \cong \overline{F C}$, and segments $A F$ and $D E$ are drawn. Prove that $\overline{A F} \cong \overline{D E}$.

0615ge

Answer Section

1 ANS: 3
PTS: 2
REF: 061501ge
STA: G.G. 61
TOP: Analytical Representations of Transformations
2 ANS: 3
$V=\frac{2}{3} \pi\left(\frac{12}{2}\right)^{3} \approx 905$

PTS: 2
3 ANS: 4
TOP: Solids
4 ANS: 1
$(2,-7) \rightarrow(2-3,-7+5)=(-1,-2)$
PTS: 2
REF: 061504ge
STA: G.G. 61
TOP: Analytical Representations of Transformations
5 ANS: 2

$$
\begin{array}{rlrl}
2 & =\frac{10+x}{2} . & 8 & =\frac{12+y}{2} \\
4 & =10+x & 16 & =12+y \\
-6 & =x & 4 & =y
\end{array}
$$

PTS: 2
REF: 061505ge
STA: G.G. 66
TOP: Midpoint
6 ANS: 3
$x^{2}=8 \times 18$
$x^{2}=144$
$x=12$
PTS: 2
REF: 061506ge
STA: G.G. 47
KEY: altitude
7 ANS: 1
$m=\frac{6}{3}=2 \quad m_{\perp}=-\frac{1}{2} \quad 4=-\frac{1}{2}(2)+b$
$4=-1+b$
$5=b$
PTS: 2
REF: 061507ge
STA: G.G. 64
8 ANS: 3
PTS: 2
REF: 061508ge
TOP: Exterior Angle Theorem
9 ANS: $2 \quad$ PTS: 2
TOP: Properties of Transformations
10 ANS: $1 \quad$ PTS: 2
TOP: Equations of Circles

REF: 061509ge STA: G.G. 55
REF: 061510ge STA: G.G. 72

TOP: Parallel and Perpendicular Lines
STA: G.G. 32

11 ANS: 3
Diagonals of rectangles and trapezoids do not bisect opposite angles. $\mathrm{m} \angle D A B=90$ if $A B C D$ is a square.
PTS: 2 REF: 061511ge STA: G.G. 39 TOP: Special Parallelograms
12 ANS: 2
PTS: 2
REF: 061512ge
TOP: Constructions
13 ANS: 2
$180-2(66)=48$
PTS: 2
REF: 061513ge
STA: G.G. 50
TOP: Tangents
KEY: two tangents
14 ANS: 1
PTS: 2
REF: 061514ge
STA: G.G. 3
TOP: Planes
15 ANS: 3
$r^{2}=50$
$r=\sqrt{50}=\sqrt{25} \sqrt{2}=5 \sqrt{2}$
PTS: 2
REF: 061515ge
STA: G.G. 73
PTS: 2
REF: 061516ge
TOP: Equations of Circles
16 ANS: 2
TS: 2
REF: 061517ge
STA: G.G. 45
17 ANS: 1
TOP: Similarity
KEY: perimeter and area
18 ANS: 4
$k: m=\frac{2}{3} \quad m: m=\frac{-A}{B}=\frac{-2}{3} \quad n: m=\frac{3}{2}$
PTS: 2 REF: 061518ge STA: G.G. 63 TOP: Parallel and Perpendicular Lines
19 ANS: 3
$180-\frac{(n-2) 180}{n}=40$
$180 n-180 n+360=40 n$

$$
\begin{aligned}
360 & =40 n \\
n & =9
\end{aligned}
$$

PTS: 2
REF: 061519ge
STA: G.G. 37
TOP: Interior and Exterior Angles of Polygons
20 ANS: 4

PTS: 2
REF: 061520ge
STA: G.G. 42
TOP: Midsegments

21 ANS: 2

$$
\begin{aligned}
180(n-2) & =720 \\
n-2 & =4 \\
n & =6
\end{aligned}
$$

PTS: 2
22 ANS: 3
TOP: Planes
23 ANS: 1
TOP: Angle Side Relationship
24 ANS: 2
TOP: Equations of Circles
25 ANS: 4
$11-7=4,11+7=18$

PTS: 2
26 ANS: 3
TOP: Inverse
27 ANS: 1
TOP: Centroid
28 ANS: 4
$\frac{2}{3}(x-4)=y-5$

$$
2 x-8=3 y-15
$$

$$
7=3 y-2 x
$$

PTS: 2
REF: 061528ge
$\frac{5}{5+6+7} \cdot 180=50$

PTS: 2
30 ANS:

PTS: 2
KEY: grids
29 ANS:

REF: 061529ge

REF: 061530ge

PTS: 2
REF: 061521ge
PTS: 2

PTS: 2

REF: 061524ge

STA: G.G. 33
REF: 061526ge
REF: 061527ge
STA: G.G. 43

STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles

STA: G.G. 54
TOP: Reflections

31 ANS:
$l=\sqrt{12^{2}+5^{2}}=\sqrt{169}=13 \quad L=\pi r l=\pi(5)(13)=65 \pi$
PTS: 2 REF: 061531ge STA: G.G. 15 TOP: Volume and Lateral Area
32 ANS:

PTS: 2
REF: 061532ge
STA: G.G. 18
TOP: Constructions
33
ANS:
$\sqrt{(6-3)^{2}+(-1-8)^{2}}=\sqrt{9+81}=\sqrt{90}=\sqrt{9} \sqrt{10}=3 \sqrt{10}$.
PTS: 2 REF: 061533ge STA: G.G. 67 TOP: Distance
34 ANS:
$180-\left(\frac{84}{2}+28\right)=180-70=110$
PTS: 2
REF: 061534ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter
35 ANS:

PTS: 4
REF: 061535ge
STA: G.G. 70
TOP: Quadratic-Linear Systems

36 ANS:

$$
\begin{array}{rlrl}
6 x-6 & =4 x+2 \mathrm{~m} \angle B C A=4(4)+2=18 & 7 y-15 & =5 y-1 \mathrm{~m} \angle B A C=5(7)-1=34 \mathrm{~m} \angle B=180-(18+34)=128 \\
2 x & =8 & 2 y & =14 \\
x & =4 & y & =7
\end{array}
$$

PTS: 4
REF: 061536ge
STA: G.G. 38
TOP: Parallelograms
37

PTS: 4
REF: 061537ge
STA: G.G. 22
TOP: Locus
38

Square $A B C D ; E$ and F are points on $\overline{B C}$ such that $\overline{B E} \cong \overline{F C} ; \overline{A F}$ and $\overline{D E}$ drawn (Given). $\overline{A B} \cong \overline{C D}$ (All sides of a square are congruent). $\angle A B F \cong \angle D C E$ (All angles of a square are equiangular). $\overline{E F} \cong \overline{F E}$ (Reflexive property). $\overline{B E}+\overline{E F} \cong \overline{F C}+\overline{F E}$ (Additive property of line segments). $\overline{B F} \cong \overline{C E}$ (Angle addition). $\triangle A B F \cong \triangle D C E$ (SAS). $\overline{A F} \cong \overline{D E}$ (СРСТС).

PTS: 6
REF: 061538ge
STA: G.G. 27
TOP: Quadrilateral Proofs

