0613ia

1 Which expression represents " 5 less than twice x "?

1) $2 x-5$
2) $5-2 x$
3) $2(5-x)$
4) $2(x-5)$

2 Gabriella has 20 quarters, 15 dimes, 7 nickels, and 8 pennies in a jar. After taking 6 quarters out of the jar, what will be the probability of Gabriella randomly selecting a quarter from the coins left in the jar?

1) $\frac{14}{44}$
2) $\frac{30}{44}$
3) $\frac{14}{50}$
4) $\frac{20}{50}$

3 Based on the line of best fit drawn below, which value could be expected for the data in June 2015?

1) 230
2) 310
3) 480
4) 540

4 If the point $(5, k)$ lies on the line represented by the equation $2 x+y=9$, the value of k is

1) 1
2) 2
3) -1
4) -2

5 A soda container holds $5 \frac{1}{2}$ gallons of soda. How many ounces of soda does this container hold?

$$
\begin{aligned}
& 1 \text { quart }=32 \text { ounces } \\
& 1 \text { gallon }=4 \text { quarts }
\end{aligned}
$$

1) 44
2) 176
3) 640
4) 704

6 The roots of a quadratic equation can be found using the graph below.

What are the roots of this equation?

1) -4 , only
2) -4 and -1
3) -1 and 4
4) $-4,-1$, and 4

7 If the area of a rectangle is represented by $x^{2}+8 x+15$ and its length is represented by $x+5$, which expression represents the width of the rectangle?

1) $x+3$
2) $x-3$
3) $x^{2}+6 x+5$
4) $x^{2}+7 x+10$

8 Which set of data describes a situation that could be classified as qualitative?

1) the colors of the birds at the city zoo
2) the shoe size of the zookeepers at the city zoo
3) the heights of the giraffes at the city zoo
4) the weights of the monkeys at the city zoo

9 The value of the expression $6!+\frac{5!(3!)}{4!}-10$ is

1) 50
2) 102
3) 740
4) 750

10 Which interval notation represents $-3 \leq x \leq 3$?

1) $[-3,3]$
2) $(-3,3]$
3) $[-3,3)$
4) $(-3,3)$

11 The solutions of $x^{2}=16 x-28$ are

1) -2 and -14
2) 2 and 14
3) -4 and -7
4) 4 and 7

12 If the expression $\left(2 y^{a}\right)^{4}$ is equivalent to $16 y^{8}$, what is the value of a ?

1) 12
2) 2
3) 32
4) 4

13 Which table shows bivariate data?
1)

Age (yr)	Frequency
14	12
15	21
16	14
17	19
18	15

Type of Car	Average Gas Mileage (mpg)
van	25
SUV	23
luxury	26
compact	28
pickup	22

2)

Time Spent Studying (hr)	Test Grade $(\%)$
1	65
2	72
3	83
4	85
5	92

3)

Day	Temperature (degrees F)
Monday	63
Tuesday	58
Wednesday	72
Thursday	74
Friday	78

14 The box-and-whisker plot below represents the results of tests scores in a math class.

What do the scores 65,85 , and 100 represent?

1) Q_{1}, median, Q_{3}
2) Q_{1}, Q_{3}, maximum
3) median, Q_{1}, maximum
4) minimum, median, maximum

15 The expression $\frac{x-3}{x+2}$ is undefined when the value of x is

1) -2 , only
2) -2 and 3
3) 3 , only
4) -3 and 2

16 If $r x-s t=r$, which expression represents x ?

1) $\frac{r+s t}{r}$
2) $\frac{r}{r+s t}$
3) $\frac{r}{r-s t}$
4) $\frac{r-s t}{r}$

17 What is the solution of the equation $\frac{x+2}{2}=\frac{4}{x}$?

1) 1 and - 8
2) 2 and -4
3) -1 and 8
4) -2 and 4

18 Which type of function is graphed below?

1) linear
2) quadratic
3) exponential
4) absolute value

19 What is the slope of the line represented by the equation $4 x+3 y=12$?

1) $\frac{4}{3}$
2) $\frac{3}{4}$
3) $-\frac{3}{4}$
4) $-\frac{4}{3}$

20 The diagram below shows the graph of which inequality?

1) $y>x-1$
2) $y \geq x-1$
3) $y<x-1$
4) $y \leq x-1$

21 Carol plans to sell twice as many magazine subscriptions as Jennifer. If Carol and Jennifer need to sell at least 90 subscriptions in all, which inequality could be used to determine how many subscriptions, x, Jennifer needs to sell?

1) $x \geq 45$
2) $2 x \geq 90$
3) $2 x-x \geq 90$
4) $2 x+x \geq 90$

22 When $2 x^{2}-3 x+2$ is subtracted from $4 x^{2}-5 x+2$, the result is

1) $2 x^{2}-2 x$
2) $-2 x^{2}+2 x$
3) $-2 x^{2}-8 x+4$
4) $2 x^{2}-8 x+4$

23 Which expression represents the number of hours in w weeks and d days?

1) $7 w+12 d$
2) $84 w+24 d$
3) $168 w+24 d$
4) $168 w+60 d$

24 Given: $R=\{1,2,3,4\}$

$$
\begin{aligned}
& A=\{0,2,4,6\} \\
& P=\{1,3,5,7\}
\end{aligned}
$$

What is $R \cap P$?

1) $\{0,1,2,3,4,5,6,7\}$
2) $\{1,2,3,4,5,7\}$
3) $\{1,3\}$
4) $\{2,4\}$

25 Which equation could be used to find the measure of angle D in the right triangle shown in the diagram below?

1) $\cos D=\frac{12}{13}$
2) $\cos D=\frac{13}{12}$
3) $\sin D=\frac{5}{13}$
4) $\sin D=\frac{12}{13}$

26 If the roots of a quadratic equation are -2 and 3 , the equation can be written as

1) $(x-2)(x+3)=0$
2) $(x+2)(x-3)=0$
3) $(x+2)(x+3)=0$
4) $(x-2)(x-3)=0$

27 Which equation represents a line that is parallel to the y-axis and passes through the point $(4,3)$?

1) $x=3$
2) $x=4$
3) $y=3$
4) $y=4$

28 There are 18 students in a class. Each day, the teacher randomly selects three students to assist in a game: a leader, a recorder, and a timekeeper. In how many possible ways can the jobs be assigned?

1) 306
2) 816
3) 4896
4) 5832

29 In triangle $R S T$, angle R is a right angle. If $T R=6$ and $T S=8$, what is the length of $\overline{R S}$?

1) 10
2) 2
3) $2 \sqrt{7}$
4) $7 \sqrt{2}$

30 How many solutions are there for the following system of equations?

$$
\begin{gathered}
y=x^{2}-5 x+3 \\
y=x-6
\end{gathered}
$$

1) 1
2) 2
3) 3
4) 0

31 Solve the inequality $-5(x-7)<15$ algebraically for x.

32 Oatmeal is packaged in a cylindrical container, as shown in the diagram below.

The diameter of the container is 13 centimeters and its height is 24 centimeters. Determine, in terms of π, the volume of the cylinder, in cubic centimeters.

33 The distance from Earth to Mars is $136,000,000$ miles. A spaceship travels at 31,000 miles per hour. Determine, to the nearest day, how long it will take the spaceship to reach Mars.

34 The menu for the high school cafeteria is shown below.

Main Course	Vegetable	Dessert	Beverage
veggie burger	corn	gelatin	milk
pizza	green beans	fruit salad	juice
tuna sandwich	carrots	yogurt	bottled water
frankfurter		cookie	
chicken tenders		ice cream cup	

Determine the number of possible meals consisting of a main course, a vegetable, a dessert, and a beverage that can be selected from the menu. Determine how many of these meals will include chicken tenders. If a student chooses pizza, corn or carrots, a dessert, and a beverage from the menu, determine the number of possible meals that can be selected.

35 A man standing on level ground is 1000 feet away from the base of a 350 -foot-tall building. Find, to the nearest degree, the measure of the angle of elevation to the top of the building from the point on the ground where the man is standing.

36 Express $\sqrt{25}-2 \sqrt{3}+\sqrt{27}+2 \sqrt{9}$ in simplest radical form.

37 Solve algebraically: $\frac{2}{3 x}+\frac{4}{x}=\frac{7}{x+1}$
[Only an algebraic solution can receive full credit.]

38 A jar contains five red marbles and three green marbles. A marble is drawn at random and not replaced. A second marble is then drawn from the jar. Find the probability that the first marble is red and the second marble is green. Find the probability that both marbles are red. Find the probability that both marbles are the same color.

39 In the diagram below of rectangle $A F E B$ and a semicircle with diameter $\overline{C D}, A B=5$ inches, $A B=B C=D E=F E$, and $C D=6$ inches. Find the area of the shaded region, to the nearest hundredth of a square inch.

0613ia

Answer Section

1 ANS: 1
TOP: Expressions
2 ANS: 1
$\frac{20-6}{(20-6)+15+7+8}=\frac{14}{44}$
PTS: 2
3 ANS: 3
TOP: Scatter Plots
4 ANS: 3
$2(5)+k=9$

$$
\begin{aligned}
10+k & =9 \\
k & =-1
\end{aligned}
$$

PTS: 2
REF: 061304ia
5 ANS: 4
$5.5 \mathrm{~g} \times \frac{4 \mathrm{q}}{1 \mathrm{~g}} \times \frac{32 \mathrm{oz}}{1 \mathrm{q}}=704 \mathrm{oz}$
PTS: 2
REF: 061305ia
KEY: dimensional analysis
6 ANS: 3
PTS: 2
TOP: Solving Quadratics by Graphing
7 ANS: 1
$\frac{(x+5)(x+3)}{x+5}=x+3$
PTS: 2
REF: 0613071a
KEY: $a>0$
8 ANS: 1
The other situations are quantitative.
PTS: 2
REF: 061308ia
ANS: 3
$6!+\frac{5!(3!)}{4!}-10=720+5(6)-10=740$
PTS: 2
10 ANS: 1
REF: 061309ia
PTS: 2
TOP: Set Theory

REF: 061301ia

STA: A.S. 18
REF: 061303ia

STA: A.A. 39
TOP: Identifying Points on a Line

TOP: Conditional Probability
STA: A.S. 17

STA: A.A. 1

STA: A.M. 2 TOP: Conversions
REF: 061306ia

STA: A.A. 16

STA: A.S. 1
TOP: Analysis of Data

STA: A.N. 6
REF: 061310ia
Ref: 061306 a
STA: A.G. 8

TOP: Rational Expressions

TOP: Anal

TOP: Evaluating Expressions
STA: A.A. 29
(

11 ANS: 2

$$
\begin{aligned}
x^{2}-16 x+28 & =0 \\
(x-14)(x-2) & =0 \\
x & =14,2
\end{aligned}
$$

$\begin{array}{llllll}\text { PTS: } 2 & \text { REF: } & \text { 061311ia } & \text { STA: A.A. } 27 & \text { TOP: } & \text { Solving Quadratics by Factoring } \\ \text { ANS: } 2 & \text { PTS: } 2 & \text { REF: } 061312 \mathrm{ia} & \text { STA: } & \text { A.A. } 12\end{array}$
TOP: Powers of Powers
13 ANS: 3
Due to lack of specificity in the wording, this 13th question was removed from the June, 2013 Regents Exam.

PTS: 2
14 ANS: 2
REF: 061313ia
PTS: 2
TOP: Box-and-Whisker Plots
15 ANS: $1 \quad$ PTS: 2
TOP: Undefined Rationals
16 ANS: 1
$r x-s t=r$
$r x=r+s t$

$$
x=\frac{r+s t}{r}
$$

PTS: 2
REF: 061316ia
STA: A.A. 23
TOP: Transforming Formulas
17 ANS: 2

$$
\begin{aligned}
\frac{x+2}{2} & =\frac{4}{x} \\
x^{2}+2 x & =8 \\
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
x & =-4,2
\end{aligned}
$$

PTS: 2
REF: 061317ia
ANS: 3
PTS: 2
TOP: Families of Functions
19 ANS: 4
$m=\frac{-A}{B}=\frac{-4}{3}$
$\begin{array}{lllll}\text { PTS: } 2 & \text { REF: } & \text { 061319ia } & \text { STA: A.A. } 37 & \text { TOP: Slope } \\ \text { ANS: } 4 & \text { PTS: } 2 & \text { REF: } 061320 \mathrm{ia} & \text { STA: A.G. } 6 \\ \text { TOP: Linear Inequalities } & & & & \\ \text { ANS: } 4 & \text { PTS: } 2 & \text { REF: } 061321 \mathrm{ia} & \text { STA: A.A. } 5\end{array}$
TOP: Modeling Inequalities

STA: A.A. 26 TOP: Solving Rationals
REF: 061318ia STA: A.G. 4

22 ANS: 1 PTS: 2 REF: 061322i
TOP: Addition and Subtraction of Polynomials
23 ANS: 3
TOP: Expressions
24 ANS: 3
PTS: 2
REF: 061323ia
REF: 061324ia
PTS: 2
TOP: Set Theory
25 ANS: 4
$\sin D=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{12}{13}$
PTS: 2
REF: 061325ia
26 ANS: 2
PTS: 2
STA: A.A. 43
TOP: Roots of Quadratics
27 ANS: 2 PTS: 2
TOP: Parallel and Perpendicular Lines
28 ANS: 3
${ }_{18} P_{3}=4896$
PTS: 2
REF: 061328ia
STA: A.N. 8
ANS: 3
$\sqrt{8^{2}-6^{2}}=\sqrt{28}=\sqrt{4} \sqrt{7}=2 \sqrt{7}$
PTS: 2
REF: 061329ia
STA: A.A. 45
TOP: Pythagorean Theorem
30 ANS: 1
$x^{2}-5 x+3=x-6 \quad y=3-6=-3(3,-3)$
$x^{2}-6 x+9=0$

$$
\begin{aligned}
(x-3)^{2} & =0 \\
x & =3
\end{aligned}
$$

PTS: 2
REF: 061330ia
STA: A.G. 9
TOP: Quadratic-Linear Systems
31 ANS:

$$
\begin{aligned}
-5(x-7) & <15 \\
x-7 & >-3 \\
x & >4
\end{aligned}
$$

PTS: 2
REF: 061331ia
STA: A.A. 24
$V=\pi r^{2} h=\pi \cdot 6.5^{2} \cdot 24=1014 \pi$
PTS: 2
REF: 061332ia
STA: A.G. 2
STA: A.A. 13
KEY: subtraction
STA: A.A. 1
STA: A.A. 31

REF: 061326ia
REF: 061327ia
STA: A.A. 36

TOP: Permutations
TOP: Using Trigonometry to Find an Angle STA: A.A. 28

TOP: Py

32 ANS:

TOP: Volume

33 ANS:
$t=\frac{d}{s}=\frac{136,000,000}{31,000} \approx 4387.1$ hours. $\frac{4387.1}{24} \approx 183$
PTS: 2 REF: 061333ia STA: A.M. 1 TOP: Speed
34 ANS:
$5 \times 3 \times 5 \times 3=225.1 \times 3 \times 5 \times 3=45.1 \times 2 \times 5 \times 3=30$
PTS: 4 REF: 061334ia STA: A.N. 7 TOP: Multiplication Counting Principle
35 ANS:
$\tan x=\frac{350}{1000}$
$x \approx 19$
PTS: 3 REF: 061335ia STA: A.A. 43 TOP: Using Trigonometry to Find an Angle
36 ANS:
$5-2 \sqrt{3}+\sqrt{9} \sqrt{3}+2(3)=5-2 \sqrt{3}+3 \sqrt{3}+6=11+\sqrt{3}$
PTS: 3 REF: 061336ia STA: A.N. 3 TOP: Operations with Radicals
37 ANS:

$$
\begin{aligned}
\frac{2}{3 x}+\frac{12}{3 x} & =\frac{7}{x+1} \\
\frac{14}{3 x} & =\frac{7}{x+1} \\
21 x & =14 x+14 \\
7 x & =14 \\
x & =2
\end{aligned}
$$

PTS: 4
REF: 061337ia
STA: A.A. 26
TOP: Solving Rationals
38 ANS:
$\frac{5}{8} \times \frac{3}{7}=\frac{15}{56} \cdot \frac{5}{8} \times \frac{4}{7}=\frac{20}{56} \cdot \frac{20}{56}+\frac{3}{8} \times \frac{2}{7}=\frac{26}{56}$
PTS: 4 REF: 061338ia STA: A.S. 23 TOP: Theoretical Probability
KEY: dependent events
39 ANS:
Area of rectangle minus area of semicircle: $(5+6+5) \times 5-\frac{\pi \times 3^{2}}{2} \approx 65.86$
PTS: 4
REF: 061339ia
STA: A.G. 1
TOP: Compositions of Polygons and Circles
KEY: area

