0809ge

1 Based on the diagram below, which statement is true?

- 4) $d \parallel e$
- 2 The diagram below shows the construction of the bisector of $\angle ABC$.

Which statement is *not* true?

1)
$$m \angle EBF = \frac{1}{2} m \angle ABC$$

2)
$$m \angle DBF = \frac{1}{2} m \angle ABC$$

3)
$$m \angle EBF = m \angle ABC$$

4) $m \angle DBF = m \angle EBF$

3 In the diagram of $\triangle ABC$ below, $\overline{AB} \cong \overline{AC}$. The measure of $\angle B$ is 40°.

What is the measure of $\angle A$?

- 1) 40°
- 2) 50°
- 3) 70°
- 4) 100°
- 4 In the diagram of circle *O* below, chord \overline{CD} is parallel to diameter \overline{AOB} and $\widehat{mAC} = 30$.

What is mCD? 1) 150 2) 120 3) 100

4) 60

5 In the diagram of trapezoid *ABCD* below, diagonals \overline{AC} and \overline{BD} intersect at *E* and $\triangle ABC \cong \triangle DCB$.

Which statement is true based on the given information?

- 1) $\overline{AC} \cong \overline{BC}$
- 2) $\overline{CD} \cong \overline{AD}$
- 3) $\angle CDE \cong \angle BAD$
- $4) \quad \angle CDB \cong \angle BAC$
- 6 Which transformation produces a figure similar but not congruent to the original figure?
 - 1) $T_{1,3}$
 - 2) $D_{\frac{1}{2}}$
 - 3) $R_{90^{\circ}}$
 - 4) $r_{y=x}$

7 In the diagram below of parallelogram *ABCD* with diagonals \overline{AC} and \overline{BD} , m $\angle 1 = 45$ and m $\angle DCB = 120$.

What is the measure of $\angle 2$?

- 1) 15°
- 2) 30°
- 3) 45°
- 4) 60°
- 8 On the set of axes below, Geoff drew rectangle *ABCD*. He will transform the rectangle by using the translation $(x,y) \rightarrow (x+2,y+1)$ and then will reflect the translated rectangle over the *x*-axis.

What will be the area of the rectangle after these transformations?

- 1) exactly 28 square units
- 2) less than 28 square units
- 3) greater than 28 square units
- 4) It cannot be determined from the information given.

- 9 What is the equation of a line that is parallel to the line whose equation is y = x + 2?
 - 1) x + y = 5
 - $2) \quad 2x + y = -2$
 - $3) \quad y-x=-1$
 - $4) \quad y-2x=3$
- 10 The endpoints of \overline{CD} are C(-2, -4) and D(6, 2). What are the coordinates of the midpoint of \overline{CD} ?
 - 1) (2,3)
 - 2) (2,-1)
 - 3) (4,-2)
 - 4) (4,3)
- 11 What are the center and the radius of the circle whose equation is $(x-3)^2 + (y+3)^2 = 36$
 - 1) center = (3, -3); radius = 6
 - 2) center = (-3, 3); radius = 6
 - 3) center = (3, -3); radius = 36
 - 4) center = (-3,3); radius = 36
- 12 Given the equations: $y = x^2 6x + 10$

y + x = 4

What is the solution to the given system of equations?

- 1) (2,3)
- 2) (3,2)
- 3) (2,2) and (1,3)
- 4) (2,2) and (3,1)

- 13 The diagonal \overline{AC} is drawn in parallelogram *ABCD*. Which method can *not* be used to prove that $\triangle ABC \cong \triangle CDA$? 1) SSS
 - 1) 555 2) SAS
 - SINS
 SSA
 - 4) ASA
- 14 In the diagram below, line k is perpendicular to plane \mathcal{P} at point T.

Which statement is true?

- 1) Any point in plane \mathcal{P} also will be on line k.
- 2) Only one line in plane \mathcal{P} will intersect line *k*.
- 3) All planes that intersect plane \mathcal{P} will pass through *T*.
- 4) Any plane containing line k is perpendicular to plane \mathcal{P} .

15 In the diagram below, which transformation was used to map $\triangle ABC$ to $\triangle A'B'C'$?

- 1) dilation
- 2) rotation
- 3) reflection
- glide reflection 4)
- 16 Which set of numbers represents the lengths of the sides of a triangle?
 - 1) {5,18,13}
 - 2) {6,17,22}
 - 3) {16,24,7}
 - 4) {26, 8, 15}
- 17 What is the slope of a line perpendicular to the line whose equation is $y = -\frac{2}{3}x - 5?$
 - $-\frac{3}{2}$ $-\frac{2}{3}$ $\frac{2}{3}$ $\frac{3}{2}$ 1)
 - 2)
 - 3)
 - 4)

- 18 A quadrilateral whose diagonals bisect each other and are perpendicular is a
 - rhombus 1)
 - 2) rectangle
 - 3) trapezoid
 - 4) parallelogram
- 19 If the endpoints of \overline{AB} are A(-4,5) and B(2,-5), what is the length of \overline{AB} ?
 - 1) $2\sqrt{34}$
 - 2) 2
 - $\sqrt{61}$ 3)
 - 4) 8
- 20 In the diagram below of $\triangle ACT$, D is the midpoint of \overline{AC} , O is the midpoint of \overline{AT} , and G is the midpoint of \overline{CT} .

If AC = 10, AT = 18, and CT = 22, what is the perimeter of parallelogram CDOG?

- 21 1)
- 2) 25
- 3) 32
- 4) 40

21 Which equation represents circle *K* shown in the graph below?

- 1) $(x+5)^2 + (y-1)^2 = 3$
- 2) $(x+5)^2 + (y-1)^2 = 9$
- 3) $(x-5)^2 + (y+1)^2 = 3$
- 4) $(x-5)^2 + (y+1)^2 = 9$
- 22 In the diagram below of right triangle *ACB*, altitude \overline{CD} is drawn to hypotenuse \overline{AB} .

- If AB = 36 and AC = 12, what is the length of AD?
- 1) 32
- 2) 6
- 3) 3
- 4) 4

23 In the diagram of circle *O* below, chord \overline{AB} intersects chord \overline{CD} at *E*, DE = 2x + 8, EC = 3, AE = 4x - 3, and EB = 4.

What is the value of *x*?

- 1) 1
- 2) 3.6
- 3) 5
- 4) 10.25
- 24 What is the negation of the statement "Squares are parallelograms"?
 - 1) Parallelograms are squares.
 - 2) Parallelograms are not squares.
 - 3) It is not the case that squares are parallelograms.
 - 4) It is not the case that parallelograms are squares.

25 The diagram below shows the construction of the center of the circle circumscribed about $\triangle ABC$.

This construction represents how to find the intersection of

- 1) the angle bisectors of $\triangle ABC$
- 2) the medians to the sides of $\triangle ABC$
- 3) the altitudes to the sides of $\triangle ABC$
- 4) the perpendicular bisectors of the sides of $\triangle ABC$
- 26 A right circular cylinder has a volume of 1,000 cubic inches and a height of 8 inches. What is the radius of the cylinder to the *nearest tenth of an inch*?
 - 1) 6.3
 - 2) 11.2
 - 3) 19.8
 - 4) 39.8
- 27 If two different lines are perpendicular to the same plane, they are
 - 1) collinear
 - 2) coplanar
 - 3) congruent
 - 4) consecutive

28 How many common tangent lines can be drawn to the two externally tangent circles shown below?

 $\begin{array}{ccc} 1) & 1 \\ 2) & 2 \end{array}$

3) 3

4) 4

29 In the diagram below of isosceles trapezoid *DEFG*, $\overline{DE} \parallel \overline{GF}, DE = 4x - 2, EF = 3x + 2, FG = 5x - 3,$ and GD = 2x + 5. Find the value of x.

30 A regular pyramid with a square base is shown in the diagram below.

A side, s, of the base of the pyramid is 12 meters, and the height, h, is 42 meters. What is the volume of the pyramid in cubic meters?

- 31 Write an equation of the line that passes through the point (6, -5) and is parallel to the line whose equation is 2x 3y = 11.
- 32 Using a compass and straightedge, construct the angle bisector of $\angle ABC$ shown below. [Leave all construction marks.]

- 33 The degree measures of the angles of $\triangle ABC$ are represented by *x*, 3*x*, and 5*x* 54. Find the value of *x*.
- 34 In the diagram below of $\triangle ABC$ with side AC extended through D, m $\angle A = 37$ and m $\angle BCD = 117$. Which side of $\triangle ABC$ is the longest side? Justify your answer.

(Not drawn to scale)

35 Write an equation of the perpendicular bisector of the line segment whose endpoints are (-1, 1) and (7, -5). [The use of the grid below is optional]

36 On the set of axes below, sketch the points that are 5 units from the origin and sketch the points that are 2 units from the line y = 3. Label with an **X** all points that satisfy both conditions.

37 Triangle *DEG* has the coordinates D(1,1), E(5,1), and G(5,4). Triangle *DEG* is rotated 90° about the origin to form $\Delta D'E'G'$. On the grid below, graph and label ΔDEG and $\Delta D'E'G'$. State the coordinates of the vertices D', E', and G'. Justify that this transformation preserves distance.

38 Given: Quadrilateral *ABCD*, diagonal \overline{AFEC} , $\overline{AE} \cong \overline{FC}$, $\overline{BF} \perp \overline{AC}$, $\overline{DE} \perp \overline{AC}$, $\angle 1 \cong \angle 2$ Prove: *ABCD* is a parallelogram.

0809ge Answer Section

1 ANS: 4

The marked 60° angle and the angle above it are on the same straight line and supplementary. This unmarked supplementary angle is 120°. Because the unmarked 120° angle and the marked 120° angle are alternate exterior angles and congruent, $d \parallel e$.

	PTS:	2	REF:	080901ge	STA:	G.G.35	TOP:	Parallel Lines and Transversals
2	ANS:	3	PTS:	2	REF:	080902ge	STA:	G.G.17
	TOP:	Constructions						
3	ANS:	4						
	180 – ((40+40) = 100						
	DTC.	2	DEE.	020002	CTA.	$C \subset 21$	TOD.	Issandar Trianala Theorem
4	PIS:	2	KEF:	080903ge	51A:	0.0.31	TOP:	isosceles i mangle i neorem
4	ANS:	Ζ						
	Parallel chords intercept congruent arcs. $mAC = mBD = 30$. $180 - 30 - 30 = 120$.							
	ΡΤ ς.	2	DEE	080004.00	STA	6652	ΤΟΡ	Chords
5	ANS.	2 4	DTS.	2	REE.	0.0.32 080905ge	STA.	G G 29
5	TOP	Triangle Cong	rijency	2	KLT.	080905gc	SIA.	0.0.29
6	ANS:	<pre>111angle cong 2</pre>	sidency					
0	A dilation affects distance, not angle measure.							
)	6				
	PTS:	2	REF:	080906ge	STA:	G.G.60	TOP:	Identifying Transformations
7	ANS:	1						
	$\angle DCB$ and $\angle ADC$ are supplementary adjacent angles of a parallelogram. $180 - 120 = 60$. $\angle 2 = 60 - 45 = 120$							
	DTC.	2	DEE.	080007~~	CTA.	C C 29	TOD.	Donellalognoma
0	PIS:	2	KEF:	080907ge	51A:	0.0.38	TOP:	Paranelograms
0	Transl	I ations and refle	ections	do not affect di	stance			
	Transi	ations and rene		do not uncet di	stance.			
	PTS:	2	REF:	080908ge	STA:	G.G.59	TOP:	Properties of Transformations
9	ANS:	3		_				-
	The character are 2 is 1. The character $A = -(-1)$							
	The slope of $y = x + 2$ is 1. The slope of $y - x = -1$ is $\frac{1}{B} = \frac{1}{1} = 1$.							
	DTG	•	DEE	000000	GT 4		TOD	
10	PTS:	2	REF:	080909ge	STA:	G.G.63	TOP:	Parallel and Perpendicular Lines
10	ANS:	$\frac{2}{2+6}$	1	. 2				
	$M_x = 1$	$\frac{-2+6}{2} = 2.$ M	$v_{y} = \frac{-4}{-2}$	$\frac{+2}{2} = -1$				
		2	- 2	-				
	PTS:	2	REF:	080910ge	STA:	G.G.66	TOP:	Midpoint
11	ANS:	1	PTS:	2	REF:	080911ge	STA:	G.G.73
	TOP:	Equations of C	Circles			_		

22 ANS: 4 Let $\overline{AD} = x$. $36x = 12^2$ x = 4PTS: 2 REF: 080922ge STA: G.G.47 **TOP:** Similarity KEY: leg 23 ANS: 2 4(4x - 3) = 3(2x + 8)16x - 12 = 6x + 2410x = 36x = 3.6PTS: 2 REF: 080923ge STA: G.G.53 TOP: Segments Intercepted by Circle KEY: two chords 24 ANS: 3 PTS: 2 REF: 080924ge STA: G.G.24 TOP: Negations 25 ANS: 4 PTS: 2 REF: 080925ge STA: G.G.21 TOP: Centroid, Orthocenter, Incenter and Circumcenter 26 ANS: 1 $V = \pi r^2 h$ $1000 = \pi r^2 \cdot 8$ $r^2 = \frac{1000}{8\pi}$ $r \approx 6.3$ PTS: 2 REF: 080926ge STA: G.G.14 TOP: Volume and Lateral Area 27 ANS: 2 PTS: 2 REF: 080927ge STA: G.G.4 TOP: Planes 28 ANS: 3 PTS: 2 REF: 080928ge STA: G.G.50 **TOP:** Tangents KEY: common tangency 29 ANS: 3. The non-parallel sides of an isosceles trapezoid are congruent. 2x + 5 = 3x + 2x = 3PTS: 2 REF: 080929ge STA: G.G.40 TOP: Trapezoids 30 ANS: 2016. $V = \frac{1}{3}Bh = \frac{1}{3}s^2h = \frac{1}{3}12^2 \cdot 42 = 2016$ PTS: 2 REF: 080930ge STA: G.G.13 TOP: Volume

31 ANS:

$$y = \frac{2}{3}x - 9$$
. The slope of $2x - 3y = 11$ is $-\frac{A}{B} = \frac{-2}{-3} = \frac{2}{3}$. $-5 = \left(\frac{2}{3}\right)(6) + b$
 $-5 = 4 + b$
 $b = -9$

PTS: 2 REF: 080931ge STA: G.G.65 TOP: Parallel and Perpendicular Lines 32 ANS: PTS: 2 REF: 080932ge STA: G.G.17 TOP: Constructions 33 ANS: 26 + 32 + 52 + 54 = 180

26. x + 3x + 5x - 54 = 1809x = 234x = 26

PTS: 2 REF: 080933ge STA: G.G.30 TOP: Interior and Exterior Angles of Triangles 34 ANS: \overline{AC} . m $\angle BCA = 63$ and m $\angle ABC = 80$. \overline{AC} is the longest side as it is opposite the largest angle.

PTS: 2 REF: 080934ge STA: G.G.34 TOP: Angle Side Relationship

 $\overrightarrow{AB} \cong \overrightarrow{CB} \text{ (CPCTC)}; \ \overrightarrow{ABCD} \text{ is a parallelogram (opposite sides of quadrilateral ABCD are congruent)}$

PTS: 6 REF: 080938ge STA: G.G.27 TOP: Quadrilateral Proofs