0814ge

1 A rectangular prism is shown in the diagram below.

Which pair of line segments would always be both congruent and parallel?

1) $\overline{A C}$ and $\overline{F B}$
2) $\overline{F B}$ and $\overline{D B}$
3) $\overline{H F}$ and $\overline{A C}$
4) $\overline{D B}$ and $\overline{H F}$

2 In parallelogram $Q R S T$, diagonal $\overline{Q S}$ is drawn. Which statement must always be true?

1) $\triangle Q R S$ is an isosceles triangle.
2) $\triangle S T Q$ is an acute triangle.
3) $\triangle S T Q \cong \triangle Q R S$
4) $\overline{Q S} \cong \overline{Q T}$

3 In the diagram below of circle O, diameter $\overline{A B}$ and chord $\overline{C D}$ intersect at E.

If $\overline{A B} \perp \overline{C D}$, which statement is always true?

1) $\overparen{A C} \cong \overparen{B D}$
2) $\overparen{B D} \cong \overparen{D A}$
3) $\overparen{A D} \cong \overparen{B C}$
4) $\overparen{C B} \cong \overparen{B D}$

4 What is an equation of the line that passes through $(-9,12)$ and is perpendicular to the line whose equation is $y=\frac{1}{3} x+6$?

1) $y=\frac{1}{3} x+15$
2) $y=-3 x-15$
3) $y=\frac{1}{3} x-13$
4) $y=-3 x+27$

5 In the diagram below, under which transformation is $\triangle X^{\prime} Y^{\prime} Z^{\prime}$ the image of $\triangle X Y Z$?

1) dilation
2) reflection
3) rotation
4) translation

6 What is the solution of the system of equations $y-x=5$ and $y=x^{2}+5$?

1) $(0,5)$ and $(1,6)$
2) $(0,5)$ and $(-1,6)$
3) $(2,9)$ and $(-1,4)$
4) $(-2,9)$ and $(-1,4)$

7 In the diagram below, parallelogram $A B C D$ has vertices $A(1,3), B(5,7), C(10,7)$, and $D(6,3)$.
Diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

(Not drawn to scale)
What are the coordinates of point E ?

1) $(0.5,2)$
2) $(4.5,2)$
3) $(5.5,5)$
4) $(7.5,7)$

8 Right triangle $A B C$ is shown in the graph below.

After a reflection over the y-axis, the image of $\triangle A B C$ is $\triangle A^{\prime} B^{\prime} C^{\prime}$. Which statement is not true?

1) $\overline{B C} \cong \overline{B^{\prime} C^{\prime}}$
2) $\overline{A^{\prime} B^{\prime}} \perp \overline{B^{\prime} C^{\prime}}$
3) $A B=A^{\prime} B^{\prime}$
4) $\overline{A C} \| \overline{A^{\prime} C^{\prime}}$

9 What is an equation of circle O shown in the graph below?

1) $(x-2)^{2}+(y+4)^{2}=4$
2) $(x-2)^{2}+(y+4)^{2}=16$
3) $(x+2)^{2}+(y-4)^{2}=4$
4) $(x+2)^{2}+(y-4)^{2}=16$

10 In the diagram below of right triangle $A B C$, an altitude is drawn to the hypotenuse $\overline{A B}$.

Which proportion would always represent a correct relationship of the segments?

1) $\frac{c}{z}=\frac{z}{y}$
2) $\frac{c}{a}=\frac{a}{y}$
3) $\frac{x}{z}=\frac{z}{y}$
4) $\frac{y}{b}=\frac{b}{x}$

11 Quadrilateral $A B C D$ is graphed on the set of axes below.

Which quadrilateral best classifies $A B C D$?

1) trapezoid
2) rectangle
3) rhombus
4) square

12 Circle O is represented by the equation $(x+3)^{2}+(y-5)^{2}=48$. The coordinates of the center and the length of the radius of circle O are

1) $(-3,5)$ and $4 \sqrt{3}$
2) $(-3,5)$ and 24
3) $(3,-5)$ and $4 \sqrt{3}$
4) $(3,-5)$ and 24

13 In the diagram below of circle O, chord $\overline{A B}$ is parallel to chord $\overline{C D}$.

A correct justification for $\overparen{\mathrm{m}} \overparen{A C}=\mathrm{m} \overparen{B D}$ in circle O is

1) parallel chords intercept congruent arcs
2) congruent chords intercept congruent arcs
3) if two chords are parallel, then they are congruent
4) if two chords are equidistant from the center, then the arcs they intercept are congruent

14 What is the slope of a line perpendicular to the line whose equation is $3 x-7 y+14=0$?

1) $\frac{3}{7}$
2) $-\frac{7}{3}$
3) 3
4) $-\frac{1}{3}$

15 Line segment $A B$ has endpoint A located at the origin. Line segment $A B$ is longest when the coordinates of B are

1) $(3,7)$
2) $(2,-8)$
3) $(-6,4)$
4) $(-5,-5)$

16 In $\triangle F G H, \mathrm{~m} \angle F=\mathrm{m} \angle H, G F=x+40$, $H F=3 x-20$, and $G H=2 x+20$. The length of $\overline{G H}$ is

1) 20
2) 40
3) 60
4) 80

17 In the diagram below of quadrilateral $A B C D$, diagonals $\overline{A E C}$ and $\overline{B E D}$ are perpendicular at E.

Which statement is always true based on the given information?

1) $\overline{D E} \cong \overline{E B}$
2) $\overline{A D} \cong \overline{A B}$
3) $\angle D A C \cong \angle B A C$
4) $\angle A E D \cong \angle C E D$

18 Which set of numbers could represent the lengths of the sides of a right triangle?

1) $\{2,3,4\}$
2) $\{5,9,13\}$
3) $\{7,7,12\}$
4) $\{8,15,17\}$

19 In quadrilateral $A B C D$, the diagonals bisect its angles. If the diagonals are not congruent, quadrilateral $A B C D$ must be a

1) square
2) rectangle
3) rhombus
4) trapezoid

20 Line m and point P are shown in the graph below.

Which equation represents the line passing through P and parallel to line m ?

1) $y-3=2(x+2)$
2) $y+2=2(x-3)$
3) $y-3=-\frac{1}{2}(x+2)$
4) $y+2=-\frac{1}{2}(x-3)$

21 Which compound statement is true?

1) A square has four sides or a hexagon has eight sides.
2) A square has four sides and a hexagon has eight sides.
3) If a square has four sides, then a hexagon has eight sides.
4) A square has four sides if and only if a hexagon has eight sides.

22 In $\triangle C A T, \mathrm{~m} \angle C=65, \mathrm{~m} \angle A=40$, and B is a point on side $\overline{C A}$, such that $\overline{T B} \perp \overline{C A}$. Which line segment is shortest?

1) $\overline{C T}$
2) $\overline{B C}$
3) $\overline{T B}$
4) $\overline{A T}$

23 In the diagram of $\triangle A B C$ below, $\overline{D E} \| \overline{B C}$, $A D=3, D B=2$, and $D E=6$.

What is the length of $\overline{B C}$?

1) 12
2) 10
3) 8
4) 4

24 In $\triangle A B C$, an exterior angle at C measures 50°. If $\mathrm{m} \angle A>30$. which inequality must be true?

1) $\mathrm{m} \angle B<20$
2) $\mathrm{m} \angle B>20$
3) $\mathrm{m} \angle B C A<130$
4) $\mathrm{m} \angle B C A>130$

25 Which graph represents the graph of the equation $(x-1)^{2}+y^{2}=4$?
1)

2)

3)

26 The equations of lines k, p, and m are given below:

$$
\begin{aligned}
& k: x+2 y=6 \\
& p: 6 x+3 y=12 \\
& m:-x+2 y=10
\end{aligned}
$$

Which statement is true?

1) $p \perp m$
2) $m \perp k$
3) $k \| p$
4) $m \| k$

27 Peach Street and Cherry Street are parallel. Apple Street intersects them, as shown in the diagram below.

If $\mathrm{m} \angle 1=2 x+36$ and $\mathrm{m} \angle 2=7 x-9$, what is $\mathrm{m} \angle 1$?

1) 9
2) 17
3) 54
4) 70

28 A regular pyramid has a height of 12 centimeters and a square base. If the volume of the pyramid is 256 cubic centimeters, how many centimeters are in the length of one side of its base?

1) 8
2) 16
3) 32
4) 64

29 Triangle $A B C$ has coordinates $A(-2,1), B(3,1)$, and $C(0,-3)$. On the set of axes below, graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation of 2 .

30 In the diagram below of $\triangle A B C, \overline{D E}$ and $\overline{D F}$ are midsegments.

If $D E=9$, and $B C=17$, determine and state the perimeter of quadrilateral $F D E C$.

31 The image of $\triangle A B C$ under a translation is $\triangle A^{\prime} B^{\prime} C^{\prime}$. Under this translation, $B(3,-2)$ maps onto $B^{\prime}(1,-1)$. Using this translation, the coordinates of image A^{\prime} are ($-2,2$). Determine and state the coordinates of point A.

32 As shown in the diagram below, quadrilateral $D E F G$ is inscribed in a circle and $\mathrm{m} \angle D=86$.

Determine and state $\widehat{m F E}$. Determine and state $\mathrm{m} \angle F$.

33 In the diagram below, $\overline{Q M}$ is a median of triangle $P Q R$ and point C is the centroid of triangle $P Q R$.

If $Q C=5 x$ and $C M=x+12$, determine and state the length of $\overline{Q M}$.

34 The sum of the interior angles of a regular polygon is 540°. Determine and state the number of degrees in one interior angle of the polygon.

35 Given: $\overline{M T}$ and $\overline{H A}$ intersect at $B, \overline{M A} \| \overline{H T}$, and $\overline{M T}$ bisects $\overline{H A}$.

Prove: $\overline{M A} \cong \overline{H T}$

36 A right circular cone has an altitude of 10 ft and the diameter of the base is 6 ft as shown in the diagram below. Determine and state the lateral area of the cone, to the nearest tenth of a square foot.

37 Use a compass and straightedge to divide line segment $A B$ below into four congruent parts. [Leave all construction marks.]

38 On the set of axes below, graph the locus of points 5 units from the point $(3,-2)$. On the same set of axes, graph the locus of points equidistant from the points $(0,-6)$ and $(2,-4)$. State the coordinates of all points that satisfy both conditions.

0814ge

Answer Section

1 ANS: 4
PTS: 2
TOP: Solids
2 ANS: 3

Q

PTS: 2
3 ANS: 4 TOP: Chords
4 ANS: 2
$m=\frac{1}{3} \quad 12=-3(-9)+b$

PTS: 2
REF: 081404ge
5 ANS: 3
PTS: 2
TOP: Identifying Transformations
6 ANS: 1

$$
\begin{array}{rlrl}
x^{2}+5 & =x+5 & y=(0)+5=5 \\
x^{2}-x & =0 & y=(1)+5=6 \\
x(x-1) & =0 & \\
x & =0,1 &
\end{array}
$$

PTS: 2
REF: 081406ge
STA: G.G. 70
TOP: Quadratic-Linear Systems
7 ANS: 3
$M_{x}=\frac{1+10}{2}=\frac{11}{2}=5.5 M_{y}=\frac{3+7}{2}=\frac{10}{2}=5$.
PTS: 2
REF: 081407ge

10

STA: G.G. 38
REF: 081403ge

TOP: Parallelograms
STA: G.G. 49

REF: 081402ge
PTS: 2
STA: G.G.

STA: G.G. 64
REF: 081405 ge
TOP: Parallel and Perpendicular Lines
STA: G.G. 56

ANS: $4 \quad$ PTS: 2
TOP: Properties of Transformations
8 ANS: 4
ANS: $4 \quad$ PTS: 2
TOP: Properties of Transformations
9 ANS: 4 PTS: 2
TOP: Equations of Circles
TOP: Similarity
PTS: 2
KEY: altitude
KEY: graph

STA: G.G. 66 TOP: Midpoint
REF: 081408ge STA: G.G. 55
REF: 081409ge STA: G.G. 72
REF: 081410ge STA: G.G. 47

REF: 081401ge STA: G.G. 10

11 ANS: 3
Both pairs of opposite sides are parallel, so not a trapezoid. None of the angles are right angles, so not a rectangle or square. All sides are congruent, so a rhombus.

PTS: 2 REF: 081411ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
12 ANS: 1
$r^{2}=48$
$r=\sqrt{48}=\sqrt{16} \cdot \sqrt{3}=4 \sqrt{3}$
PTS: 2 REF: 081412ge STA: G.G. 73 TOP: Equations of Circles
13 ANS: 1
Parallel lines intercept congruent arcs.
PTS: 2
REF: 081413ge
STA: G.G. 52
TOP: Chords
14 ANS: 2
$m=\frac{-A}{B}=\frac{-3}{-7}=\frac{3}{7} \quad m_{\perp}=-\frac{7}{3}$

PTS: 2
15 ANS: 2
TOP: Distance
REF: 081414ge
PTS: 2
KEY: general
16 ANS: 3
$x+40=2 x+20 \quad G H=2(20)+20=60$
$20=x$
PTS: 2
17 ANS: 4
TOP: Statements
18 ANS: 4
$8^{2}+15^{2}=17^{2}$
PTS: 2
19 ANS: 3
REF: 081418ge
TOP: Special Parallelograms
20 ANS: 2
PTS: 2
TOP: Parallel and Perpendicular Lines
21 ANS: 1
PTS: 2
TOP: Compound Statements
22 ANS: 2

PTS: 2
REF: 081422ge
STA: G.G. 34

STA: G.G. 62
REF: 081415ge

STA: G.G. 48
REF: 081419ge

KEY: general

TOP: Isosceles Triangle Theorem
STA: G.G. 24

TOP: Parallel and Perpendicular Lines
STA: G.G. 67

REF: 081416ge
PTS: 2
STA: G.G. 31
REF: 081417ge

TOP: Pythagorean Theorem
STA: G.G. 39
REF: 081421ge STA: G.G. 65
REF: 081421ge STA: G.G. 25

TOP: Angle Side Relationship

23 ANS: 2
$\frac{3}{6}=\frac{5}{x}$
$3 x=30$

$$
x=10
$$

PTS: 2
REF: 081423ge STA: G.G. 46
TOP: Side Splitter Theorem
24 ANS: 1
$\mathrm{m} \angle A+\mathrm{m} \angle B=50$
$30.1+\mathrm{m} \angle B=50$
$\mathrm{m} \angle B=19.9$
PTS: 2
25 ANS: 2
PTS: 2
TOP: Graphing Circles
26 ANS: 1
$k: \frac{-A}{B}=\frac{-1}{2} \quad p: \frac{-A}{B}=\frac{-6}{3}=-2 m: \frac{-A}{B}=\frac{-(-1)}{2}=\frac{1}{2}$
PTS: 2
REF: 081426ge
STA: G.G. 63
27 ANS: 4

$$
\begin{aligned}
2 x+36+7 x-9 & =180 \mathrm{~m} \angle 1=2(17)+36=70 \\
9 x+27 & =180 \\
9 x & =153 \\
x & =17
\end{aligned}
$$

PTS: 2
REF: 081427ge
STA: G.G. 35
ANS: 1
$256=\frac{1}{3} B \cdot 12$
$64=B$
$8=s$
PTS: 2
REF: 081428ge
STA: G.G. 13
TOP: Volume

29 ANS:

PTS: 2
REF: 081429ge
STA: G.G. 58
TOP: Dilations
30 ANS:

$8.5+9+8.5+9=35$
PTS: 2
REF: 081430ge
STA: G.G. 42
TOP: Midsegments
31 ANS:
$T_{-2,1} A(0,1)$
PTS: 2
REF: 081431ge
STA: G.G. 54
TOP: Translations
32 ANS:
$86^{\circ} \cdot 2=172^{\circ} 180^{\circ}-86^{\circ}=94^{\circ}$
PTS: 2
REF: 081432ge
STA: G.G. 51
TOP: Arcs Determined by Angles
KEY: inscribed
33 ANS:
$5 x=2(x+12) Q M=5(8)+(8)+12=60$
$5 x=2 x+24$
$3 x=24$
$x=8$
PTS: 2
REF: 081433ge
STA: G.G. 43
TOP: Centroid
34
ANS:
$(n-2) 180=540 . \frac{540}{5}=108$

$$
\begin{aligned}
n-2 & =3 \\
n & =5
\end{aligned}
$$

PTS: 2
REF: 081434ge
STA: G.G. 37

TOP: Interior and Exterior Angles of Polygons

35 ANS:
$\overline{M T}$ and $\overline{H A}$ intersect at $B, \overline{M A} \| \overline{H T}$, and $\overline{M T}$ bisects $\overline{H A}$ (Given). $\angle M B A \cong \angle T B H$ (Vertical Angles). $\angle A \cong \angle H$ (Alternate Interior Angles). $\overline{B H} \cong \overline{B A}$ (The bisection of a line segment creates two congruent segments). $\triangle M A B \cong \triangle T H B$ (ASA). $\overline{M A} \cong \overline{H T}$ (CPCTC).

PTS: 4 REF: 081435ge STA: G.G. 27 TOP: Triangle Proofs
36 ANS:
$l=\sqrt{10^{2}+3^{2}}=\sqrt{109} \quad L=\pi r l=\pi(3)(\sqrt{109}) \approx 98.4$
PTS: 4 REF: 081436ge STA: G.G. 15 TOP: Volume and Lateral Area
37

PTS: 4
REF: 081437ge
STA: G.G. 18
TOP: Constructions
38 ANS:

$$
m_{\perp}=-1
$$

$-5=(-1)(1)+b$
$-4=b$
$y=-x-4$
PTS: 6 REF: 081438ge STA: G.G. 23 TOP: Locus

