0815ge

1 In $\triangle ABC$ shown below with \overline{ADC} , \overline{AEB} , \overline{CFE} , and \overline{BFD} , $\triangle ACE \cong \triangle ABD$.

Which statement must be true?

- 1) $\angle ACF \cong \angle BCF$
- 2) $\angle DAE \cong \angle DFE$
- 3) $\angle BCD \cong \angle ABD$
- 4) $\angle AEF \cong \angle ADF$
- 2 In a circle whose equation is $(x-1)^2 + (y+3)^2 = 9$, the coordinates of the center and length of its radius are
 - 1) (1,-3) and r = 81
 - 2) (-1,3) and r = 81
 - 3) (1,-3) and r = 3
 - 4) (-1,3) and r = 3

3 Parallel secants \overrightarrow{FH} and \overrightarrow{GJ} intersect circle *O*, as shown in the diagram below.

If $\widehat{\mathbf{mFH}} = 106$ and $\widehat{\mathbf{mGJ}} = 24$, then $\widehat{\mathbf{mFG}}$ equals

- 1) 106
- 2) 115
- 3) 130
- 4) 156
- 4 What are the coordinates of P', the image of point P(x,y) after translation $T_{4,4}$?
 - 1) (x-4, y-4)
 - 2) (x+4, y+4)
 - 3) (4x, 4y)
 - 4) (4,4)
- 5 The statement "x > 5 or x < 3" is *false* when x is equal to
 - 1) 1
 - 2) 2
 - 3) 7 4) 4

6 Triangle *JTM* is shown on the graph below.

Which transformation would result in an image that is *not* congruent to $\triangle JTM$?

- 1) $r_{y=x}$
- 2) $R_{90^{\circ}}$
- 3) $T_{0,-3}$
- 4) D_2
- 7 In the diagram below of $\triangle ABC$, with \overline{CDEA} and $\overline{BGFA}, \overline{EF} \parallel \overline{DG} \parallel \overline{CB}.$

Which statement is *false*?

- $\frac{AC}{AD} = \frac{AB}{AG}$ 1)
- $\frac{AE}{AF} = \frac{AC}{AB}$ 2)
- 3) $\frac{AE}{AD} = \frac{EC}{AC}$
- $\frac{BG}{BA} = \frac{CD}{CA}$ 4)

8 Which pair of edges is *not* coplanar in the cube shown below?

- 1) \overline{EH} and \overline{CD}
- 2) \overline{AD} and \overline{FG}
- 3) \overline{DH} and \overline{AE}
- \overline{AB} and \overline{EF} 4)
- What is an equation of the line that passes through 9 the point (-2, 1) and is parallel to the line whose equation is 4x - 2y = 8?
 - 1) $y = \frac{1}{2}x + 2$ $2) \quad y = \frac{1}{2}x - 2$ 3) y = 2x + 54) y = 2x - 5
- 10 In $\triangle JKL$, $\overline{JL} \cong \overline{KL}$. If m $\angle J = 58$, then m $\angle L$ is 1) 61
 - 2) 64
 - 3) 116
 - 4) 122

- 11 The corresponding medians of two similar triangles are 8 and 20. If the perimeter of the larger triangle is 45, what is the perimeter of the *smaller* triangle?
 - 1) 14
 - 2) 18
 - 3) 33
 - 4) 37
- 12 Which construction of parallel lines is justified by the theorem "If two lines are cut by a transversal to form congruent alternate interior angles, then the lines are parallel"?

- 13 Given: "If a polygon is a triangle, then the sum of its interior angles is 180°." What is the contrapositive of this statement?
 - "If the sum of the interior angles of a polygon is not 180°, then it is not a triangle."
 - 2) "A polygon is a triangle if and only if the sum of its interior angles is 180°."
 - 3) "If a polygon is not a triangle, then the sum of the interior angles is not 180°."
 - 4) "If the sum of the interior angles of a polygon is 180°, then it is a triangle."
- 14 In the diagram below, point P is not on line ℓ .

How many distinct planes that contain point P are also perpendicular to line ℓ ?

- 1) 1
- 2) 2
- 3) 0
- 4) an infinite amount
- 15 The image of $\triangle ABC$ after the transformation $r_{y-\text{axis}}$ is $\triangle A'B'C'$. Which property is *not* preserved?
 - 1) distance
 - 2) orientation
 - 3) collinearity
 - 4) angle measure

- 16 The equations y = 2x + 3 and $y = -x^2 x + 1$ are graphed on the same set of axes. The coordinates of a point in the solution of this system of equations are
 - 1) (0,1)
 - 2) (1,5)
 - 3) (-1,-2)
 - 4) (-2,-1)
- 17 Which quadrilateral has diagonals that are always perpendicular bisectors of each other?
 - 1) square
 - 2) rectangle
 - 3) trapezoid
 - 4) parallelogram
- 18 As shown in the diagram below, \overline{AB} is a diameter of circle *O*, and chord \overline{AC} is drawn.

If $m \angle BAC = 70$, then \widehat{mAC} is

- 1) 40
- 2) 70
- 3) 110
- 4) 140
- 19 In parallelogram *JKLM*, m $\angle L$ exceeds m $\angle M$ by 30 degrees. What is the measure of m $\angle J$?
 - 1) 75°
 - 2) 105°
 - 3) 165°
 - 4) 195°

20 Which equation represents the circle shown in the graph below?

- 1) $(x-5)^2 + (y+3)^2 = 1$
- 2) $(x+5)^2 + (y-3)^2 = 1$
- 3) $(x-5)^2 + (y+3)^2 = 2$
- 4) $(x+5)^2 + (y-3)^2 = 2$
- 21 What is the measure of each interior angle in a regular octagon?
 - 1) 108°
 - 2) 135°
 - 3) 144°4) 1080°
- 22 Points *A* and *B* are on line ℓ , and line ℓ is parallel to line *m*, as shown in the diagram below.

How many points are in the same plane as ℓ and m and equidistant from ℓ and m, and also equidistant from A and B?

- 1) 1
- 2) 2
- 3) 3
- 4) 0

- 23 A carpenter made a storage container in the shape of a rectangular prism. It is 5 feet high and has a volume of 720 cubic feet. He wants to make a second container with the same height and volume as the first one, but in the shape of a triangular prism. What will be the number of square feet in the area of the base of the new container?
 - 1) 36
 - 2) 72
 - 3) 144
 - 4) 288
- 24 In $\triangle ABC$, m $\angle B <$ m $\angle A <$ m $\angle C$. Which statement is *false*?
 - 1) AC > BC
 - $2) \quad BC > AC$
 - 3) AC < AB
 - 4) BC < AB
- 25 In the diagram below of circle *O* with radius *OA*, tangent \overline{CA} and secant \overline{COB} are drawn.

(Not drawn to scale)

If AC = 20 cm and OA = 7 cm, what is the length of \overline{OC} , to the *nearest centimeter*?

- 1) 19
- 2) 20
- 3) 21
- 4) 27

26 In the diagram below of $\triangle ABC$, point *H* is the intersection of the three medians.

If DH measures 2.4 centimeters, what is the length, in centimeters, of \overline{AD} ?

- 1) 3.6
- 2) 4.8
- 3) 7.2
- 4) 9.6
- 27 Which set of numbers could be the lengths of the sides of an isosceles triangle?
 - 1) $\{1, 1, 2\}$
 - 2) {3,3,5}
 - 3) {3,4,5}
 - 4) {4,4,9}
- 28 In the diagram below of right triangle *ABC*, \overline{CD} is the altitude to hypotenuse \overline{AB} , AD = 3, and DB = 4.

What is the length of \overline{CB} ?

- 1) $2\sqrt{3}$
- 2) $\sqrt{21}$
- 3) $2\sqrt{7}$
- 4) $4\sqrt{3}$
- 4) 4√3

29 The image of \overline{RS} after a reflection through the origin is $\overline{R'S'}$. If the coordinates of the endpoints of \overline{RS} are R(2,-3) and S(5,1), state and label the coordinates of R' and S'. [The use of the set of axes below is optional.]

30 A paper container in the shape of a right circular cone has a radius of 3 inches and a height of 8 inches. Determine and state the number of cubic inches in the volume of the cone, in terms of π .

31 In isosceles triangle *RST* shown below, $\overline{RS} \cong \overline{RT}$, *M* and *N* are midpoints of \overline{RS} and \overline{RT} , respectively, and \overline{MN} is drawn. If MN = 3.5 and the perimeter of $\triangle RST$ is 25, determine and state the length of \overline{NT} .

32 In the diagram below, $\triangle ABC$ is equilateral.

Using a compass and straightedge, construct a new equilateral triangle congruent to $\triangle ABC$ in the space below. [Leave all construction marks.]

- 33 Write an equation of the line that is perpendicular to the line whose equation is 2y = 3x + 12 and that passes through the origin.
- 34 Rectangle *KLMN* has vertices K(0,4), L(4,2), M(1,-4), and N(-3,-2). Determine and state the coordinates of the point of intersection of the diagonals.

35 On the set of axes below, graph the locus of points 5 units from the point (2,-3) and the locus of points 2 units from the line whose equation is y = -1. State the coordinates of all points that satisfy *both* conditions.

36 If \overline{AB} is defined by the endpoints A(4,2) and B(8,6), write an equation of the line that is the perpendicular bisector of \overline{AB} .

37 On the set of axes below, graph and label circle *A* whose equation is $(x + 4)^2 + (y - 2)^2 = 16$ and circle *B* whose equation is $x^2 + y^2 = 9$. Determine, in simplest radical form, the length of the line segment with endpoints at the centers of circles *A* and *B*.

38 Given: Parallelogram *DEFG*, *K* and *H* are points on \overrightarrow{DE} such that $\angle DGK \cong \angle EFH$ and \overrightarrow{GK} and \overrightarrow{FH} are drawn.

Prove: $\overline{DK} \cong \overline{EH}$

0815ge Answer Section

1	ANS: 4 PTS: 2 TOP: Triangle Congruency	REF: 081501ge	STA: G.G.29
2	ANS: 3 PTS: 2 TOP: Equations of Circles	REF: 081502ge	STA: G.G.73
3	ANS: 2 Parallel secants intercept congruent are	360 - (106 + 24) 230	115
	Parallel secants intercept congruent are	cs. $2 = \frac{2}{2}$	= 115
	PTS: 2 REF: 081503ge	e STA: G.G.52	TOP: Chords and Secants
4	ANS: 2 PTS: 2	REF: 081504ge	STA: G.G.61
	TOP: Analytical Representations of T	ransformations	
5	ANS: 4 PTS: 2	REF: 081505ge	STA: G.G.25
	TOP: Compound Statements	KEY: disjunction	
6	ANS: 4 PTS: 2	REF: 081506ge	STA: G.G.59
	TOP: Properties of Transformations		
7	ANS: 3 PTS: 2	REF: 081507ge	STA: G.G.46
0	TOP: Side Splitter Theorem		
8	ANS: 1 PTS: 2	REF: 081508ge	STA: G.G.10
0	TOP: Solids ANS: 3		
9			
	$m = \frac{-A}{B} = \frac{-4}{-2} = 2 y = mx + b$		
	1 = 2(-2) + b		
	1 = -4 + b		
	5 = <i>b</i>		
	PTS: 2 REF: 081509g	e STA: G.G.65	TOP: Parallel and Perpendicular Lines
10	ANS: 2		
- •	180 - 2(58) = 64		
	PTS: 2 REF: 081510g	e STA: G.G.31	TOP: Isosceles Triangle Theorem
11	ANS: 2		
	$45 \cdot \frac{8}{20} = 18$		
	$43 \cdot \frac{1}{20} = 18$		
	PTS: 2 REF: 081511m	$STA \cdot GG45$	TOP Similarity
	PTS: 2 REF: 081511ge KEY: perimeter and area	e STA: G.G.45	TOP: Similarity
12	KEY: perimeter and area		
12	KEY: perimeter and area ANS: 3 PTS: 2	e STA: G.G.45 REF: 081512ge	TOP: Similarity STA: G.G.19
	KEY: perimeter and area ANS: 3 PTS: 2 TOP: Constructions	REF: 081512ge	STA: G.G.19
	KEY: perimeter and areaANS: 3PTS: 2TOP: ConstructionsANS: 1PTS: 2		
13	KEY: perimeter and area ANS: 3 PTS: 2 TOP: Constructions	REF: 081512ge REF: 081513ge	STA: G.G.19 STA: G.G.26
13	KEY: perimeter and area ANS: 3 PTS: 2 TOP: Constructions ANS: 1 PTS: 2 TOP: Contrapositive	REF: 081512ge	STA: G.G.19

15 ANS: 2 PTS: 2 REF: 081515ge STA: G.G.55 **TOP:** Properties of Transformations 16 ANS: 4 $2x + 3 = -x^2 - x + 1$ y = 2(-2) + 3 = -1 $x^2 + 3x + 2 = 0$ (x+2)(x+1) = 0x = -2, -1PTS: 2 STA: G.G.70 REF: 081516ge TOP: Quadratic-Linear Systems 17 ANS: 1 PTS: 2 REF: 081517ge STA: G.G.41 **TOP:** Special Quadrilaterals 18 ANS: 1 PTS: 2 REF: 081518ge STA: G.G.51 TOP: Arcs Determined by Angles KEY: inscribed 19 ANS: 2 L + L - 30 = 1802L = 210L = 105PTS: 2 STA: G.G.38 REF: 081519ge **TOP:** Parallelograms 20 ANS: 2 REF: 081520ge STA: G.G.72 PTS: 2 TOP: Equations of Circles 21 ANS: 2 (n-2)180 = (8-2)180 = 1080. $\frac{1080}{8} = 135.$ PTS: 2 STA: G.G.37 REF: 081521ge TOP: Interior and Exterior Angles of Polygons PTS: 2 REF: 081522ge STA: G.G.22 22 ANS: 1 TOP: Locus 23 ANS: 3 720 = 5B144 = *B* STA: G.G.11 PTS: 2 TOP: Volume REF: 081523ge 24 ANS: 1 PTS: 2 REF: 081524ge STA: G.G.34 TOP: Angle Side Relationship 25 ANS: 3 $\sqrt{20^2 + 7^2} \approx 21$ PTS: 2 REF: 081525ge STA: G.G.50 **TOP:** Tangents KEY: point of tangency 26 ANS: 3 2.4 + 2(2.4) = 7.2PTS: 2 REF: 081526ge STA: G.G.43 TOP: Centroid

33 ANS:

$$m = \frac{3}{2}; m_{\perp} = -\frac{2}{3} \quad y = -\frac{2}{3}x$$

PTS: 2 REF: 081533ge STA: G.G.64 TOP: Parallel and Perpendicular Lines 34 ANS: $\left(\frac{0+1}{2},\frac{4+-4}{2}\right)$ $\left(\frac{1}{2},0\right)$

PTS: 2 REF: 081534ge STA: G.G.69 TOP: Quadrilaterals in the Coordinate Plane

REF: 081535ge STA: G.G.23 TOP: Locus PTS: 4 36 ANS: $M = \left(\frac{4+8}{2}, \frac{2+6}{2}\right) = (6,4) \quad m = \frac{6-2}{8-4} = \frac{4}{4} = 1 \quad m_{\perp} = -1 \quad y - 4 = -(x-6)$

PTS: 4 REF: 081536ge STA: G.G.68 TOP: Perpendicular Bisector 37 ANS:

PTS: 4

REF: 081537ge

STA: G.G.74

TOP: Graphing Circles

38 ANS:

Parallelogram DEFG, K and H are points on \overrightarrow{DE} such that $\angle DGK \cong \angle EFH$ and \overrightarrow{GK} and \overrightarrow{FH} are drawn (given). $\overrightarrow{DG} \cong \overrightarrow{EF}$ (opposite sides of a parallelogram are congruent). $\overrightarrow{DG} \parallel \overrightarrow{EF}$ (opposite sides of a parallelogram are parallel). $\angle D \cong \angle FEH$ (corresponding angles formed by parallel lines and a transversal are congruent).

$$\Delta DGK \cong \Delta EFH$$
 (ASA). $\overline{DK} \cong \overline{EH}$ (CPCTC). D

PTS: 6 REF: 081538ge STA: G.G.27 TOP: Quadrilateral Proofs