0610ia

1 Given: $\operatorname{Set} U=\{S, O, P, H, I, A\}$
Set $B=\{A, I, O\}$
If set B is a subset of set U, what is the complement of set B ?

1) $\{O, P, S\}$
2) $\{I, P, S\}$
3) $\{A, H, P\}$
4) $\{H, P, S\}$

2 How many different sandwiches consisting of one type of cheese, one condiment, and one bread choice can be prepared from five types of cheese, two condiments, and three bread choices?

1) 10
2) 13
3) 15
4) 30

3 The sum of $4 x^{3}+6 x^{2}+2 x-3$ and $3 x^{3}+3 x^{2}-5 x-5$ is

1) $7 x^{3}+3 x^{2}-3 x-8$
2) $7 x^{3}+3 x^{2}+7 x+2$
3) $7 x^{3}+9 x^{2}-3 x-8$
4) $7 x^{6}+9 x^{4}-3 x^{2}-8$

4 What is the slope of the line that passes through the points $(3,5)$ and $(-2,2)$?

1) $\frac{1}{5}$
2) $\frac{3}{5}$
3) $\frac{5}{3}$
4) 5

5 What are the vertex and axis of symmetry of the parabola shown in the diagram below?

1) vertex: $(1,-4)$; axis of symmetry: $x=1$
2) vertex: $(1,-4)$; axis of symmetry: $x=-4$
3) vertex: $(-4,1)$; axis of symmetry: $x=1$
4) vertex: $(-4,1)$; axis of symmetry: $x=-4$

6 Three high school juniors, Reese, Matthew, and Chris, are running for student council president. A survey is taken a week before the election asking 40 students which candidate they will vote for in the election. The results are shown in the table below.

Candidate's Name	Number of Students Supporting Candidate
Reese	15
Matthew	13
Chris	12

Based on the table, what is the probability that a student will vote for Reese?

1) $\frac{1}{3}$
2) $\frac{3}{5}$
3) $\frac{3}{8}$
4) $\frac{5}{8}$

7 Which linear equation represents a line containing the point $(1,3)$?

1) $x+2 y=5$
2) $x-2 y=5$
3) $2 x+y=5$
4) $2 x-y=5$

8 The expression $\sqrt{72}-3 \sqrt{2}$ written in simplest radical form is

1) $5 \sqrt{2}$
2) $3 \sqrt{6}$
3) $3 \sqrt{2}$
4) $\sqrt{6}$

9 In $\triangle A B C$, the measure of $\angle B=90^{\circ}, A C=50$, $A B=48$, and $B C=14$. Which ratio represents the tangent of $\angle A$?

1) $\frac{14}{50}$
2) $\frac{14}{48}$
3) $\frac{48}{50}$
4) $\frac{48}{14}$

10 Which ordered pair is in the solution set of the system of linear inequalities graphed below?

1) $(1,-4)$
2) $(-5,7)$
3) $(5,3)$
4) $(-7,-2)$

Integrated Algebra Regents Exam 0610 www.jmap.org

11 Which table does not show bivariate data?
1)

Height (inches)	Weight (pounds)
39	50
48	70
60	90

Gallons	Miles Driven
15	300
20	400
25	500

2)

Quiz Average	Frequency
70	12
80	15
90	6

3)

Speed (mph)	Distance (miles)
40	80
50	120
55	150

4)

12 What is the solution of the system of equations $c+3 d=8$ and $c=4 d-6$?

1) $c=-14, d=-2$
2) $c=-2, d=2$
3) $c=2, d=2$
4) $c=14, d=-2$

13 Which graph represents a function?
1)

2)

3)

14 The algebraic expression $\frac{x-2}{x^{2}-9}$ is undefined when x is

1) 0
2) 2
3) 3
4) 9

15 The graphs of the equations $y=2 x-7$ and $y-k x=7$ are parallel when k equals

1) -2
2) 2
3) -7
4) 7

16 Which verbal expression is represented by $\frac{1}{2}(n-3)$?

1) one-half n decreased by 3
2) one-half n subtracted from 3
3) the difference of one-half n and 3
4) one-half the difference of n and 3

17 The freshman class held a canned food drive for 12 weeks. The results are summarized in the table below.

Canned Food Drive Results

Week	1	2	3	4	5	6	7	8	9	10	11	12
Number of Cans	20	35	32	45	58	46	28	23	31	79	65	62

Which number represents the second quartile of the number of cans of food collected?

1) 29.5
2) 30.5
3) 40
4) 60

18 Which expression represents $\frac{-14 a^{2} c^{8}}{7 a^{3} c^{2}}$ in simplest form?

1) $-2 a c^{4}$
2) $-2 a c^{6}$
3) $\frac{-2 c^{4}}{a}$
4) $\frac{-2 c^{6}}{a}$

19 Which value of x is the solution of $\frac{x}{3}+\frac{x+1}{2}=x$?

1) 1
2) -1
3) 3
4) -3

20 When 36 is subtracted from the square of a number, the result is five times the number. What is the positive solution?

1) 9
2) 6
3) 3
4) 4

21 Which interval notation represents the set of all numbers greater than or equal to 5 and less than 12 ?

1) $[5,12)$
2) $(5,12]$
3) $(5,12)$
4) $[5,12]$

22 Four hundred licensed drivers participated in the math club's survey on driving habits. The table below shows the number of drivers surveyed in each age group.

Ages of People in Survey on Driving Habits

Age Group	Number of Drivers
$16-25$	150
$26-35$	129
$36-45$	33
$46-55$	57
$56-65$	31

Which statement best describes a conclusion based on the data in the table?

1) It may be biased because no one younger than 16 was surveyed.
2) It would be fair because many different age groups were surveyed.
3) It would be fair because the survey was conducted by the math club students.
4) It may be biased because the majority of drivers surveyed were in the younger age intervals.

23 A formula used for calculating velocity is $v=\frac{1}{2} a t^{2}$. What is a expressed in terms of v and t ?

1) $a=\frac{2 v}{t}$
2) $a=\frac{2 v}{t^{2}}$
3) $a=\frac{v}{t}$
4) $a=\frac{v}{2 t^{2}}$

24 What is the sum of $\frac{-x+7}{2 x+4}$ and $\frac{2 x+5}{2 x+4}$?

1) $\frac{x+12}{2 x+4}$
2) $\frac{3 x+12}{2 x+4}$
3) $\frac{x+12}{4 x+8}$
4) $\frac{3 x+12}{4 x+8}$

25 Steve ran a distance of 150 meters in $1 \frac{1}{2}$ minutes. What is his speed in meters per hour?

1) 6
2) 60
3) 100
4) 6,000

26 How many different three-letter arrangements can be formed using the letters in the word ABSOLUTE if each letter is used only once?

1) 56
2) 112
3) 168
4) 336

27 Factored completely, the expression $3 x^{2}-3 x-18$ is equivalent to

1) $3\left(x^{2}-x-6\right)$
2) $3(x-3)(x+2)$
3) $(3 x-9)(x+2)$
4) $(3 x+6)(x-3)$

28 Which quadrant will be completely shaded in the graph of the inequality $y \leq 2 x$?

1) Quadrant I
2) Quadrant II
3) Quadrant III
4) Quadrant IV

29 A figure is made up of a rectangle and a semicircle as shown in the diagram below.

What is the area of the figure, to the nearest tenth of a square centimeter?

1) 39.4
2) 44.1
3) 48.8
4) 58.3

30 The value, y, of a $\$ 15,000$ investment over x years is represented by the equation $y=15000(1.2)^{\frac{x}{3}}$.
What is the profit (interest) on a 6 -year investment?

1) $\$ 6,600$
2) $\$ 10,799$
3) $\$ 21,600$
4) $\$ 25,799$

31 Alexis calculates the surface area of a gift box as 600 square inches. The actual surface area of the gift box is 592 square inches. Find the relative error of Alexis' calculation expressed as a decimal to the nearest thousandth.

32 Perform the indicated operation: $-6(a-7)$ State the name of the property used.

33 A communications company is building a 30 -foot antenna to carry cell phone transmissions. As shown in the diagram below, a 50 -foot wire from the top of the antenna to the ground is used to stabilize the antenna.

Find, to the nearest degree, the measure of the angle that the wire makes with the ground.

34 Given: $A=\{18,6,-3,-12\}$
Determine all elements of set A that are in the solution of the inequality $\frac{2}{3} x+3<-2 x-7$.

Integrated Algebra Regents Exam 0610

www.jmap.org

35 Graph and label the following equations on the set of axes below.

$$
\begin{aligned}
& y=|x| \\
& y=\left|\frac{1}{2} x\right|
\end{aligned}
$$

Explain how decreasing the coefficient of x affects the graph of the equation $y=|x|$.

36 Megan and Bryce opened a new store called the Donut Pit. Their goal is to reach a profit of $\$ 20,000$ in their 18th month of business. The table and scatter plot below represent the profit, P, in thousands of dollars, that they made during the first 12 months.

t (months)	P (profit, in thousands of dollars)
1	3.0
2	2.5
3	4.0
4	5.0
5	6.5
6	5.5
7	7.0
8	6.0
9	7.5
10	7.0
11	9.0
12	9.5

Draw a reasonable line of best fit. Using the line of best fit, predict whether Megan and Bryce will reach their goal in the 18th month of their business. Justify your answer.

37 Express in simplest form:

$$
\frac{x^{2}+9 x+14}{x^{2}-49} \div \frac{3 x+6}{x^{2}+x-56}
$$

38 The diagram below shows a cumulative frequency histogram of the students' test scores in Ms. Wedow's algebra class.

Ms. Wedow's Algebra Class Test Scores

Determine the total number of students in the class. Determine how many students scored higher than 70. State which ten-point interval contains the median. State which two ten-point intervals contain the same frequency.

39 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$
\begin{gathered}
y=-x^{2}-4 x+12 \\
y=-2 x+4
\end{gathered}
$$

0610ia

Answer Section

1 ANS: 4
PTS: 2
REF: 061001ia
STA: A.A. 30
TOP: Set Theory
2 ANS: 4
$5 \times 2 \times 3=30$
PTS: 2
REF: 061002ia
STA: A.N. 7
3 ANS: 3
PTS: 2
REF: 061003ia
TOP: Addition and Subtraction of Polynomials
4 ANS: 2
$m=\frac{5-2}{3-(-2)}=\frac{3}{5}$
PTS: 2
REF: 061004ia
STA: A.A. 33
5 ANS: 1
PTS: 2
REF: 061005ia
TOP: Slope
TOP: Identifying the Vertex of a Quadratic Given Graph
6 ANS: 3
$\frac{15}{15+13+12}=\frac{15}{40}=\frac{3}{8}$
PTS: 2
REF: 061006ia
STA: A.S. 21
TOP: Experimental Probability
7 ANS: 3
$2(1)+3=5$
PTS: 2
REF: 061007ia STA: A.A. 39
8 ANS: 3
$\sqrt{72}-3 \sqrt{2}=\sqrt{36} \sqrt{2}-3 \sqrt{2}=6 \sqrt{2}-3 \sqrt{2}=3 \sqrt{2}$
PTS: 2
REF: 061008ia STA: A.N. 3
TOP: Operations with Radicals
KEY: subtraction
9 ANS: 2
$\tan A=\frac{\text { opposite }}{\text { adjacent }}=\frac{14}{48}$
PTS: 2
REF: 061009ia
STA: A.A. 42
REF: 061010ia
TOP: Systems of Linear Inequalities
11 ANS: 3 PTS: 2
REF: 061011 ia
STA: A.S. 2
TOP: Analysis of Data

12 ANS: 3
$c+3 d=8 \quad c=4 d-6$
$4 d-6+3 d=8 \quad c=4(2)-6$

$$
\begin{aligned}
7 d & =14 \quad c=2 \\
d & =2
\end{aligned}
$$

PTS: 2
REF: 061012ia
13 ANS: 4
PTS: 2
STA: A.A. 10

TOP: Defining Functions
14 ANS: 3

$$
x^{2}-9=0
$$

$(x+3)(x-3)=0$

$$
x= \pm 3
$$

PTS: 2
REF: 061014ia STA: A.A. 15
15 ANS: 2
$y-k x=7$ may be rewritten as $y=k x+7$
PTS: 2 REF: 061015ia
STA: A.A. 38
REF: 061016ia
TOP: Parallel and Perpendicular Lines
16 ANS: 4
PTS: 2
STA: A.A. 2
TOP: Expressions
17 ANS: 3
PTS: 2
REF: 061017ia
STA: A.S. 11
TOP: Quartiles and Percentiles
18 ANS: 4 PTS: 2
REF: 061018ia
STA: A.A. 12
TOP: Division of Powers
19 ANS: 3
$\frac{x}{3}+\frac{x+1}{2}=x$
$\frac{2 x+3(x+1)}{6}=x$

$$
\begin{aligned}
5 x+3 & =6 x \\
3 & =x
\end{aligned}
$$

PTS: 2
REF: 061019ia
STA: A.A. 25
TOP: Solving Equations with Fractional Expressions
20 ANS: 1

$$
\begin{aligned}
x^{2}-36 & =5 x \\
x^{2}-5 x-36 & =0 \\
(x-9)(x+4) & =0 \\
x & =9
\end{aligned}
$$

PTS: 2
REF: 061020ia
STA: A.A. 8
TOP: Writing Quadratics

21	ANS: 1	PTS: 2	REF: 061021ia	STA: A.A. 29
	TOP: Set Theory			
22	ANS: 4	PTS: 2	REF: 061022ia	STA: A.S. 3
	TOP: Analysis of Data			
23	ANS: 2	PTS: 2	REF: 061023ia	STA: A.A. 23
	TOP: Transforming Formulas			
24	ANS: 1	PTS: 2	REF: 061024ia	STA: A.A. 17

TOP: Addition and Subtraction of Rationals
25 ANS: 4
$s=\frac{d}{t}=\frac{150 \mathrm{~m}}{1.5 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=6,000 \frac{\mathrm{~m}}{\mathrm{hr}}$

PTS: 2
REF: 061025ia
STA: A.M. 1
TOP: Speed
26 ANS: 4
${ }_{8} P_{3}=336$
PTS: 2
REF: 061026ia
STA: A.N. 8
REF: 061027ia
TOP: Permutations
27 ANS: 2
PTS: 2
STA: A.A. 20
TOP: Factoring Polynomials
28 ANS: 4 PTS: 2
REF: 061028ia STA: A.G. 6
TOP: Linear Inequalities
29 ANS: 2
$A=l w+\frac{\pi r^{2}}{2}=6 \cdot 5+\frac{\pi \cdot 3^{2}}{2} \approx 44.1$

PTS: 2
REF: 061029ia
STA: A.G. 1
ANS: 1
$15000(1.2)^{\frac{6}{3}}=21,600.21,600-15,000=6,600$
PTS: 2
REF: 061030ia
STA: A.A. 9
TOP: Exponential Functions
31 ANS:
$\frac{600-592}{592} \approx 0.014$
PTS: 2
REF: 061031ia
STA: A.M. 3
TOP: Relative Error
32 ANS:
$-6 a+42$. distributive
PTS: 2
REF: 061032ia
STA: A.N. 1
TOP: Properties of Reals

33 ANS:

$$
\begin{aligned}
\sin x & =\frac{30}{50} \\
x & =\sin ^{-1} \frac{3}{5} \\
x & \approx 37
\end{aligned}
$$

PTS: 2
REF: 061033ia
STA: A.A. 43
TOP: Using Trigonometry to Find an Angle
34 ANS:
-12. $3\left(\frac{2}{3} x+3<-2 x-7\right)$

$$
\begin{aligned}
x+9 & <-6 x-21 \\
7 x & <-30 \\
x & <\frac{-30}{7}
\end{aligned}
$$

PTS: 3
REF: 061034ia
STA: A.A. 21
TOP: Interpreting Solutions
35 ANS:

. Graph becomes wider as the coefficient approaches 0 .
PTS: 3
REF: 061035ia
STA: A.G. 5
TOP: Graphing Absolute Value Functions

36 ANS:

They will not reach their goal in 18 months.
PTS: 3 REF: 061036ia STA: A.S. 17 TOP: Scatter Plots
37 ANS:
$\frac{x^{2}+9 x+14}{x^{2}-49} \div \frac{3 x+6}{x^{2}+x-56}=\frac{(x+7)(x+2)}{(x+7)(x-7)} \cdot \frac{(x+8)(x-7)}{3(x+2)}=\frac{x+8}{3}$
PTS: 4 REF: 061037ia STA: A.A. 18 TOP: Multiplication and Division of Rationals
38 ANS:
30, 20, 71-80, 81-90 and 91-100
PTS: 4 REF: 061038ia STA: A.S. 9
TOP: Frequency Histograms, Bar Graphs and Tables
39 ANS:

PTS: 4
REF: 061039ia
STA: A.G. 9
TOP: Quadratic-Linear Systems

