0814ia

1 What is the product of $3 a^{2} b$ and $-2 a b^{3}$?

1) $a^{2} b^{3}$
2) $a^{3} b^{4}$
3) $-6 a^{2} b^{3}$
4) $-6 a^{3} b^{4}$

2 The value of the expression $|-20|-|6|$ is

1) 26
2) 14
3) -14
4) -26

3 When $9 x^{2}-100$ is factored, it is equivalent to $(3 x-b)(3 x+b)$. What is a value for b ?

1) 50
2) 10
3) 3
4) 100

4 Which equation represents the line that passes through the points $(1,1)$ and $(-2,7)$?

1) $y=-2 x+9$
2) $y=-2 x+3$
3) $y=-\frac{1}{2} x+8$
4) $y=-\frac{1}{2} x+6$

5 The graph below represents the parabolic path of a ball kicked by a young child. What are the vertex and the axis of symmetry for the parabola?

1) vertex: $(3,8)$; axis of symmetry: $x=3$
2) vertex: $(3,8)$; axis of symmetry: $y=3$
3) vertex: $(8,3)$; axis of symmetry: $x=3$
4) vertex: $(8,3)$; axis of symmetry: $y=3$

6 Which relationship can best be described as causal?

1) The alarm goes off and the sun rises.
2) The car is moving slowly and the driver is singing.
3) The snow is falling and the stores run out of snow shovels.
4) The birds are chirping and the rain is coming down.

7 In a class, which data can be classified as qualitative?

1) age of students
2) weight of students
3) shoe size of students
4) hair color of students

8 Given the following:

$$
\begin{aligned}
& A=\{\text { Charles, Kyle, Nakim, Jade }\} \\
& B=\{\text { Charles, Jade, Alicia, Kyle }\} \\
& C=\{\text { Kyle, Nakim, Jade, Dylan }\}
\end{aligned}
$$

What is the intersection of sets A, B, and C ?

1) $\{$ Kyle, Nakim $\}$
2) $\{$ Charles, Kyle $\}$
3) $\{$ Jade, Nakim $\}$
4) $\{$ Jade, Kyle $\}$

9 The sum of $\frac{3 x-4}{x+3}$ and $\frac{2 x-5}{x+3}$ is

1) $\frac{5 x-9}{x+3}$
2) $\frac{5 x+1}{2 x+6}$
3) $\frac{5 x-9}{x+6}$
4) $\frac{5 x+1}{x+3}$

10 If Rosa's age is represented by R, which inequality represents the statement "Rosa is at most 29 years old"?

1) $R<29$
2) $R>29$
3) $R \leq 29$
4) $R \geq 29$

11 What is the slope of a line passing through points $(-7,5)$ and $(5,-3)$?

1) $-\frac{3}{2}$
2) $-\frac{2}{3}$
3) $\frac{2}{3}$
4) $\frac{3}{2}$

12 A positive correlation always exists on a scatter plot when

1) y remains unchanged as x increases
2) y changes randomly as x increases
3) y decreases as x increases
4) y increases as x increases

13 A sandwich consists of one type of meat, one type of condiment, and one type of cheese. The possible choices are listed below:
Meat: beef, chicken, turkey
Condiment: ketchup, mustard, mayonnaise Cheese: American, cheddar, provolone, mozzarella In the sample space of all the possible different sandwiches consisting of one type of meat, one type of condiment, and one type of cheese, how many sandwiches do not include provolone cheese?

1) 27
2) 9
3) 3
4) 36

14 The graph of the equation $y=x^{2}$ is shown below.

Which statement best describes the change in this graph when the coefficient of x^{2} is multiplied by 4 ?

1) The parabola becomes wider.
2) The parabola becomes narrower.
3) The parabola will shift up four units.
4) The parabola will shift right four units.

15 A parking lot is 100 yards long. What is the length of $\frac{3}{4}$ of the parking lot, in feet?

$$
1 \text { yard = } 3 \text { feet }
$$

1) 300
2) 225
3) 75
4) 25

16 What is the solution of the equation $\frac{12}{7 x}+\frac{3}{2 x}=\frac{15}{14}$?

1) 1
2) 5
3) 3
4) 14

17 The expression $\frac{2 x^{2}+10 x-28}{4 x+28}$ is undefined when x is

1) 7 , only
2) -7 , only
3) 7 or -2
4) -7 or 2

18 In right triangle $J K L$ in the diagram below, $K L=7$, $J K=24, J L=25$, and $\angle K=90^{\circ}$.

Which statement is not true?

1) $\tan L=\frac{24}{7}$
2) $\cos L=\frac{24}{25}$
3) $\tan J=\frac{7}{24}$
4) $\sin J=\frac{7}{25}$

19 A teacher asked the class to solve the equation $3(x+2)=21$. Robert wrote $3 x+6=21$ as his first step. Which property did he use?

1) associative property
2) commutative property
3) distributive property
4) zero property of addition

20 If the roots of a quadratic equation are -4 and 2 , the equation is equivalent to

1) $(x+4)(x-2)=0$
2) $(x-4)(x+2)=0$
3) $(x+4)(x+2)=0$
4) $(x-4)(x-2)=0$

21 Kelsey scored the following points in her first six basketball games: $22,14,19,22,8$, and 17 . What is the relationship between the measures of central tendency of these data?

1) mode $>$ median $>$ mean
2) median $>$ mode $>$ mean
3) mean $>$ median $>$ mode
4) mode $>$ mean $>$ median

22 Sheba opened a retirement account with $\$ 36,500$. Her account grew at a rate of 7% per year compounded annually. She made no deposits or withdrawals on the account. At the end of 20 years, what was the account worth, to the nearest dollar?

1) $\$ 87,600$
2) $\$ 130,786$
3) $\$ 141,243$
4) $\$ 1,483,444,463$

23 Which equation represents a vertical line?

1) $y=-x$
2) $y=12$
3) $x=y$
4) $x=12$

24 Byron has 72 coins in his piggy bank. The piggy bank contains only dimes and quarters. If he has $\$ 14.70$ in his piggy bank, which equation can be used to determine q, the number of quarters he has?

1) $14.70+0.25 q=72$
2) $0.10(q-72)+0.25 q=14.70$
3) $0.10(72-q)+0.25 q=14.70$
4) $0.10 q+0.25(72-q)=14.70$

25 Which graph represents the equation $y=|x-2|$?
1)

2)

3)

26 If $a x+3=7-b x$, what is x expressed in terms of a and b ?

1) $\frac{4}{a b}$
2) $-\frac{4}{a b}$
3) $\frac{4}{a+b}$
4) $-\frac{4}{a+b}$

27 Which equation represents a line that is parallel to the line whose equation is $y=-3 x$?

1) $\frac{1}{3} x+y=4$
2) $-\frac{1}{3} x+y=4$
3) $6 x+2 y=4$
4) $-6 x+2 y=4$

28 What is the result when $6 x^{2}-13 x+12$ is subtracted from $-3 x^{2}+6 x+7$?

1) $3 x^{2}-7 x+19$
2) $9 x^{2}-19 x+5$
3) $9 x^{2}-7 x+19$
4) $-9 x^{2}+19 x-5$

29 What is the solution of the equation $\frac{x}{3}=\frac{8}{x+2}$?

1) $\{-6,-4\}$
2) $\{-6,4\}$
3) $\{6,-4\}$
4) $\{6,4\}$

30 Which set of integers is included in $(-1,3]$?

1) $\{0,1,2,3\}$
2) $\{-1,0,1,2\}$
3) $\{-1,0,1,2,3,4\}$
4) $\{-2,-1,0,1,2,3\}$

31 Using his data on annual deer population in a forest, Noj found the following information:

25th percentile: 12
50th percentile: 15
75th percentile: 22
Minimum population: 8
Maximum population: 27
Using the number line below, construct a box-and-whisker plot to display these data.

32 The diagram below consists of a square with a side of 4 cm , a semicircle on the top, and an equilateral triangle on the bottom. Find the perimeter of the figure to the nearest tenth of a centimeter.

33 A thermos in the shape of a cylinder is filled to 1 inch from the top of the cylinder with coffee. The height of the cylinder is 12 inches and its radius is 2.5 inches. State, to the nearest hundredth of a cubic inch, the volume of coffee in the thermos.

34 The top of a lighthouse, T, is 215 feet above sea level, L, as shown in the diagram below. The angle of depression from the top of the lighthouse to a boat, B, at sea is 26°. Determine, to the nearest foot, the horizontal distance, x, from the boat to the base of the lighthouse.

35 There are six apples, five oranges, and one pear in John's basket. His friend takes three pieces of fruit at random without replacement. Determine the probability that all three fruits taken are apples.

36
Express $y \sqrt{3}-(\sqrt{32}+y \sqrt{27})$ in simplest radical form.

37 On the set of axes below, solve the following system of inequalities graphically.

$$
\begin{gathered}
y+3<2 x \\
-2 y \leq 6 x-10
\end{gathered}
$$

State the coordinates of a point in the solution set.

38 The actual side of a square tile is 4 inches. The manufacturers allow a relative error of 0.025 in the area of a tile. Two machines are used to cut the tiles. Machine A produces a square tile with a length of 3.97 inches. Machine B produces a square tile with a length of 4.12 inches. Determine which machine produces a tile whose area falls within the allowed relative error.

39 Solve the following system of equations algebraically: $y=x^{2}-6 x+9$

$$
y=-9 x+19
$$

0814ia

Answer Section
1 ANS: 4
PTS: 2
REF: 081401ia
STA: A.A. 12
TOP: Multiplication of Powers
2 ANS: 2 PTS: 2
REF: 081402ia
STA: A.N. 6
TOP: Evaluating Expressions
3 ANS: 2
PTS: 2
REF: 081403ia
STA: A.A. 19
TOP: Factoring the Difference of Perfect Squares
4 ANS: 2

$$
\begin{aligned}
& m=\frac{1-7}{1--2}=\frac{-6}{3}=-2 \quad y=m x+b \\
& 1=-2(1)+b \\
& 3=b
\end{aligned}
$$

PTS: 2
REF: 081404ia
STA: A.A. 35
5 ANS: 1
PTS: 2 REF: 081405ia
TOP: Identifying the Vertex of a Quadratic Given Graph
6 ANS: $3 \quad$ PTS: 2
REF: 081406ia
STA: A.S. 13
TOP: Analysis of Data
7 ANS: 4
The other situations are quantitative.

15 ANS: 2
$100 \mathrm{yd} \cdot \frac{3 \mathrm{ft}}{1 \mathrm{yd}} \cdot \frac{3}{4}=225$
PTS: 2 REF: 081415ia STA: A.M. 2 TOP: Conversions
KEY: dimensional analysis
16 ANS: 3
$\frac{24}{14 x}+\frac{21}{14 x}=\frac{15 x}{14 x}$

$$
45=15 x
$$

$$
x=3
$$

PTS: 2
REF: 081416ia
STA: A.A. 26
TOP: Solving Rationals
17 ANS: 2
$4 x+28=0$
$4 x=-28$
$x=-7$
PTS: 2
REF: 081417ia
PTS: 2
TOP: Trigonometric Ratios
19 ANS: $3 \quad$ PTS: 2
TOP: Identifying Properties
20 ANS: $1 \quad$ PTS: 2
TOP: Roots of Quadratics
21 ANS: 1
The mean is 17 , the median is 18 and the mode is 22 .
PTS: 2
REF: 081421ia STA: A.S. 4
22 ANS: 3
36500(1.07) ${ }^{20} \approx 141243$
PTS: 2
REF: 081422ia
STA: A.A. 9
REF: 081423ia
TOP: Parallel and Perpendicular Lines
24 ANS: 3
PTS: 2
REF: 081424ia
STA: A.A. 5
TOP: Modeling Equations
25 ANS: 4
PTS: 2
REF: 081425ia
STA: A.G. 4

TOP: Graphing Absolute Value Functions

26 ANS: 3

$$
\begin{aligned}
a x+3 & =7-b x \\
a x+b x & =4 \\
x(a+b) & =4 \\
x & =\frac{4}{a+b}
\end{aligned}
$$

PTS: 2 REF: 081426ia STA: A.A. 23 TOP: Transforming Formulas
27 ANS: 3
$m=-3 \frac{-A}{B}=\frac{-6}{2}=-3$
PTS: 2 REF: 081427ia STA: A.A 38
28 ANS: 4
PTS: 2
REF: 081428ia
TOP: Parallel and Perpendicular Lines
STA: A.A. 13
KEY: subtraction
29 ANS: 2

$$
\begin{aligned}
\frac{x}{3} & =\frac{8}{x+2} \\
x^{2}+2 x & =24 \\
x^{2}+2 x-24 & =0 \\
(x+6)(x-4) & =0 \\
x & =-6,4
\end{aligned}
$$

PTS: 2
REF: 081429ia
STA: A.A. 26
30 ANS: 1
PTS: 2
REF: 081430ia
TOP: Solving Rationals
TOP: Set Theory
31 ANS:

PTS: 2
REF: 081431ia
STA: A.S. 5
TOP: Box-and-Whisker Plots
32 ANS:
$16+2 \pi \approx 22.3$
PTS: 2
REF: 081432ia
STA: A.G. 1
KEY: perimeter
33
$V=\pi \cdot 2.5^{2} \cdot 11 \approx 215.98$
PTS: 2
REF: 081433ia
STA: A.G. 2
TOP: Volume

34 ANS:
$\tan 26=\frac{215}{x}$

$$
\begin{aligned}
& x=\frac{215}{\tan 26} \\
& x \approx 441
\end{aligned}
$$

PTS: 3
REF: 081434ia
STA: A.A. 44
TOP: Using Trigonometry to Find a Side
35 ANS:
$\frac{6}{12} \cdot \frac{5}{11} \cdot \frac{4}{10}=\frac{1}{11}$
PTS: 3
REF: 081435ia
STA: A.S. 23
TOP: Theoretical Probability
KEY: dependent events
36 ANS:
$y \sqrt{3}-4 \sqrt{2}-3 y \sqrt{3}=-2 y \sqrt{3}-4 \sqrt{2}$
PTS: 3
REF: 081436ia
STA: A.N. 3
TOP: Operations with Radicals
KEY: subtraction
ANS:

PTS: 4 REF: 081437ia STA: A.G. 7 TOP: Systems of Linear Inequalities
38 ANS:
Machine $A . A: \frac{4^{2}-3.97^{2}}{4^{2}} \approx .0149 \quad B: \frac{4.12^{2}-4^{2}}{4^{2}} \approx .0609$
PTS: 4
REF: 081438ia
STA: A.M. 3
TOP: Error
KEY: area
39
ANS:

$$
\begin{array}{rlrl}
x^{2}-6 x+9 & =-9 x+19 & y=-9(-5)+19=64 \quad(-5,64) \text { and }(2,1) \\
x^{2}+3 x-10 & =0 & y=-9(2)+19=1 \\
(x+5)(x-2) & =0 & & \\
x & =-5,2 & &
\end{array}
$$

PTS: 4
REF: 081439ia
STA: A.A. 11
TOP: Quadratic-Linear Systems

