INTEGRATED ALGEBRA

Wednesday, June 12, 2013 - 1:15 to 4:15 p.m., only

Student Name:

School Name:

The possession or use of any communications device is strictly prohibited when taking this examination. If you have or use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

Print your name and the name of your school on the lines above.
A separate answer sheet for Part I has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet.

This examination has four parts, with a total of 39 questions. You must answer all questions in this examination. Record your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. All work should be written in pen, except graphs and drawings, which should be done in pencil. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. The formulas that you may need to answer some questions in this examination are found at the end of the examination. This sheet is perforated so you may remove it from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will not be scored.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice...

A graphing calculator and a straightedge (ruler) must be available for you to use while taking this examination.

Part I

Answer all 30 questions in this part. Each correct answer will receive 2 credits. Record your answers on your separate answer sheet. [60]

1 Which expression represents " 5 less than twice x "?

- $2 x-5$
(3) $2(5-x)$
(2) $5-2 x$
(4) $2(x-5)$

2 Gabriella has 20 quarters, 15 dimes, 7 nickels, and 8 pennies in a jar. After taking 6 quarters out of the jar, what will be the probability of Gabriella randomly selecting a quarter from the coins left in the jar?

- $\frac{14}{44}$
(3) $\frac{14}{50}$
(2) $\frac{30}{44}$
(4) $\frac{20}{50}$

3 Based on the line of best fit drawn below, which value could be expected for the data in June 2015?

4 If the point $(5, k)$ lies on the line represented by the equation $2 x+y=9$, the value of k is
(1) 1
(-1
(2) 2
(4) -2

$$
2 x+y=9
$$

$$
\begin{aligned}
& y=9 \\
& y=-2 x+9<\begin{array}{l}
\text { Inputinto } \\
\text { graphing } \\
\text { calculator and }
\end{array}
\end{aligned}
$$

5 A soda container holds $5 \frac{1}{2}$ gallons of soda. How many ounces of

Use this space for

 computations.$$
\begin{aligned}
& y=-2(5)+9 \\
& y=-10+9 \\
& y=-1
\end{aligned}
$$

$$
\text { find } f(s) \text {. }
$$

soda does this container hold?

1 quart = 32 ounces
1 gallon = 4 quarts

$$
\begin{aligned}
& 32 \text { ounces/goert } \\
& \times 4 \text { quarfs/gallon } \\
& \hline 128 \text { ounces/ gallon }
\end{aligned}
$$

(1) 44
(3) 640
(2) 176
(c) 704

6 The roots of a quadratic equation can be found using the graph below.

What are the roots of this equation?
(1) -4 , only

- -1 and 4
(2) -4 and -1
(4) $-4,-1$, and 4

7 If the area of a rectangle is represented by $x^{2}+8 x+15$ and its length is represented by $x+5$, which expression represents the width of the rectangle?

- $x+3$
(3) $x^{2}+6 x+5$
(2) $x-3$
(4) $x^{2}+7 x+10$

Use this space for computations.

8 Which set of data describes a situation that would be classified as qualitative? $>$ not numerical
() the colors of the birds at the city zoo colors are not numbers
(2) the shoe size of the zookeepers at the city zoo shoe sizes are numbers
(3) the heights of the giraffes at the city zoo heights are numbers
(4) the weights of the monkeys at the city zoo weights are numbers

10 Which interval notation represents $-3 \leq x \leq 3$?

- $[-3,3]$
(3) $[-3,3)$
(2) $(-3,3]$
(4) $(-3,3)$

11 The solutions of $x^{2}=16 x-28$ are
(1) -2 and -14
(3) -4 and -7
2 and 14
(4) 4 and 7

$$
\begin{aligned}
& x^{2}=16 x-28 \\
& x^{2}-16 x+28=0 \\
& (x-2)(x-14)=0 \\
& x-2=0 \\
& x=2 \\
& x=14=0 \\
& x=14
\end{aligned}
$$

Use this space for
12 If the expression $\left(2 y^{a}\right)^{4}$ is equivalent to $16 y^{8}$, what is the value of a ? computations.
(1) 12
(3) 32
(4) 4

$$
\begin{aligned}
\left(2 y^{a}\right)^{4}= & 16 y^{4 a} \\
& 16 y^{4 a}=16 y^{8} \\
4 a & =8
\end{aligned}
$$

13 Which table shows bivariate data?

(1)

	Type of Car	Average Gas Mileage (mpg)
	van	25
	SUV	23
	luxury	26
	compact	28
	pickup	22

(2)

Time Spent Studying (hr)	Test Grade $(\%)$
1	65
2	72
3	83
4	85
5	92

-

Day	Temperature (degrees F)
Monday	63
Tuesday	58
Wednesday	72
Thursday	74
Friday	78

(4)

14 The box-and-whisker plot below represents the results of test scores in a math class.

What do the scores 65,85 , and 100 represent?
(1) Q_{1}, median, Q_{3}

- Q_{1}, Q_{3}, maximum
(3) median, Q_{1}, maximum
(4) minimum, median, maximum

15 The expression $\frac{x-3}{x+2}$ is undefined when the value of x is undefined means

- -2 , only
(3) 3 , only
(2) -2 and 3
(4) -3 and 2 computations. computations.

18 Which type of function is graphed below?

(1) linear notroige
(2) quadratic
not
exponential
4) absolute value
computations.

19 What is the slope of the line represented by the equation $4 x+3 y=12$?
(1) $\frac{4}{3}$
(3) $-\frac{3}{4}$

Strategy: Convert to
(2) $\frac{3}{4}$

- $-\frac{4}{3}$

$$
\begin{aligned}
& \text { Strategy: Convent form. } \\
& \text { slope intercept form }
\end{aligned}
$$

$$
y=m x+b \zeta_{\zeta \text { slope }} y \text {-intercept }
$$

$4 x+3 y=12$

$$
3 y=-4 x+12
$$

$$
\begin{aligned}
& 3 y=-4 x+12 \\
& y=\frac{-4}{3} x+4 \\
& y=m+b
\end{aligned}
$$

$$
m=-\frac{4}{3}
$$

Integrated Algebra - June '13

20 The diagram below shows the graph of which inequality? computations.

(1) $y>x-1$
(3) $y<x-1$
(2) $y \geq x-1$
(3) $y \leq x-1$

$$
\begin{aligned}
& y=m x+b \\
& y \leq 1 x-1
\end{aligned}
$$ dotted lines are for <and>

means "less than"

21 Carol plans to sell twice as many magazine subscriptions as Jennifer. If Carol and Jennifer need to sell at least 90 subscriptions in all, which inequality could be used to determine how many subscriptions, x, Jennifer needs to sell?
(1) $x \geq 45$
(3) $2 x-x \geq 90$ $2 x+x \geq 90$
(2) $2 x \geq 90$ $2 x+x \geq 90$

22 When $2 x^{2}-3 x+2$ is subtracted from $4 x^{2}-5 x+2$, the result is
(4) $2 x^{2}-2 x$
(3) $-2 x^{2}-8 x+4$

$$
\text { minus } 2 x^{2}-3 x+2
$$

(2) $-2 x^{2}+2 x$
(4) $2 x^{2}-8 x+4$

$$
7 \times 24=168
$$

23 Which expression represents the number of hours in w weeks and 24^{d} days?
(1) $7 w+12 d$

- $168 w+24 d$

$$
168(\text { weeks })+24(\text { days })
$$

(2) $84 w+24 d$
(4) $168 w+60 d$
$168 w+24 d$

Use this space for
28 There are 18 students in a class. Each day, the teacher randomly computations. selects three students to assist in a game: a leader, a recorder, and a timekeeper. In how many possible ways can the jobs be assigned?
(1) 306
(2) 4896
(2) 816
(4) 5832
leader Recorder Timekeeper Choices Choices Choices

29 In triangle $R S T_{2}$ angle R is a right angle. If $T R=6$ and $T S=8$, what is the length of $\overline{R S}$?
(1) 10
(2) 2

Vie

- $2 \sqrt{7}$
(4) $7 \sqrt{2}$

30 How many solutions are there for the following system of equations? Coretad, this
is the solution not $y=x^{2}-5 x+3$ the number of solution $y^{\prime}=x-6$

- 1
(3) 3
(2) 2
(4) 0

$$
\left.\begin{aligned}
& x^{2}-5 x+3=x-6 \\
& x^{2}-6 x+9=0 \\
& (x-3)(x-3)=0 \\
& x-3=0 \\
& x=3
\end{aligned} \right\rvert\, x-3=0
$$

$$
33
$$

Use this space for computations.

What is $R \cap P$?
(1) $\{0,1,2,3,4,5,6,7\}$
(2) $\{1,2,3,4,5,7\}$
($\{1,3\}$
(4) $\{2,4\}$
$3_{\text {this is the union of } \operatorname{Set} R \text { and } \text { Set } P}$
25 Which equation could be used to find the measure of angle D in the right triangle shown in the diagram below?

(1) $\cos D=\frac{12}{13}$
(3) $\sin D=\frac{5}{13}$ $\tan D=\frac{12}{5}$
(2) $\cos D=\frac{13}{12}$

- $\sin D=\frac{12}{13}$

26 If the roots of a quadratic equation are -2 and 3 , the equation can be written as
(1) $(x-2)(x+3)=0$
(3) $(x+2)(x+3)=0$
($(x+2)(x-3)=0$
(4) $(x-2)(x-3)=0$
\qquad
See Formulas Page

$$
\begin{aligned}
& \text { See Formulas page } \\
& \text { Sin }=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos =\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \frac{2}{3} \tan =\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

Part II
Answer all 3 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [6]

31 Solve the inequality $-5(x-7)<15$ algebraically for x.

$$
\begin{aligned}
&-5(x-7)<15 \\
&-5 x+35<15 \\
&-5 x+20<0 \\
& 20<5 x \\
& 4<x \\
& \text { or } \\
& x>4
\end{aligned}
$$

32 Oatmeal is packaged in a cylindrical container, as shown in the diagram below.

$$
\begin{aligned}
& \text { diameter }=1 \frac{13}{2} \\
& \left(0.4=\frac{13}{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Volume }=\text { ArearAbeyt } \\
& \text { Arean(iarale })=\pi r^{2}
\end{aligned}
$$

The diameter of the container is 13 centimeters and its height is 24 centimeters. Determine, in terms of π, the volume of the cylinder, in cubic centimeters.

Integrated Algebra - June '13

Part III
Answer all 3 questions in this part. Each correct answer will receive 3 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [9]

34 The menu for the high school cafeteria is shown below.

Main Course	Vegetable	Dessert	Beverage
veggie burger	corn	gelatin	milk
pizza	green beans	fruit salad	juice
tuna sandwich	carrots	yogurt	bottled water
frankfurter		cookie	
chicken tenders		ice cream cup	

Determine the number of possible meals consisting of a main course, a vegetable, a dessert, and a beverage that can be selected from the menu.

Determine how many of these meals will include chicken tenders.

If a student chooses pizza, corn or carrots, a dessert, and a beverage from the menu, determine the number of possible meals that can be selected.

Veggie

Beverage Choices

33 The distance from Earth to Mars is $136,000,000$ miles. A spaceship travels at 31,000 miles per hour. Determine, to the nearest day, how long it will take the spaceship to reach Mars.

$$
\begin{gathered}
\frac{31,000 \text { miles perbour }}{24 \text { hours per day }} 7744,000 \text { miles per day } \\
\frac{136,000,000}{744,000}=182.795699 \\
183 \text { days }
\end{gathered}
$$

35 A man standing on level ground is 1000 feet away from the base of a 350 -foot-tall building. Find, to the nearest degree, the measure of the angle of elevation to the top of the building from the point on the ground where the man is standing.

Integrated Algebra - June '13

36 Express $\sqrt{25}-2 \sqrt{3}+\sqrt{27}+2 \sqrt{9}$ in simplest radical form.

$$
\begin{aligned}
& 5-2 \sqrt{3}+\sqrt{27}+2 \sqrt{9} \\
& 5-2 \sqrt{3}+\sqrt{9} \sqrt{3}+2(3) \\
& 5-2 \sqrt{3}+3 \sqrt{3}+6 \\
& 11+\sqrt{3}
\end{aligned}
$$

Integrated Algebra - June '13

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

37 Solve algebraically: $\frac{2}{3 x}+\frac{4}{x}=\frac{7}{x+1}$
[Only an algebraic solution can receive full credit.]

$$
\begin{aligned}
\frac{2}{3 x}+\frac{4}{x} & =\frac{7}{x+1} \\
\frac{(2)(x)}{(3 x)(x)}+\frac{(3 x)(4)}{(3 x)(x)} & =\frac{7}{x+1} \\
\frac{2 x}{3 x^{2}}+\frac{12 x}{3 x^{2}} & =\frac{7}{x+1} \\
\frac{2}{3 x}+\frac{12}{3 x} & =\frac{7}{x+1} \\
\frac{14}{3 x} & =\frac{7}{x+1} \\
14(x+1) & =3 x(7) \\
14 x+14 & =21 x \\
14 & =7 x \\
2 & =x
\end{aligned}
$$

38 A jar contains five red marbles and three green marbles. A marble is drawn at random and not replaced. A second marble is then drawn from the jar.

Find the probability that the first marble is red and the second marble is green.

$$
\begin{aligned}
& P_{(A+B)}=P_{(A)} \times P_{(B)} \\
& \frac{5 R}{\frac{3 t}{8 t o t a l}} \quad P_{(B)}=\frac{5}{8} \quad \frac{4 R}{7 t+2)} \quad P_{t}=\frac{3}{7} \\
& P_{(R+E)}=\left(\frac{5}{3}\right)\left(\frac{3}{7}\right)=\frac{15}{56}
\end{aligned}
$$

Find the probability that both marbles are red.

$$
\begin{array}{ll}
5 R \\
\frac{3 t}{8 t_{0} \text { al }} & P(E)
\end{array}=\frac{5}{8} \quad \frac{4 R}{3 \epsilon} \quad P_{(R)}=\frac{4}{7}
$$

Find the probability that both marbles are the same color.

$$
\begin{aligned}
& P_{(t+G)}=\left(\frac{3}{8}\right)\left(\frac{2}{7}\right)=\frac{6}{56} \\
& P_{(t+k)} \text { or } P_{(G+G)}=\left(\frac{20}{56}\right)+\left(\frac{6}{56}\right)=\frac{26}{56}
\end{aligned}
$$

39 In the diagram below of rectangle $A F E B$ and a semicircle with diameter $\overline{C D}, A B=5$ inches, $A B=B C=D E=F E$, and $C D=6$ inches. Find the area of the shaded region, to the nearest hundredth of a square inch.

Area Rectangle - Area Semicircle $=$ Shaded Area$\begin{aligned} &(5 \times 16)-\frac{\pi r^{2}}{2}= \\ & 80-\frac{9 \pi}{2}= \\ & 80-4.5 \pi=\text { shaded area }\end{aligned}$

Integrated Algebra - June '13

