0815ge

1 In $\triangle A B C$ shown below with $\overline{A D C}, \overline{A E B}, \overline{C F E}$, and $\overline{B F D}, \triangle A C E \cong \triangle A B D$.

Which statement must be true?

1) $\angle A C F \cong \angle B C F$
2) $\angle D A E \cong \angle D F E$
3) $\angle B C D \cong \angle A B D$
4) $\angle A E F \cong \angle A D F$

2 In a circle whose equation is $(x-1)^{2}+(y+3)^{2}=9$, the coordinates of the center and length of its radius are

1) $(1,-3)$ and $r=81$
2) $(-1,3)$ and $r=81$
3) $(1,-3)$ and $r=3$
4) $(-1,3)$ and $r=3$

3 Parallel secants $\overleftrightarrow{F H}$ and $\overleftrightarrow{G J}$ intersect circle O, as shown in the diagram below.

If $\mathrm{m} \overparen{F H}=106$ and $\widehat{\mathrm{m} J}=24$, then $\mathrm{m} \overparen{F G}$ equals 1) 106
2) 115
3) 130
4) 156

4 What are the coordinates of P^{\prime}, the image of point $P(x, y)$ after translation $T_{4,4}$?

1) $(x-4, y-4)$
2) $(x+4, y+4)$
3) $(4 x, 4 y)$
4) $(4,4)$

5 The statement " $x>5$ or $x<3$ " is false when x is equal to

1) 1
2) 2
3) 7
4) 4

6 Triangle $J T M$ is shown on the graph below.

Which transformation would result in an image that is not congruent to $\triangle J T M$?

1) $r_{y=x}$
2) $R_{90^{\circ}}$
3) $T_{0,-3}$
4) D_{2}

7 In the diagram below of $\triangle A B C$, with $\overline{C D E A}$ and $\overline{B G F A}, \overline{E F}\|\overline{D G}\| \overline{C B}$.

Which statement is false?

1) $\frac{A C}{A D}=\frac{A B}{A G}$
2) $\frac{A E}{A F}=\frac{A C}{A B}$
3) $\frac{A E}{A D}=\frac{E C}{A C}$
4) $\frac{B G}{B A}=\frac{C D}{C A}$

8 Which pair of edges is not coplanar in the cube shown below?

1) $\overline{E H}$ and $\overline{C D}$
2) $\overline{A D}$ and $\overline{F G}$
3) $\overline{D H}$ and $\overline{A E}$
4) $\overline{A B}$ and $\overline{E F}$

9 What is an equation of the line that passes through the point $(-2,1)$ and is parallel to the line whose equation is $4 x-2 y=8$?

1) $y=\frac{1}{2} x+2$
2) $y=\frac{1}{2} x-2$
3) $y=2 x+5$
4) $y=2 x-5$

10 In $\triangle J K L, \overline{J L} \cong \overline{K L}$. If $\mathrm{m} \angle J=58$, then $\mathrm{m} \angle L$ is 1) 61
2) 64
3) 116
4) 122

11 The corresponding medians of two similar triangles are 8 and 20. If the perimeter of the larger triangle is 45 , what is the perimeter of the smaller triangle?

1) 14
2) 18
3) 33
4) 37

12 Which construction of parallel lines is justified by the theorem "If two lines are cut by a transversal to form congruent alternate interior angles, then the lines are parallel"?
1)

2)
3)

4)

13 Given: "If a polygon is a triangle, then the sum of its interior angles is 180°." What is the contrapositive of this statement?

1) "If the sum of the interior angles of a polygon is not 180°, then it is not a triangle."
2) "A polygon is a triangle if and only if the sum of its interior angles is 180°."
3) "If a polygon is not a triangle, then the sum of the interior angles is not 180°."
4) "If the sum of the interior angles of a polygon is 180°, then it is a triangle."

14 In the diagram below, point P is not on line ℓ.

How many distinct planes that contain point P are also perpendicular to line ℓ ?

1) 1
2) 2
3) 0
4) an infinite amount

15 The image of $\triangle A B C$ after the transformation $r_{y-\text { axis }}$ is $\triangle A^{\prime} B^{\prime} C^{\prime}$. Which property is not preserved?

1) distance
2) orientation
3) collinearity
4) angle measure

16 The equations $y=2 x+3$ and $y=-x^{2}-x+1$ are graphed on the same set of axes. The coordinates of a point in the solution of this system of equations are

1) $(0,1)$
2) $(1,5)$
3) $(-1,-2)$
4) $(-2,-1)$

17 Which quadrilateral has diagonals that are always perpendicular bisectors of each other?

1) square
2) rectangle
3) trapezoid
4) parallelogram

18 As shown in the diagram below, $\overline{A B}$ is a diameter of circle O, and chord $\overline{A C}$ is drawn.

If $\mathrm{m} \angle B A C=70$, then $\mathrm{m} \overparen{A C}$ is

1) 40
2) 70
3) 110
4) 140

19 In parallelogram $J K L M, \mathrm{~m} \angle L$ exceeds $\mathrm{m} \angle M$ by 30 degrees. What is the measure of $\mathrm{m} \angle J$?

1) 75°
2) 105°
3) 165°
4) 195°

20 Which equation represents the circle shown in the graph below?

1) $(x-5)^{2}+(y+3)^{2}=1$
2) $(x+5)^{2}+(y-3)^{2}=1$
3) $(x-5)^{2}+(y+3)^{2}=2$
4) $(x+5)^{2}+(y-3)^{2}=2$

21 What is the measure of each interior angle in a regular octagon?

1) 108°
2) 135°
3) 144°
4) 1080°

22 Points A and B are on line ℓ, and line ℓ is parallel to line m, as shown in the diagram below.

How many points are in the same plane as ℓ and m and equidistant from ℓ and m, and also equidistant from A and B ?

1) 1
2) 2
3) 3
4) 0

23 A carpenter made a storage container in the shape of a rectangular prism. It is 5 feet high and has a volume of 720 cubic feet. He wants to make a second container with the same height and volume as the first one, but in the shape of a triangular prism. What will be the number of square feet in the area of the base of the new container?

1) 36
2) 72
3) 144
4) 288

24 In $\triangle A B C, \mathrm{~m} \angle B<\mathrm{m} \angle A<\mathrm{m} \angle C$. Which statement is false?

1) $A C>B C$
2) $B C>A C$
3) $A C<A B$
4) $B C<A B$

25 In the diagram below of circle O with radius $\overline{O A}$, tangent $\overline{C A}$ and secant $\overline{C O B}$ are drawn.

(Not drawn to scale)
If $A C=20 \mathrm{~cm}$ and $O A=7 \mathrm{~cm}$, what is the length of $\overline{O C}$, to the nearest centimeter?

1) 19
2) 20
3) 21
4) 27

26 In the diagram below of $\triangle A B C$, point H is the intersection of the three medians.

If $\overline{D H}$ measures 2.4 centimeters, what is the length, in centimeters, of $\overline{A D}$?

1) 3.6
2) 4.8
3) 7.2
4) 9.6

27 Which set of numbers could be the lengths of the sides of an isosceles triangle?

1) $\{1,1,2\}$
2) $\{3,3,5\}$
3) $\{3,4,5\}$
4) $\{4,4,9\}$

28 In the diagram below of right triangle $A B C, \overline{C D}$ is the altitude to hypotenuse $\overline{A B}, A D=3$, and $D B=4$.

What is the length of $\overline{C B}$?

1) $2 \sqrt{3}$
2) $\sqrt{21}$
3) $2 \sqrt{7}$
4) $4 \sqrt{3}$

29 The image of $\overline{R S}$ after a reflection through the origin is $\overline{R^{\prime} S^{\prime}}$. If the coordinates of the endpoints of $\overline{R S}$ are $R(2,-3)$ and $S(5,1)$, state and label the coordinates of R^{\prime} and S^{\prime}. [The use of the set of axes below is optional.]

30 A paper container in the shape of a right circular cone has a radius of 3 inches and a height of 8 inches. Determine and state the number of cubic inches in the volume of the cone, in terms of π.

31 In isosceles triangle $R S T$ shown below, $\overline{R S} \cong \overline{R T}$, M and N are midpoints of $\overline{R S}$ and $\overline{R T}$, respectively, and $\overline{M N}$ is drawn. If $M N=3.5$ and the perimeter of $\triangle R S T$ is 25 , determine and state the length of $\overline{N T}$.

32 In the diagram below, $\triangle A B C$ is equilateral.

Using a compass and straightedge, construct a new equilateral triangle congruent to $\triangle A B C$ in the space below. [Leave all construction marks.]

33 Write an equation of the line that is perpendicular to the line whose equation is $2 y=3 x+12$ and that passes through the origin.

34 Rectangle $K L M N$ has vertices $K(0,4), L(4,2)$, $M(1,-4)$, and $N(-3,-2)$. Determine and state the coordinates of the point of intersection of the diagonals.

35 On the set of axes below, graph the locus of points 5 units from the point $(2,-3)$ and the locus of points 2 units from the line whose equation is $y=-1$.
State the coordinates of all points that satisfy both conditions.

36 If $\overline{A B}$ is defined by the endpoints $A(4,2)$ and $B(8,6)$, write an equation of the line that is the perpendicular bisector of $\overline{A B}$.

37 On the set of axes below, graph and label circle A whose equation is $(x+4)^{2}+(y-2)^{2}=16$ and circle B whose equation is $x^{2}+y^{2}=9$. Determine, in simplest radical form, the length of the line segment with endpoints at the centers of circles A and B.

38 Given: Parallelogram $D E F G, K$ and H are points on $\overrightarrow{D E}$ such that $\angle D G K \cong \angle E F H$ and $\overline{G K}$ and $\overline{F H}$ are drawn.

Prove: $\overline{D K} \cong \overline{E H}$

0815ge

Answer Section
1 ANS: 4
PTS: 2
REF: 081501ge
STA: G.G. 29
TOP: Triangle Congruency
2 ANS: $3 \quad$ PTS: 2
REF: 081502ge STA: G.G. 73
TOP: Equations of Circles
3 ANS: 2

Parallel secants intercept congruent arcs. $\frac{360-(106+24)}{2}=\frac{230}{2}=115$
PTS: 2 REF: 081503ge STA: G.G. 52 TOP: Chords and Secants
4 ANS: 2
PTS: 2 REF: 081504ge
STA: G.G. 61
TOP: Analytical Representations of Transformations
5 ANS: 4
PTS: 2
REF: 081505ge
STA: G.G. 25
TOP: Compound Statements
KEY: disjunction
6 ANS: $4 \quad$ PTS: 2
TOP: Properties of Transformations
7 ANS: $3 \quad$ PTS: 2
REF: 081506ge STA: G.G. 59

TOP: Side Splitter Theorem
8 ANS: $1 \quad$ PTS 2
TOP: Solids
9 ANS: 3

$$
m=\frac{-A}{B}=\frac{-4}{-2}=2 \begin{aligned}
y & =m x+b \\
1 & =2(-2)+b \\
1 & =-4+b \\
5 & =b
\end{aligned}
$$

PTS: 2
REF: 081509ge
STA: G.G. 65
TOP: Parallel and Perpendicular Lines
10 ANS: 2
$180-2(58)=64$
PTS: 2
REF: 081510ge
STA: G.G. 31
TOP: Isosceles Triangle Theorem
11 ANS: 2
$45 \cdot \frac{8}{20}=18$

PTS: 2
REF: 081511ge
STA: G.G. 45 TOP: Similarity
KEY: perimeter and area
12 ANS: 3
PTS: 2
REF: 081512ge STA: G.G. 19
TOP: Constructions
13 ANS: 1 PTS: 2
REF: 081513ge STA: G.G. 26
TOP: Contrapositive
14 ANS: $1 \quad$ PTS: 2
TOP: Planes

15 ANS: $2 \quad$ PTS: 2
REF: 081515ge STA: G.G. 55
TOP: Properties of Transformations
16 ANS: 4

$$
2 x+3=-x^{2}-x+1 \quad y=2(-2)+3=-1
$$

$$
x^{2}+3 x+2=0
$$

$(x+2)(x+1)=0$

$$
x=-2,-1
$$

PTS: 2
17 ANS: 1
TOP: Special Quadrilaterals
18 ANS: 1 PTS: 2
TOP: Arcs Determined by Angles
19 ANS: 2
$L+L-30=180$
$2 L=210$

$$
L=105
$$

PTS: 2
REF: 081519ge
STA: G.G. 38
REF: 081520ge
TOP: Equations of Circles
21 ANS: 2
$(n-2) 180=(8-2) 180=1080 \cdot \frac{1080}{8}=135$.

TOP: Tangents

TOP: Parallelograms
STA: G.G. 72

KEY: inscribed
STA: G.G. 70
REF: 081517ge
REF: 081518ge

PTS: 2
22 ANS: 1
TOP: Locus
23 ANS: 3
$720=5 B$
$144=B$
PTS: 2 REF: 081523ge
24 ANS: 1
PTS: 2
TOP: Angle Side Relationship
25 ANS: 3
$\sqrt{20^{2}+7^{2}} \approx 21$
PTS: 2
REF: 081525ge
STA: G.G. 50
KEY: point of tangency
26 ANS: 3
$2.4+2(2.4)=7.2$
PTS: 2
REF: 081526ge
STA: G.G. 43
REF: 081521ge STA: G.G. 37
PTS: 2

群

STA: G.G. 11
REF: 081524ge

REF: 081522ge

TOP: Volume
STA: G.G. 34

TOP: Quadratic-Linear Systems
STA: G.G. 41
STA: G.G. 51

TOP: Interior and Exterior Angles of Polygons
STA: G.G. 22

27 ANS: 2
PTS: 2
TOP: Triangle Inequality Theorem
28 ANS: 3
$x^{2}=4 \cdot 7$
$x=\sqrt{4} \cdot \sqrt{7}$
$x=2 \sqrt{7}$
PTS: 2
REF: 081528ge
KEY: leg
29 ANS:

PTS: 2
REF: 081529ge
KEY: grids
30 ANS:
$V=\frac{1}{3} \pi\left(3^{2}\right)(8)=24 \pi$

PTS: 2
REF: 081530ge
31 ANS:
$2 x+7=25 \quad N T=4.5$
$2 x=18$
$x=9$

PTS: 2
REF: 081531ge
ANS:

PTS: 2
REF: 081532ge
STA: G.G. 20

TOP: Constructions

33 ANS:
$m=\frac{3}{2} ; m_{\perp}=-\frac{2}{3} \quad y=-\frac{2}{3} x$
PTS: 2 REF: 081533ge STA: G.G. 64 TOP: Parallel and Perpendicular Lines
34 ANS:
$\left(\frac{0+1}{2}, \frac{4+-4}{2}\right)$
$\left(\frac{1}{2}, 0\right)$
PTS: 2 REF: 081534ge STA: G.G. 69 TOP: Quadrilaterals in the Coordinate Plane
35 ANS:

PTS: 4 REF: 081535ge STA: G.G. 23 TOP: Locus
36 ANS:
$M=\left(\frac{4+8}{2}, \frac{2+6}{2}\right)=(6,4) m=\frac{6-2}{8-4}=\frac{4}{4}=1 m_{\perp}=-1 y-4=-(x-6)$
PTS: 4 REF: 081536ge STA: G.G. 68 TOP: Perpendicular Bisector
37 ANS:

PTS: 4
REF: 081537ge STA: G.G. 74
TOP: Graphing Circles

38 ANS:
Parallelogram $D E F G, K$ and H are points on $\overrightarrow{D E}$ such that $\angle D G K \cong \angle E F H$ and $\overline{G K}$ and $\overline{F H}$ are drawn (given). $\overline{D G} \cong \overline{E F}$ (opposite sides of a parallelogram are congruent). $\overline{D G} \| \overline{E F}$ (opposite sides of a parallelogram are parallel). $\angle D \cong \angle F E H$ (corresponding angles formed by parallel lines and a transversal are congruent).
$\triangle D G K \cong \triangle E F H(\mathrm{ASA}) . \overline{D K} \cong \overline{E H}(\mathrm{CPCTC})$.

PTS: 6
REF: 081538ge
STA: G.G. 27
TOP: Quadrilateral Proofs

