0810ge

1 In the diagram below, $\triangle ABC \cong \triangle XYZ$.

Which two statements identify corresponding congruent parts for these triangles?

- 1) $AB \cong XY$ and $\angle C \cong \angle Y$
- 2) $AB \cong YZ$ and $\angle C \cong \angle X$
- 3) $\overline{BC} \cong \overline{XY}$ and $\angle A \cong \angle Y$
- 4) $BC \cong YZ$ and $\angle A \cong \angle X$
- 2 A support beam between the floor and ceiling of a house forms a 90° angle with the floor. The builder wants to make sure that the floor and ceiling are parallel. Which angle should the support beam form with the ceiling?
 - 1) 45°
 - 2) 60°
 - 3) 90°
 - 4) 180°

3 In the diagram below, the vertices of ΔDEF are the midpoints of the sides of equilateral triangle *ABC*, and the perimeter of ΔABC is 36 cm.

What is the length, in centimeters, of *EF*?

- 1) 6
- 2) 12
- 3) 18
- 4) 4
- 4 What is the solution of the following system of equations?

$$y = (x+3)^2 - 4$$
$$y = 2x + 5$$

- 1) (0,-4)
- 2) (-4,0)
- 3) (-4, -3) and (0, 5)
- 4) (-3, -4) and (5, 0)
- 5 One step in a construction uses the endpoints of *AB* to create arcs with the same radii. The arcs intersect above and below the segment. What is the relationship of \overline{AB} and the line connecting the points of intersection of these arcs?
 - 1) collinear
 - 2) congruent
 - 3) parallel
 - 4) perpendicular

- 6 If $\triangle ABC \sim \triangle ZXY$, m $\angle A = 50$, and m $\angle C = 30$, what is m $\angle X$?
 - 1) 30
 - 2) 50
 - 3) 80
 - 4) 100
- 7 In the diagram below of $\triangle AGE$ and $\triangle OLD$, $\angle GAE \cong \angle LOD$, and $\overline{AE} \cong \overline{OD}$.

To prove that $\triangle AGE$ and $\triangle OLD$ are congruent by SAS, what other information is needed?

- 1) $GE \cong LD$
- 2) $AG \cong OL$
- 3) $\angle AGE \cong \angle OLD$
- 4) $\angle AEG \cong \angle ODL$
- 8 Point *A* is not contained in plane *B*. How many lines can be drawn through point *A* that will be perpendicular to plane *B*?
 - 1) one
 - 2) two
 - 3) zero
 - 4) infinite
- 9 The equation of a circle is $x^2 + (y 7)^2 = 16$. What are the center and radius of the circle?
 - 1) center = (0, 7); radius = 4
 - 2) center = (0, 7); radius = 16
 - 3) center = (0, -7); radius = 4
 - 4) center = (0, -7); radius = 16

10 What is an equation of the line that passes through the point (7,3) and is parallel to the line 4x + 2y = 10?

1)
$$y = \frac{1}{2}x - \frac{1}{2}$$

2) $y = -\frac{1}{2}x + \frac{13}{2}$
3) $y = 2x - 11$

- 4) y = -2x + 17
- 11 In $\triangle ABC$, AB = 7, BC = 8, and AC = 9. Which list has the angles of $\triangle ABC$ in order from smallest to largest?
 - 1) $\angle A, \angle B, \angle C$ 2) $\angle B, \angle A, \angle C$
 - $\begin{array}{l} \textbf{2)} \quad \angle \textbf{D}, \angle \textbf{L} \textbf{I}, \angle \textbf{C} \\ \textbf{3)} \quad \angle \textbf{C}, \angle \textbf{B}, \angle \textbf{A} \end{array}$
 - 4) $\angle C, \angle A, \angle B$
- 12 Tangents \overline{PA} and \overline{PB} are drawn to circle *O* from an external point, *P*, and radii \overline{OA} and \overline{OB} are drawn. If $m \angle APB = 40$, what is the measure of $\angle AOB$? 1) 140°
 - 2) 100°
 - 3) 70°
 - 4) 50°
- 13 What is the length of the line segment with endpoints (-6, 4) and (2, -5)?
 - 1) $\sqrt{13}$
 - 2) $\sqrt{17}$
 - 3) $\sqrt{72}$
 - 4) $\sqrt{145}$

14 The lines represented by the equations $y + \frac{1}{2}x = 4$

and 3x + 6y = 12 are

- 1) the same line
- 2) parallel
- 3) perpendicular
- 4) neither parallel nor perpendicular
- 15 A transformation of a polygon that always preserves both length and orientation is
 - 1) dilation
 - 2) translation
 - 3) line reflection
 - 4) glide reflection
- 16 In which polygon does the sum of the measures of the interior angles equal the sum of the measures of the exterior angles?
 - 1) triangle
 - 2) hexagon
 - 3) octagon
 - 4) quadrilateral

17 In the diagram below of circle *O*, chords \overline{AB} and \overline{CD} intersect at *E*.

If CE = 10, ED = 6, and AE = 4, what is the length of \overline{EB} ?

- 1) 15
- 2) 12
- 3) 6.7
- 4) 2.4
- 18 In the diagram below of $\triangle ABC$, medians \overline{AD} , \overline{BE} , and \overline{CF} intersect at G.

- If CF = 24, what is the length of FG?
- 1) 8
- 2) 10
- 3) 12
- 4) 16

19 If a line segment has endpoints A(3x + 5, 3y) and B(x-1,-y), what are the coordinates of the

midpoint of *AB*?

- 1) (x+3,2y)2) (2x+2, y)
- 3) (2x+3, y)
- 4) (4x + 4, 2y)
- 20 If the surface area of a sphere is represented by 144 π , what is the volume in terms of π ?
 - 1) 36π
 - 2) 48π
 - 3) 216π
 - 4) 288π
- 21 Which transformation of the line x = 3 results in an image that is perpendicular to the given line?
 - 1) r_{x-axis}
 - 2) r_{y-axis}
 - 3) $r_{y=x}$
 - 4) $r_{x=1}$
- 22 In the diagram below of regular pentagon *ABCDE*, EB is drawn.

What is the measure of $\angle AEB$?

- 36° 1)
- 2) 54°
- 72° 3)
- 108° 4)

- 23 $\triangle ABC$ is similar to $\triangle DEF$. The ratio of the length of *AB* to the length of *DE* is 3:1. Which ratio is also equal to 3:1?
 - m∠A 1) $m \angle \overline{D}$
 - m∠B 2) $\overline{m \angle F}$
 - area of $\triangle ABC$ 3) area of ΔDEF
 - perimeter of $\triangle ABC$ 4) perimeter of ΔDEF
- 24 What is the slope of a line perpendicular to the line whose equation is 2y = -6x + 8?
 - 1) -3
 - $\frac{1}{6}$ 2)
 - 3)
 - $\frac{1}{3}$
 - 4) -6
- 25 In the diagram below of circle C, $\widehat{mOT} = 140$, and $m \angle P = 40.$

What is \widehat{mRS} ? 50 1) 2) 60

- 90 3)
- 4) 110

- 26 Which statement is logically equivalent to "If it is warm, then I go swimming"
 - 1) If I go swimming, then it is warm.
 - 2) If it is warm, then I do not go swimming.
 - 3) If I do not go swimming, then it is not warm.
 - 4) If it is not warm, then I do not go swimming.
- 27 In the diagram below of $\triangle ACT$, $\overleftarrow{BE} \parallel \overline{AT}$.

If CB = 3, CA = 10, and CE = 6, what is the length of \overline{ET} ?

- 1) 5
- 2) 14
- 3) 20
- 4) 26

28 Which geometric principle is used in the construction shown below?

- 1) The intersection of the angle bisectors of a triangle is the center of the inscribed circle.
- 2) The intersection of the angle bisectors of a triangle is the center of the circumscribed circle.
- 3) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the inscribed circle.
- 4) The intersection of the perpendicular bisectors of the sides of a triangle is the center of the circumscribed circle.
- 29 The diagram below shows isosceles trapezoid ABCD with $\overline{AB} \parallel \overline{DC}$ and $\overline{AD} \cong \overline{BC}$. If $m \angle BAD = 2x$ and $m \angle BCD = 3x + 5$, find $m \angle BAD$.

30 A right circular cone has a base with a radius of 15 cm, a vertical height of 20 cm, and a slant height of 25 cm. Find, in terms of π , the number of square centimeters in the lateral area of the cone.

31 In the diagram below of $\triangle HQP$, side \overline{HP} is extended through *P* to *T*, $m \angle QPT = 6x + 20$, $m \angle HQP = x + 40$, and $m \angle PHQ = 4x - 5$. Find $m \angle QPT$.

32 On the line segment below, use a compass and straightedge to construct equilateral triangle *ABC*. [Leave all construction marks.]

33 In the diagram below, car A is parked 7 miles from car B. Sketch the points that are 4 miles from car A and sketch the points that are 4 miles from car B. Label with an X all points that satisfy both conditions.

34 Write an equation for circle *O* shown on the graph below.

A•----•B

35 In the diagram below of quadrilateral *ABCD* with diagonal \overline{BD} , m $\angle A = 93$, m $\angle ADB = 43$, m $\angle C = 3x + 5$, m $\angle BDC = x + 19$, and m $\angle DBC = 2x + 6$. Determine if \overline{AB} is parallel to \overline{DC} . Explain your reasoning.

36 The coordinates of the vertices of $\triangle ABC A(1,3)$, B(-2,2) and C(0,-2). On the grid below, graph and label $\triangle A''B''C''$, the result of the composite transformation $D_2 \circ T_{3,-2}$. State the coordinates of A'', B'', and C''.

37 In the diagram below, $\triangle RST$ is a 3-4-5 right triangle. The altitude, *h*, to the hypotenuse has been drawn. Determine the length of *h*.

38 Given: Quadrilateral *ABCD* has vertices A(-5, 6), B(6, 6), C(8, -3), and D(-3, -3).

Prove: Quadrilateral *ABCD* is a parallelogram but is neither a rhombus nor a rectangle. [The use of the grid below is optional.]

0810ge Answer Section

7 ANS: 2 PTS: 2 REF: 081007ge STA: G.G.28 TOP: Triangle Congruency 8 ANS: 1 PTS: 2 REF: 081008ge STA: G.G.3 TOP: Planes 9 ANS: 1 PTS: 2 REF: 081009ge STA: G.G.73 TOP: Equations of Circles 10 ANS: 4 The slope of a line in standard form is $-\frac{A}{B}$, so the slope of this line is $\frac{-4}{2} = -2$. A parallel line would also have a slope of -2. Since the answers are in slope intercept form, find the y-intercept: y = mx + b3 = -2(7) + b17 = bREF: 081010ge STA: G.G.65 PTS: 2 TOP: Parallel and Perpendicular Lines 11 ANS: 4 Longest side of a triangle is opposite the largest angle. Shortest side is opposite the smallest angle. PTS: 2 REF: 081011ge STA: G.G.34 TOP: Angle Side Relationship 12 ANS: 1 PTS: 2 REF: 081012ge STA: G.G.50 TOP: Tangents KEY: two tangents 13 ANS: 4 $d = \sqrt{(-6-2)^2 + (4-(-5))^2} = \sqrt{64+81} = \sqrt{145}$ PTS: 2 REF: 081013ge STA: G.G.67 TOP: Distance 14 ANS: 2 $y + \frac{1}{2}x = 4 \quad 3x + 6y = 12$ $y = -\frac{1}{2}x + 4 \qquad 6y = -3x + 12$ $y = -\frac{3}{6}x + 2$ $m = -\frac{1}{2}$ $y = -\frac{1}{2}x + 4$ $y = -\frac{1}{2}x + 2$ PTS: 2 REF: 081014ge STA: G.G.63 TOP: Parallel and Perpendicular Lines 15 ANS: 2 PTS: 2 REF: 081015ge STA: G.G.56 **TOP:** Identifying Transformations

16 ANS: 4

sum of interior $\angle s = \text{ sum of exterior } \angle s$

$$(n-2)180 = n \left(180 - \frac{(n-2)180}{n} \right)$$

$$180n - 360 = 180n - 180n + 360$$

$$180n = 720$$

$$n = 4$$

REF: 081016ge

PTS: 2 17 ANS: 1

TOP: Interior and Exterior Angles of Polygons

PTS: 2 REF: 081017ge STA: G.G.53 TOP: Segments Intercepted by Circle KEY: two chords

STA: G.G.36

18 ANS: 1

The centroid divides each median into segments whose lengths are in the ratio 2 : 1. $\overline{GC} = 2\overline{FG}$ $\overline{GC} + \overline{FG} = 24$ $2\overline{FG} + \overline{FG} = 24$ $3\overline{FG} = 24$ $\overline{FG} = 8$

PTS: 2 REF: 081018ge STA: G.G.43 TOP: Centroid 19 ANS: 2 $M_x = \frac{3x+5+x-1}{2} = \frac{4x+4}{2} = 2x+2$. $M_y = \frac{3y+(-y)}{2} = \frac{2y}{2} = y$. PTS: 2 REF: 081019ge STA: G.G.66 TOP: Midpoint 20 ANS: 4 SA = $4\pi r^2$ $V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi \cdot 6^3 = 288\pi$ $144 \pi = 4 \pi r^2$ $36 = r^2$ 6 = rPTS: 2 STA: G.G.16 REF: 081020ge TOP: Volume and Surface Area 21 ANS: 3 PTS: 2 REF: 081021ge STA: G.G.57 TOP: Properties of Transformations 22 ANS: 1 $\angle A = \frac{(n-2)180}{n} = \frac{(5-2)180}{5} = 108 \ \angle AEB = \frac{180-108}{2} = 36$ PTS: 2 REF: 081022ge STA: G.G.37 TOP: Interior and Exterior Angles of Polygons 23 ANS: 4 REF: 081023ge PTS: 2 STA: G.G.45 TOP: Similarity KEY: perimeter and area 24 ANS: 3 2y = -6x + 8 Perpendicular lines have slope the opposite and reciprocal of each other. v = -3x + 4m = -3 $m_{\perp} = \frac{1}{3}$ PTS: 2 REF: 081024ge STA: G.G.62 TOP: Parallel and Perpendicular Lines 25 ANS: 2 $\frac{140 - \overline{RS}}{2} = 40$ $140 - \overline{RS} = 80$ $\overline{RS} = 60$ PTS: 2 REF: 081025ge STA: G.G.51 TOP: Arcs Determined by Angles KEY: outside circle 26 ANS: 3 PTS: 2 REF: 081026ge STA: G.G.26 TOP: Contrapositive 27 ANS: 2 $\frac{3}{7} = \frac{6}{x}$ 3x = 42x = 14PTS: 2 REF: 081027ge STA: G.G.46 TOP: Side Splitter Theorem PTS: 2 STA: G.G.21 28 ANS: 1 REF: 081028ge TOP: Centroid, Orthocenter, Incenter and Circumcenter

29 ANS: 70. 3x + 5 + 3x + 5 + 2x + 2x = 18010x + 10 = 36010x = 350*x* = 35 2x = 70PTS: 2 REF: 081029ge STA: G.G.40 TOP: Trapezoids 30 ANS: $375\pi \ L = \pi r l = \pi (15)(25) = 375\pi$ PTS: 2 TOP: Volume and Lateral Area REF: 081030ge STA: G.G.15 31 ANS: 110. 6x + 20 = x + 40 + 4x - 56x + 20 = 5x + 35*x* = 15 6((15) + 20 = 110)PTS: 2 REF: 081031ge STA: G.G.31 TOP: Isosceles Triangle Theorem 32 ANS: в PTS: 2 REF: 081032ge STA: G.G.20 **TOP:** Constructions 33 ANS: Car B Car A STA: G.G.22 PTS: 2 REF: 081033ge TOP: Locus

34 ANS:

 $(x+1)^2 + (y-2)^2 = 36$

PTS: 2 REF: 081034ge STA: G.G.72 TOP: Equations of Circles 35 ANS:

Yes, $m \angle ABD = m \angle BDC = 44 \ 180 - (93 + 43) = 44 \ x + 19 + 2x + 6 + 3x + 5 = 180$. Because alternate interior 6x + 30 = 180

$$6x = 150$$
$$x = 25$$
$$x + 19 = 44$$

angles $\angle ABD$ and $\angle CDB$ are congruent, AB is parallel to DC.

PTS: 4 REF: 081035ge STA: G.G.35 TOP: Parallel Lines and Transversals 36 ANS: 4''(8,2), B''(2,0), C''(6,-8)

PTS: 4 REF: 081036ge STA: G.G.58 TOP: Compositions of Transformations 37 ANS:

2.4. $5a = 4^2$ $5b = 3^2$ $h^2 = ab$ a = 3.2 b = 1.8 $h^2 = 3.2 \cdot 1.8$ $h = \sqrt{5.76} = 2.4$

PTS: 4 REF: 081037ge STA: G.G.47 KEY: altitude TOP: Similarity

38 ANS:

 $AB \parallel CD$ and $AD \parallel CB$ because their slopes are equal. ABCD is a parallelogram

because opposite side are parallel. $\overline{AB} \neq \overline{BC}$. ABCD is not a rhombus because all sides are not equal. $\overline{AB} \sim \pm \overline{BC}$ because their slopes are not opposite reciprocals. ABCD is not a rectangle because $\angle ABC$ is not a right angle.

PTS: 4 REF: 081038ge STA: G.G.69 TOP: Quadrilaterals in the Coordinate Plane