0813ge

1 Given: $\triangle A B D, \overline{B C}$ is the perpendicular bisector of $\overline{A D}$

Which statement can not always be proven?

1) $\overline{A C} \cong \overline{D C}$
2) $\overline{B C} \cong \overline{C D}$
3) $\angle A C B \cong \angle D C B$
4) $\triangle A B C \cong \triangle D B C$

2 In the diagram of circle O below, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{m} \overparen{C D}=110$.

What is $\mathrm{m} \overparen{D B}$?

1) 35
2) 55
3) 70
4) 110

3 Given the statement: One is a prime number. What is the negation and the truth value of the negation?

1) One is not a prime number; true
2) One is not a prime number; false
3) One is a composite number; true
4) One is a composite number; false

4 Triangle $A B C$ has the coordinates $A(1,2), B(5,2)$, and $C(5,5)$. Triangle $A B C$ is rotated 180° about the origin to form triangle $A^{\prime} B^{\prime} C^{\prime}$. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is

1) acute
2) isosceles
3) obtuse
4) right

5 What is an equation of the circle with center $(-5,4)$ and a radius of 7 ?

1) $(x-5)^{2}+(y+4)^{2}=14$
2) $(x-5)^{2}+(y+4)^{2}=49$
3) $(x+5)^{2}+(y-4)^{2}=14$
4) $(x+5)^{2}+(y-4)^{2}=49$

6 In $\triangle A B C, \angle A \cong \angle B$ and $\angle C$ is an obtuse angle.
Which statement is true?

1) $\overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the longest side.
2) $\overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the longest side.
3) $\overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the shortest side.
4) $\overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the shortest side.
 $\overline{B E}$ intersect at point F.

If $A F=6$, what is the length of $\overline{F D}$?

1) 6
2) 2
3) 3
4) 9

8 In circle O, diameter $\overline{A B}$ intersects chord $\overline{C D}$ at E. If $C E=E D$, then $\angle C E A$ is which type of angle?

1) straight
2) obtuse
3) acute
4) right

9 If $\triangle A B C \cong \triangle J K L \cong \triangle R S T$, then $\overline{B C}$ must be congruent to

1) $\overline{J L}$
2) $\overline{J K}$
3) $\overline{S T}$
4) $\overline{R S}$

10 In the diagram of $\triangle A B C$ below, $\overline{A B}$ is extended to point D.

If $\mathrm{m} \angle C A B=x+40, \mathrm{~m} \angle A C B=3 x+10$, $\mathrm{m} \angle C B D=6 x$, what is $\mathrm{m} \angle C A B$?

1) 13
2) 25
3) 53
4) 65

11 The bases of a right triangular prism are $\triangle A B C$ and $\triangle D E F$. Angles A and D are right angles, $A B=6$, $A C=8$, and $A D=12$. What is the length of edge $\overline{B E}$?

1) 10
2) 12
3) 14
4) 16

12 What is the equation of circle O shown in the diagram below?

1) $(x+4)^{2}+(y-1)^{2}=3$
2) $(x-4)^{2}+(y+1)^{2}=3$
3) $(x+4)^{2}+(y-1)^{2}=9$
4) $(x-4)^{2}+(y+1)^{2}=9$

13 The diagram below shows the construction of line m, parallel to line ℓ, through point P.

Which theorem was used to justify this construction?

1) If two lines are cut by a transversal and the alternate interior angles are congruent, the lines are parallel.
2) If two lines are cut by a transversal and the interior angles on the same side are supplementary, the lines are parallel.
3) If two lines are perpendicular to the same line, they are parallel.
4) If two lines are cut by a transversal and the corresponding angles are congruent, they are parallel.

14 The lateral area of a right circular cone is equal to $120 \pi \mathrm{~cm}^{2}$. If the base of the cone has a diameter of 24 cm , what is the length of the slant height, in centimeters?

1) 2.5
2) 5
3) 10
4) 15.7

15 A student wrote the following equations:

$$
\begin{aligned}
& 3 y+6=2 x \\
& 2 y-3 x=6
\end{aligned}
$$

The lines represented by these equations are

1) parallel
2) the same line
3) perpendicular
4) intersecting, but not perpendicular

16 In a coordinate plane, the locus of points 5 units from the x-axis is the

1) lines $x=5$ and $x=-5$
2) lines $y=5$ and $y=-5$
3) line $x=5$, only
4) line $y=5$, only

17 The sides of a triangle are 8,12 , and 15 . The longest side of a similar triangle is 18 . What is the ratio of the perimeter of the smaller triangle to the perimeter of the larger triangle?

1) $2: 3$
2) $4: 9$
3) $5: 6$
4) $25: 36$

18 Lines m and n are in plane \mathcal{A}. What is the converse of the statement "If lines m and n are parallel, then lines m and n do not intersect"?

1) If lines m and n are not parallel, then lines m and n intersect.
2) If lines m and n are not parallel, then lines m and n do not intersect
3) If lines m and n intersect, then lines m and n are not parallel.
4) If lines m and n do not intersect, then lines m and n are parallel.

19 When the system of equations $y+2=(x-4)^{2}$ and $2 x+y-6=0$ is solved graphically, the solution is

1) $(-4,-2)$ and $(-2,2)$
2) $(4,-2)$ and $(2,2)$
3) $(-4,2)$ and $(-6,6)$
4) $(4,2)$ and $(6,6)$

20 In the diagram of $\Delta U V W$ below, A is the midpoint of $\overline{U V}, B$ is the midpoint of $\overline{U W}, C$ is the midpoint of $\overline{V W}$, and $\overline{A B}$ and $\overline{A C}$ are drawn.

If $V W=7 x-3$ and $A B=3 x+1$, what is the length of $\overline{V C}$?

1) 5
2) 13
3) 16
4) 32

21 Two prisms have equal heights and equal volumes. The base of one is a pentagon and the base of the other is a square. If the area of the pentagonal base is 36 square inches, how many inches are in the length of each side of the square base?

1) 6
2) 9
3) 24
4) 36

22 What is the difference between the sum of the measures of the interior angles of a regular pentagon and the sum of the measures of the exterior angles of a regular pentagon?

1) 36
2) 72
3) 108
4) 180

23 If line ℓ is perpendicular to distinct planes \mathscr{P} and Q, then planes P and Q

1) are parallel
2) contain line ℓ
3) are perpendicular
4) intersect, but are not perpendicular

24 Which graph represents a circle whose equation is $x^{2}+(y-2)^{2}=4$?
1)

2)

3)

25 In the diagram below, $\overline{A C}$ and $\overline{A D}$ are tangent to circle B at points C and D, respectively, and $\overline{B C}$, $\overline{B D}$, and $\overline{B A}$ are drawn.

If $A C=12$ and $A B=15$, what is the length of $\overline{B D}$?

1) 5.5
2) 9
3) 12
4) 18

26 Triangle $A B C$ shown below is a right triangle with altitude $\overline{A D}$ drawn to the hypotenuse $\overline{B C}$.

If $B D=2$ and $D C=10$, what is the length of $\overline{A B}$?

1) $2 \sqrt{2}$
2) $2 \sqrt{5}$
3) $2 \sqrt{6}$
4) $2 \sqrt{30}$

27 Triangle $A B C$ has vertices $A(0,0), B(6,8)$, and $C(8,4)$. Which equation represents the perpendicular bisector of $\overline{B C}$?

1) $y=2 x-6$
2) $y=-2 x+4$
3) $y=\frac{1}{2} x+\frac{5}{2}$
4) $y=-\frac{1}{2} x+\frac{19}{2}$

28 Chords $\overline{A B}$ and $\overline{C D}$ intersect at point E in a circle with center at O. If $A E=8, A B=20$, and $D E=16$, what is the length of $\overline{C E}$?

1) 6
2) 9
3) 10
4) 12

29 Triangle $A B C$ has vertices $A(6,6), B(9,0)$, and $C(3,-3)$. State and label the coordinates of $\Delta A^{\prime} B^{\prime} C^{\prime \prime}$, the image of $\triangle A B C$ after a dilation of $D \frac{1}{3}$.

30 Using a compass and straightedge, construct the bisector of $\angle M J H$. [Leave all construction marks.]

31 Find, in simplest radical form, the length of the line segment with endpoints whose coordinates are $(-1,4)$ and $(3,-2)$.

32 In $\triangle A B C$, the measure of angle A is fifteen less than twice the measure of angle B. The measure of angle C equals the sum of the measures of angle A and angle B. Determine the measure of angle B.

33 A circle has the equation $(x-3)^{2}+(y+4)^{2}=10$. Find the coordinates of the center of the circle and the length of the circle's radius.

34 Two intersecting lines are shown in the diagram below. Sketch the locus of points that are equidistant from the two lines. Sketch the locus of points that are a given distance, d, from the point of intersection of the given lines. State the number of points that satisfy both conditions.

35 Given: $\triangle A B C, \overline{B D}$ bisects $\angle A B C, \overline{B D} \perp \overline{A C}$ Prove: $\overline{A B} \cong \overline{C B}$

36 Quadrilateral MATH has coordinates $M(-6,-3)$, $A(-1,-3), T(-2,-1)$, and $H(-4,-1)$. The image of quadrilateral $M A T H$ after the composition $r_{x \text {-xis }}{ }^{\circ} T_{7,5}$ is quadrilateral $M^{\prime \prime} A^{\prime \prime} T^{\prime \prime} H^{\prime \prime}$. State and label the coordinates of $M^{\prime \prime} A^{\prime \prime} T^{\prime \prime} H^{\prime \prime}$. [The use of the set of axes below is optional.]

37 Trapezoid TRAP, with median $\overline{M Q}$, is shown in the diagram below. Solve algebraically for x and y.

38 Quadrilateral $A B C D$ with vertices $A(-7,4)$, $B(-3,6), C(3,0)$, and $D(1,-8)$ is graphed on the set of axes below. Quadrilateral $M N P Q$ is formed by joining M, N, P, and Q, the midpoints of $\overline{A B}, \overline{B C}$, $\overline{C D}$, and $\overline{A D}$, respectively. Prove that quadrilateral $M N P Q$ is a parallelogram. Prove that quadrilateral $M N P Q$ is not a rhombus.

0813ge

Answer Section
1 ANS: 2 PTS: 2 REF: 081301ge STA: G.G. 24
TOP: Statements
2 ANS: 1
Parallel chords intercept congruent arcs. $\widehat{\mathrm{m} A C}=\mathrm{m} \overparen{B D} \cdot \frac{180-110}{2}=35$.
PTS: 2 REF: 081302ge STA: G.G. 52 TOP: Chords
3 ANS: 1 PTS: 2 REF: 081303ge STA: G.G. 24
TOP: Negations
4 ANS: 4
Distance is preserved after a rotation.
PTS: 2 REF: 081304ge STA: G.G. 55 TOP: Properties of Transformations
5 ANS: 4
PTS: 2
REF: 081305ge
STA: G.G. 71
TOP: Equations of Circles
6 ANS: 2 PTS: 2
REF: 081306ge STA: G.G. 34
TOP: Angle Side Relationship
7 ANS: 3
The centroid divides each median into segments whose lengths are in the ratio $2: 1$.

PTS: 2
11 ANS: 2
TOP: Solids
12 ANS: 3
PTS: 2
TOP: Equations of Circles
13 ANS: 4 PTS: 2
TOP: Constructions
14 ANS: 3
$120 \pi=\pi(12)(l)$
$10=l$
PTS: 2
REF: 081314ge
STA: G.G. 15

STA: G.G. 32
REF: 081311ge
REF: 081312ge
REF: 081313ge
STA: G.G. 19
STA: G.G. 10
STA: G.G. 72

TOP: Exterior Angle Theorem

15 ANS: 4

$$
\begin{array}{rlrl}
3 y+6 & =2 x & 2 y-3 x & =6 \\
3 y & =2 x-6 & 2 y & =3 x+6 \\
y & =\frac{2}{3} x-2 & y & =\frac{3}{2} x+3 \\
m & =\frac{2}{3} & m & =\frac{3}{2}
\end{array}
$$

PTS: 2 REF: 081315ge

STA: G.G. 63
REF: 081316ge

TOP: Parallel and Perpendicular Lines
STA: G.G. 23

TOP: Locus
17 ANS: 3
$\frac{15}{18}=\frac{5}{6}$

PTS: 2 REF: 081317ge
STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
18 ANS: 4 PTS: 2
REF: 081318ge STA: G.G. 26
TOP: Converse and Biconditional
19 ANS: 2

$$
\begin{aligned}
(x-4)^{2}-2 & =-2 x+6 . \quad y=-2(4)+6=-2 \\
x^{2}-8 x+16-2 & =-2 x+6 \quad y=-2(2)+6=2 \\
x^{2}-6 x+8 & =0 \\
(x-4)(x-2) & =0 \\
x & =4,2
\end{aligned}
$$

PTS: 2
REF: 081319ge
STA: G.G. 70
REF: 081320ge STA: G.G. 42
20 ANS: 3
PTS: 2
TOP: Quadratic-Linear Systems

TOP: Midsegments
21 ANS: 1
If two prisms have equal heights and volume, the area of their bases is equal.
PTS: 2 REF: 081321ge STA: G.G. 11 TOP: Volume
22 ANS: 4
$(n-2) 180-n\left(\frac{(n-2) 180}{n}\right)=180 n-360-180 n+180 n-360=180 n-720$.
$180(5)-720=180$

PTS: 2
23 ANS: 1
TOP: Planes
24 ANS: 1
TOP: Graphing Circles

REF: 081322ge
PTS: 2

PTS: 2
REF: 081324ge

STA: G.G. 37
REF: 081323ge
STA: G.G. 9

STA: G.G. 74

25 ANS: 2
$\sqrt{15^{2}-12^{2}}=9$
PTS: 2 REF: 081325ge STA: G.G. 50 TOP: Tangents
KEY: point of tangency
26 ANS: 3
$x^{2}=2(2+10)$
$x^{2}=24$
$x=\sqrt{24}=\sqrt{4} \sqrt{6}=2 \sqrt{6}$
PTS: 2 REF: 081326ge STA: G.G. 47 TOP: Similarity
KEY: leg
27 ANS: 3
midpoint: $\left(\frac{6+8}{2}, \frac{8+4}{2}\right)=(7,6)$. slope: $\frac{8-4}{6-8}=\frac{4}{-2}=-2 ; m_{\perp}=\frac{1}{2} . \quad 6=\frac{1}{2}(7)+b$

$$
\begin{aligned}
& \frac{12}{2}=\frac{7}{2}+b \\
& \frac{5}{12}=b
\end{aligned}
$$

PTS: 2
REF: 081327ge
STA: G.G. 68
TOP: Perpendicular Bisector
28 ANS: 1
$8 \times 12=16 x$

$$
6=x
$$

PTS: 2
REF: 081328ge
STA: G.G. 53
TOP: Segments Intercepted by Circle
KEY: two chords
29 ANS:
$A^{\prime}(2,2), B^{\prime}(3,0), C(1,-1)$
PTS: 2 REF: 081329ge STA: G.G. 58 TOP: Dilations
30 ANS:

PTS: 2 REF: 081330ge STA: G.G. 17 TOP: Constructions
31 ANS:
$\sqrt{(-1-3)^{2}+(4-(-2))^{2}}=\sqrt{16+36}=\sqrt{52}=\sqrt{4} \sqrt{13}=2 \sqrt{13}$
PTS: 2
REF: 081331ge STA: G.G. 67 TOP: Distance

32 ANS:
$A=2 B-15 \quad .2 B-15+B+2 B-15+B=180$
$C=A+B$

$$
\begin{aligned}
6 B-30 & =180 \\
6 B & =210 \\
B & =35
\end{aligned}
$$

PTS: 2
REF: 081332ge
STA: G.G. 30
TOP: Interior and Exterior Angles of Triangles
33 ANS:
center: $(3,-4)$; radius: $\sqrt{10}$
PTS: 2 REF: 081333ge STA: G.G. 73 TOP: Equations of Circles
34 ANS:

PTS: 2 REF: 081334ge STA: G.G. 22 TOP: Locus
ANS:
$\triangle A B C, \overline{B D}$ bisects $\angle A B C, \overline{B D} \perp \overline{A C}$ (Given). $\angle C B D \cong \angle A B D$ (Definition of angle bisector). $\overline{B D} \cong \overline{B D}$ (Reflexive property). $\angle C D B$ and $\angle A D B$ are right angles (Definition of perpendicular). $\angle C D B \cong \angle A D B$ (All right angles are congruent). $\triangle C D B \cong \triangle A D B$ (SAS). $\overline{A B} \cong \overline{C B}$ (CPCTC).

PTS: 4 REF: 081335ge STA: G.G. 27 TOP: Triangle Proofs
36 ANS:

$$
M^{\prime \prime}(1,-2), A^{\prime \prime}(6,-2), T^{\prime \prime}(5,-4), H^{\prime \prime}(3,-4)
$$

PTS: 4
REF: 081336ge
STA: G.G. 58
TOP: Compositions of Transformations
KEY: grids

37
ANS:

$$
\begin{array}{rlrl}
12 x-4+7 x+13 & =180 . & 16 y+1 & =\frac{12 y+1+18 y+6}{2} \\
19 x+9 & =180 & 32 y+2 & =30 y+7 \\
19 x & =171 & 2 y & =5 \\
x & =9 & y & =\frac{5}{2}
\end{array}
$$

PTS: 4 REF: 081337ge STA: G.G. 40 TOP: Trapezoids
38 ANS:
$M\left(\frac{-7+-3}{2}, \frac{4+6}{2}\right)=M(-5,5) \cdot m_{M N}=\frac{5-3}{-5-0}=\frac{2}{-5}$. Since both opposite sides have equal slopes and are
$N\left(\frac{-3+3}{2}, \frac{6+0}{2}\right)=N(0,3) \quad m_{P Q}=\frac{-4--2}{2--3}=\frac{-2}{5}$
$P\left(\frac{3+1}{2}, \frac{0+-8}{2}\right)=P(2,-4)$
$m_{\overline{N A}}=\frac{3--4}{0-2}=\frac{7}{-2}$
$Q\left(\frac{-7+1}{2}, \frac{4+-8}{2}\right)=Q(-3,-2)$ $m_{\overline{Q M}}=\frac{-2-5}{-3--5}=\frac{-7}{2}$
parallel, $M N P Q$ is a parallelogram. $\overline{M N}=\sqrt{(-5-0)^{2}+(5-3)^{2}}=\sqrt{29} \cdot \overline{M N}$ is not congruent to $\overline{N P}$, so $M N P Q$

$$
\overline{N A}=\sqrt{(0-2)^{2}+(3--4)^{2}}=\sqrt{53}
$$

is not a rhombus since not all sides are congruent.

PTS: 6
REF: 081338ge STA: G.G. 69
TOP: Quadrilaterals in the Coordinate Plane

