0811ge

1 The statement " x is a multiple of 3 , and x is an even integer" is true when x is equal to

1) 9
2) 8
3) 3
4) 6

2 In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which statement must be true?

1) $\angle C \cong \angle Y$
2) $\angle A \cong \angle X$
3) $\overline{A C} \cong \overline{Y Z}$
4) $\overline{C B} \cong \overline{X Z}$

3 In the diagram below of $\triangle A B C, \overleftrightarrow{T V} \| \overline{B C}, A T=5$, $T B=7$, and $A V=10$.

What is the length of $\overline{V C}$?

1) $3 \frac{1}{2}$
2) $7 \frac{1}{7}$
3) 14
4) 24

4 Pentagon $P Q R S T$ has $\overline{P Q}$ parallel to $\overline{T S}$. After a translation of $T_{2,-5}$, which line segment is parallel to $\overline{P^{\prime} Q^{\prime}}$?

1) $\overline{R^{\prime} Q^{\prime}}$
2) $\overline{R^{\prime} S^{\prime}}$
3) $\overline{T^{\prime} S^{\prime}}$

5 In the diagram below of $\triangle P A O, \overline{A P}$ is tangent to circle O at point $A, O B=7$, and $B P=18$.

What is the length of $\overline{A P}$?

1) 10
2) 12
3) 17
4) 24

6 A straightedge and compass were used to create the construction below. Arc $E F$ was drawn from point B, and arcs with equal radii were drawn from E and F.

Which statement is false?

1) $\mathrm{m} \angle A B D=\mathrm{m} \angle D B C$
2) $\frac{1}{2}(\mathrm{~m} \angle A B C)=\mathrm{m} \angle A B D$
3) $2(\mathrm{~m} \angle D B C)=\mathrm{m} \angle A B C$
4) $2(\mathrm{~m} \angle A B C)=\mathrm{m} \angle C B D$

7 What is the length of the line segment whose endpoints are $(1,-4)$ and $(9,2)$?

1) 5
2) $2 \sqrt{17}$
3) 10
4) $2 \sqrt{26}$

8 What is the image of the point $(2,-3)$ after the transformation $r_{y-\text { axis }}$?

1) $(2,3)$
2) $(-2,-3)$
3) $(-2,3)$
4) $(-3,2)$

9 In the diagram below, lines n and m are cut by transversals p and q.

What value of x would make lines n and m parallel?

1) 110
2) 80
3) 70
4) 50

10 What is an equation of the circle with a radius of 5 and center at $(1,-4)$?

1) $(x+1)^{2}+(y-4)^{2}=5$
2) $(x-1)^{2}+(y+4)^{2}=5$
3) $(x+1)^{2}+(y-4)^{2}=25$
4) $(x-1)^{2}+(y+4)^{2}=25$

11 In the diagram below of $\triangle B C D$, side $\overline{D B}$ is extended to point A.

Which statement must be true?

1) $\mathrm{m} \angle C>\mathrm{m} \angle D$
2) $\mathrm{m} \angle A B C<\mathrm{m} \angle D$
3) $\mathrm{m} \angle A B C>\mathrm{m} \angle C$
4) $\mathrm{m} \angle A B C>\mathrm{m} \angle C+\mathrm{m} \angle D$

12 Which equation represents the line parallel to the line whose equation is $4 x+2 y=14$ and passing through the point $(2,2)$?

1) $y=-2 x$
2) $y=-2 x+6$
3) $y=\frac{1}{2} x$
4) $y=\frac{1}{2} x+1$

13 The coordinates of point A are $(-3 a, 4 b)$. If point A^{\prime} is the image of point A reflected over the line $y=x$, the coordinates of A^{\prime} are

1) $(4 b,-3 a)$
2) $(3 a, 4 b)$
3) $(-3 a,-4 b)$
4) $(-4 b,-3 a)$

14 As shown in the diagram below, $\overline{A C}$ bisects $\angle B A D$ and $\angle B \cong \angle D$.

Which method could be used to prove
$\triangle A B C \cong \triangle A D C$?

1) SSS
2) AAA
3) SAS
4) AAS

15 Segment $A B$ is the diameter of circle M. The coordinates of A are $(-4,3)$. The coordinates of M are $(1,5)$. What are the coordinates of B ?

1) $(6,7)$
2) $(5,8)$
3) $(-3,8)$
4) $(-5,2)$

16 In the diagram below, $\overleftrightarrow{A B}$ is perpendicular to plane $A E F G$.

Which plane must be perpendicular to plane $A E F G$?

1) $A B C E$
2) $B C D H$
3) $C D F E$
4) $H D F G$

17 How many points are both 4 units from the origin and also 2 units from the line $y=4$?

1) 1
2) 2
3) 3
4) 4

18 When solved graphically, what is the solution to the following system of equations?

$$
\begin{gathered}
y=x^{2}-4 x+6 \\
y=x+2
\end{gathered}
$$

1) $(1,4)$
2) $(4,6)$
3) $(1,3)$ and $(4,6)$
4) $(3,1)$ and $(6,4)$

19 Triangle $P Q R$ has angles in the ratio of $2: 3: 5$.
Which type of triangle is $\triangle P Q R$?

1) acute
2) isosceles
3) obtuse
4) right

20 Plane \mathcal{A} is parallel to plane \mathcal{B}. Plane C intersects plane \mathcal{A} in line m and intersects plane \mathcal{B} in line n. Lines m and n are

1) intersecting
2) parallel
3) perpendicular
4) skew

21 The diagonals of a quadrilateral are congruent but do not bisect each other. This quadrilateral is

1) an isosceles trapezoid
2) a parallelogram
3) a rectangle
4) a rhombus

22 What is the slope of a line that is perpendicular to the line represented by the equation $x+2 y=3$?

1) -2
2) 2
3) $-\frac{1}{2}$
4) $\frac{1}{2}$

23 A packing carton in the shape of a triangular prism is shown in the diagram below.

What is the volume, in cubic inches, of this carton?

1) 20
2) 60
3) 120
4) 240

24 In the diagram below of circle O, diameter $\overline{A O B}$ is perpendicular to chord $\overline{C D}$ at point $E, O A=6$, and $O E=2$.

What is the length of $\overline{C E}$?

1) $4 \sqrt{3}$
2) $2 \sqrt{3}$
3) $8 \sqrt{2}$
4) $4 \sqrt{2}$

25 What is the measure of each interior angle of a regular hexagon?

1) 60°
2) 120°
3) 135°
4) 270°

26 Which equation represents the perpendicular bisector of $\overline{A B}$ whose endpoints are $A(8,2)$ and $B(0,6)$?

1) $y=2 x-4$
2) $y=-\frac{1}{2} x+2$
3) $y=-\frac{1}{2} x+6$
4) $y=2 x-12$

27 As shown in the diagram below, a kite needs a vertical and a horizontal support bar attached at opposite corners. The upper edges of the kite are 7 inches, the side edges are x inches, and the vertical support bar is $(x+1)$ inches.

What is the measure, in inches, of the vertical support bar?

1) 23
2) 24
3) 25
4) 26

28 Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?

1) the rhombus, only
2) the rectangle and the square
3) the rhombus and the square
4) the rectangle, the rhombus, and the square

29 In the diagram below, trapezoid $A B C D$, with bases $\overline{A B}$ and $\overline{D C}$, is inscribed in circle O, with diameter $\overline{D C}$. If $\mathrm{m} \overparen{A B}=80$, find $\mathrm{m} \overparen{B C}$.

30 On the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the perpendicular bisector of $\overline{A C}$. [Leave all construction marks.]

31 A sphere has a diameter of 18 meters. Find the volume of the sphere, in cubic meters, in terms of π.

32 Write an equation of the circle graphed in the diagram below.

33 The diagram below shows $\triangle A B C$, with $\overline{A E B}$, $\overline{A D C}$, and $\angle A C B \cong \angle A E D$. Prove that $\triangle A B C$ is similar to $\triangle A D E$.

34 Triangle $A B C$ has vertices $A(3,3), B(7,9)$, and $C(11,3)$. Determine the point of intersection of the medians, and state its coordinates. [The use of the set of axes below is optional.]

35 In the diagram below of $\triangle G J K, H$ is a point on $\overline{G J}$, $\overline{H J} \cong J K, \mathrm{~m} \angle G=28$, and $\mathrm{m} \angle G J K=70$. Determine whether $\triangle G H K$ is an isosceles triangle and justify your answer.

36 As shown on the set of axes below, $\triangle G H S$ has vertices $G(3,1), H(5,3)$, and $S(1,4)$. Graph and state the coordinates of $\Delta G^{\prime \prime} H^{\prime \prime} S^{\prime \prime}$, the image of $\Delta G H S$ after the transformation $T_{-3,1}{ }^{\circ} D_{2}$.

37 In the diagram below, $\triangle A B C \sim \triangle D E F, D E=4$, $A B=x, A C=x+2$, and $D F=x+6$. Determine the length of $\overline{A B}$. [Only an algebraic solution can receive full credit.]

38 Given: $\triangle A B C$ with vertices $A(-6,-2), B(2,8)$, and $C(6,-2) . \overline{A B}$ has midpoint $D, \overline{B C}$ has midpoint E, and $\overline{A C}$ has midpoint F.
Prove: $A D E F$ is a parallelogram $A D E F$ is not a rhombus [The use of the grid is optional.]

0811ge

Answer Section

1 ANS: $4 \quad$ PTS: 2
TOP: Compound Statements
2 ANS: 2 PTS: 2
TOP: Triangle Congruency
3 ANS: 3
$\frac{5}{7}=\frac{10}{x}$
$5 x=70$
$x=14$
PTS: 2
4 ANS: 3
REF: 081103ge
TOP: Properties of Transformations
5 ANS: 4
$\sqrt{25^{2}-7^{2}}=24$
PTS: 2
REF: 081105ge
STA: G.G. 50
TOP: Tangents
KEY: point of tangency
6 ANS: 4 PTS: 2
REF: 081106ge
STA: G.G. 17
TOP: Constructions
7 ANS: 3
$d=\sqrt{(1-9)^{2}+(-4-2)^{2}}=\sqrt{64+36}=\sqrt{100}=10$
PTS: 2
REF: 081107ge
STA: G.G. 67
TOP: Distance
KEY: general
8 ANS: 2
TOP: Reflections
PTS: 2
REF: 081108ge STA: G.G. 54
9 ANS: 3
$7 x=5 x+30$
$2 x=30$
$x=15$
PTS: 2
REF: 081109ge
STA: G.G. 35
REF: 081110ge
REF: 081111ge
STA: G.G. 32
11 ANS: 3
PTS: 2
TOP: Exterior Angle Theorem

REF: 081101ge
KEY: conjunction
REF: 081102ge STA: G.G. 29

STA: G.G. 46
REF: 081104ge

KEY: basic

10 ANS: 4
PTS: 2
STA: G.G. 71

STA: G.G. 32

TOP: Side Splitter Theorem
STA: G.G. 55

TOP: Parallel Lines and Transversals

12 ANS: 2

$$
\begin{aligned}
& m=\frac{-A}{B}=\frac{-4}{2}=-2 \quad y=m x+b \\
& 2=-2(2)+b \\
& 6=b
\end{aligned}
$$

PTS: 2
13 ANS: 1
TOP: Reflections
REF: 081112ge
PTS: 2
KEY: basic

14 ANS: 4

PTS: 2
REF: 081114ge
STA: G.G. 28
TOP: Triangle Congruency
15 ANS: 1
$1=\frac{-4+x}{2} . \quad 5=\frac{3+y}{2}$.
$-4+x=2 \quad 3+y=10$
$x=6$
$y=7$

21 PNS: 1 PTS: 2 REF: 081121ge STA: G.G. 39
TOP: Special Parallelograms
22 ANS: 2
The slope of $x+2 y=3$ is $m=\frac{-A}{B}=\frac{-1}{2} . \quad m_{\perp}=2$.
PTS: 2 REF: 081122ge STA: G.G. 62 TOP: Parallel and Perpendicular Lines
23 ANS: 3 PTS: 2 REF: 081123ge STA: G.G. 12
TOP: Volume
24 ANS: 4
$\sqrt{6^{2}-2^{2}}=\sqrt{32}=\sqrt{16} \sqrt{2}=4 \sqrt{2}$
PTS: 2 REF: 081124ge STA: G.G. 49 TOP: Chords
25 ANS: 2
$(n-2) 180=(6-2) 180=720 . \frac{720}{6}=120$.

PTS: 2 REF: 081125ge STA: G.G. 37 TOP: Interior and Exterior Angles of Polygons
26 ANS: 1
$m=\left(\frac{8+0}{2}, \frac{2+6}{2}\right)=(4,4) m=\frac{6-2}{0-8}=\frac{4}{-8}=-\frac{1}{2} \quad m_{\perp}=2 \quad y=m x+b$ $4=2(4)+b$ $-4=b$

PTS: 2 REF: 081126ge STA: G.G. 68 TOP: Perpendicular Bisector
27 ANS: 3
$x^{2}+7^{2}=(x+1)^{2} \quad x+1=25$
$x^{2}+49=x^{2}+2 x+1$
$48=2 x$
$24=x$
PTS: 2
REF: 081127ge
STA: G.G. 48
REF: 081128ge
TOP: Pythagorean Theorem
28 ANS: 3
PTS: 2
STA: G.G. 39
TOP: Special Parallelograms
29 ANS:
$\frac{180-80}{2}=50$
PTS: 2
REF: 081129ge
STA: G.G. 52 TOP: Chords

30 ANS:

PTS: 2 REF: 081130ge STA: G.G. 18 TOP: Constructions
31 ANS:
$V=\frac{4}{3} \pi \cdot 9^{3}=972 \pi$

PTS: 2 REF: 081131ge STA: G.G. 16 TOP: Volume and Surface Area
32 ANS:
$(x-5)^{2}+(y+4)^{2}=36$
PTS: 2 REF: 081132ge STA: G.G. 72 TOP: Equations of Circles
33 ANS:
$\angle A C B \cong \angle A E D$ is given. $\angle A \cong \angle A$ because of the reflexive property. Therefore $\triangle A B C \sim \triangle A D E$ because of AA.
PTS: 2
REF: 081133ge
STA: G.G. 44
TOP: Similarity Proofs
$(7,5) m_{\overline{A B}}=\left(\frac{3+7}{2}, \frac{3+9}{2}\right)=(5,6) m_{B C}=\left(\frac{7+11}{2}, \frac{9+3}{2}\right)=(9,6)$

PTS: 2
REF: 081134ge STA: G.G. 21
TOP: Centroid, Orthocenter, Incenter and Circumcenter

35 ANS:

No, $\angle K G H$ is not congruent to $\angle G K H$.

PTS: 2
REF: 081135 ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
36 ANS:

$$
G^{\prime \prime}(3,3), H^{\prime \prime}(7,7), S^{\prime \prime}(-1,9)
$$

PTS: 4
REF: 081136ge
STA: G.G. 58
TOP: Compositions of Transformations
37 ANS:
$2 \quad \frac{x+2}{x}=\frac{x+6}{4}$

$$
\begin{aligned}
x^{2}+6 x & =4 x+8 \\
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
x & =2
\end{aligned}
$$

PTS: 4
REF: 081137ge
STA: G.G. 45
TOP: Similarity
KEY: basic
38 ANS:
$m_{\overline{A B}}=\left(\frac{-6+2}{2}, \frac{-2+8}{2}\right)=D(2,3) m_{\overline{B C}}=\left(\frac{2+6}{2}, \frac{8+-2}{2}\right)=E(4,3) F(0,-2)$. To prove that $A D E F$ is a parallelogram, show that both pairs of opposite sides of the parallelogram are parallel by showing the opposite sides have the same slope: $\mathrm{m}_{A D}=\frac{3--2}{-2--6}=\frac{5}{4} \quad \overline{A F} \| \overline{D E}$ because all horizontal lines have the same slope. $A D E F$

$$
\mathrm{m}_{F E}=\frac{3--2}{4-0}=\frac{5}{4}
$$

is not a rhombus because not all sides are congruent. $A D=\sqrt{5^{2}+4^{2}}=\sqrt{41} \quad A F=6$
PTS: 6
REF: 081138ge STA: G.G. 69
TOP: Quadrilaterals in the Coordinate Plane

