The University of the State of New York

REGENTS HIGH SCHOOL EXAMINATION

MATHEMATICS B

Wednesday, June 20, 2001 — 9:15 a.m. to 12:15 p.m., only

Print Your Name:				
Print Your School's	s Name:			

Print your name and the name of your school in the boxes above. Then turn to the last page of this booklet, which is the answer sheet for Part I. Fold the last page along the perforations and, slowly and carefully, tear off the answer sheet. Then fill in the heading of your answer sheet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. Any work done on this sheet of scrap graph paper will *not* be scored. All work should be written in pen, except graphs and drawings, which should be done in pencil.

This examination has four parts, with a total of 34 questions. You must answer all questions in this examination. Write your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. The formulas that you may need to answer some questions in this examination are found on page 2.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice...

A graphing calculator, a straightedge (ruler), and a compass must be available for your use while taking this examination.

Formulas

Area of Triangle

 $K = \frac{1}{2}ab \sin C$

Functions of the Sum of Two Angles

 $\sin (A + B) = \sin A \cos B + \cos A \sin B$ $\cos (A + B) = \cos A \cos B - \sin A \sin B$

Functions of the Difference of Two Angles

 $\sin (A - B) = \sin A \cos B - \cos A \sin B$ $\cos (A - B) = \cos A \cos B + \sin A \sin B$

Law of Sines

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Law of Cosines

 $a^2 = b^2 + c^2 - 2bc \cos A$

Functions of the Double Angle

 $\sin 2A = 2 \sin A \cos A$ $\cos 2A = \cos^2 A - \sin^2 A$ $\cos 2A = 2 \cos^2 A - 1$ $\cos 2A = 1 - 2 \sin^2 A$

Functions of the Half Angle

$$\sin \frac{1}{2}A = \pm \sqrt{\frac{1 - \cos A}{2}}$$
$$\cos \frac{1}{2}A = \pm \sqrt{\frac{1 + \cos A}{2}}$$

Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Record your answers in the spaces provided on the separate answer sheet. [40]

1 An archer shoots an arrow into the air such that its height at any time, *t*, is given by the function $h(t) = -16t^2 + kt + 3$. If the maximum height of the arrow occurs at time t = 4, what is the value of *k*?

Use this space for computations.

(1)	128	(3)	8
(2)	64	(4)	4

2 The magnitude (*R*) of an earthquake is related to its intensity (*I*) by $R = \log \left(\frac{I}{T}\right)$, where *T* is the threshold below which the earthquake is not noticed. If the intensity is doubled, its magnitude can be repre-

sented by

(1) $2(\log I - \log T)$ (2) $\log I - \log T$ (3) $2 \log I - \log T$ (4) $\log 2 + \log I - \log T$

- **3** Jacob is solving a quadratic equation. He executes a program on his graphing calculator and sees that the roots are real, rational, and unequal. This information indicates to Jacob that the discriminant is
 - (1) zero(2) negative(3) a perfect square(4) not a perfect square
- 4 Camisha is paying a band \$330 to play at her graduation party. The amount each member earns, d, varies inversely as the number of members who play, n. The graph of the equation that represents the relationship between d and n is an example of

(1)	a hyperbola	(3)	a parabola
(2)	a line	(4)	an ellipse

5 A modulated laser heats a diamond. Its variable temperature, in degrees Celsius, is given by $f(t) = T \sin at$. What is the period of the curve?

(1)	T	(3)	$\frac{1}{a}$
			a

(2) $\frac{2\pi}{a}$ (4) $\frac{2a\pi}{a}$

 ${f 6}$ The circumference of a circular plot of land is increased by 10%. What is the best estimate of the total percentage that the area of the plot increased?

7 Which equation states that the temperature, t, in a room is less than 3° from 68° ?

- (1) |3-t| < 68 (3) |68-t| < 3
- (2) |3+t| < 68 (4) |68+t| < 3
- 8 Fractal geometry uses the complex number plane to draw diagrams, such as the one shown in the accompanying graph.

Which number is *not* included in the shaded area?

(1) $-0.5i$	(3) -0.9
(2) -0.5 - 0.5i	(4) -0.9 - 0.9i

9 The relationship of a woman's shoe size and length of a woman's foot, in inches, is given in the accompanying table.

Use this space for computations.

Woman's Shoe Size	5	6	7	8
Foot Length (in)	9.00	9.25	9.50	9.75

The linear correlation coefficient for this relationship is

(1)	1	(3)	0.5
(2)	-1	(4)	0

10 The center of a circular sunflower with a diameter of 4 centimeters is (-2,1). Which equation represents the sunflower?

- (1) $(x-2)^2 + (y+1)^2 = 2$ (2) $(x + 2)^2 + (y - 1)^2 = 4$ (3) $(x - 2)^2 + (y - 1)^2 = 4$ (4) $(x + 2)^2 + (y - 1)^2 = 2$
- 11 Melissa and Joe are playing a game with complex numbers. If Melissa has a score of 5 - 4i and Joe has a score of 3 + 2i, what is their total score?
 - (1) 8 + 6i(3) 8 - 6i
 - (2) 8 + 2i(4) 8-2i

12 In a science experiment, when resistor *A* and resistor *B* are connected

in a parallel circuit, the total resistance is $\frac{1}{\frac{1}{A} + \frac{1}{B}}$. This complex fraction is equivalent to

tion is equivalent to

(1) 1(3) A + B(2) $\frac{AB}{A+B}$ (4) *AB*

13 A store advertises that during its Labor Day sale \$15 will be deducted from every purchase over \$100. In addition, after the deduction is taken, the store offers an early-bird discount of 20% to any person who makes a purchase before 10 a.m. If Hakeem makes a purchase of x dollars, x > 100, at 8 a.m., what, in terms of x, is the cost of Hakeem's purchase?

Use this space for computations.

(1)	0.20x - 15	(3)	0.85x - 20
(2)	0.20x - 3	(4)	0.80x - 12

14 A bug travels up a tree, from the ground, over a 30-second interval. It travels fast at first and then slows down. It stops for 10 seconds, then proceeds slowly, speeding up as it goes. Which sketch best illustrates the bug's distance (d) from the ground over the 30-second interval (t)?

- **15** The inverse of a function is a logarithmic function in the form $y = \log_b x$. Which equation represents the original function?
 - (1) $y = b^x$ (3) $x = b^y$ (2) y = bx (4) by = x

16 On her first trip, Sari biked 24 miles in T hours. The following week Sari biked 32 miles in T hours. Determine the ratio of her average speed on her second trip to her average speed on her first trip.

Use this space for computations.

(1)	$\frac{3}{4}$	(3)	$\frac{4}{3}$
(2)	$\frac{2}{3}$	(4)	$\frac{3}{2}$

17	What is the value of	$\sum_{m=1}^{3} (2m + 1)^{m-1}?$
	(1) 15	(3) 57
	(2) 55	(4) 245

18 If θ is an obtuse angle and $\sin \theta = b$, then it can be concluded that

(1) $\tan \theta > b$ (3) $\cos 2\theta > b$

$2\theta < b$
$2\theta < \theta$

- **19** Main Street and Central Avenue intersect, making an angle measuring 34°. Angela lives at the intersection of the two roads, and Caitlin lives on Central Avenue 10 miles from the intersection. If Leticia lives 7 miles from Caitlin, which conclusion is valid?
 - (1) Leticia cannot live on Main Street.
 - (2) Leticia can live at only one location on Main Street.
 - (3) Leticia can live at one of two locations on Main Street.
 - (4) Leticia can live at one of three locations on Main Street.

20 Through how many radians does the minute hand of a clock turn in 24 minutes?

- (1) 0.2π (3) 0.6π
- (2) 0.4π (4) 0.8π

Part II

Answer all questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [12]

21 Gregory wants to build a garden in the shape of an isosceles triangle with one of the congruent sides equal to 12 yards. If the area of his garden will be 55 square yards, find, to the <i>nearest tenth of a degree</i> , the <i>three</i> angles of the triangle.	
22 At a certain intersection, the light for eastbound traffic is red for 15 seconds, yellow for 5 seconds, and green for 30 seconds. Find, to the <i>nearest tenth</i> , the probability that out of the next eight eastbound cars that arrive randomly at the light, exactly three will be stopped by a red light.	

23 The cost of a long-distance telephone call is determined by a flat fee for the first 5 minutes and a fixed amount for each additional minute. If a 15-minute telephone call costs \$3.25 and a 23-minute call costs \$5.17, find the cost of a 30-minute call.

24 A rectangular prism has a length of $\frac{2x^2 + 2x - 24}{4x^2 + x}$, a width of $\frac{x^2 + x - 6}{x + 4}$, and a height of $\frac{8x^2 + 2x}{x^2 - 9}$. For all values of x for which it is defined, express, in terms of x, the volume of the prism in simplest

form.

25	5 The scientists in a laboratory company raise amebas to sell to schools for use in biology classes. They know that one ameba divides into two amebas every hour and that the formula $t = \log_2 N$ can be used to determine how long in hours, t , it takes to produce a certain number of amebas, N . Determine, to the <i>nearest tenth of an hour</i> , how long it takes to produce 10,000 amebas if they start with one ameba.	
26	5 Professor Bartrich has 184 students in her mathematics class. The scores on the final examination are normally distributed and have a mean of 72.3 and a standard deviation of 8.9. How many students in the class can be expected to receive a score between 82 and 90?	

Part III

Answer all questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [24]

22	27 A wooden frame is to be constructed in the form of an isosceles trapezoid, with diagonals acting as braces to strengthen the frame. The sides of the frame each measure 5.30 feet, and the longer base measures 12.70 feet. If the angles between the sides and the longer base each measure 68.4°, find the length of one brace to the <i>nearest tenth of a foot</i> .
2	28 A homeowner wants to increase the size of a rectangular deck that now measures 15 feet by 20 feet, but building code laws state that a homeowner cannot have a deck larger than 900 square feet. If the length and the width are to be increased by the same amount, find, to the <i>nearest tenth</i> , the maximum number of feet that the length of the deck may be increased in size legally.

29 Two parabolic arches are to be built. The equation of the first arch can be expressed as $y = -x^2 + 9$, with a range of $0 \le y \le 9$, and the second arch is created by the transformation $T_{7,0}$. On the accompanying set of axes, graph the equations of the two arches. Graph the line of symmetry formed by the parabola and its transformation and label it with the proper equation.


```
31 In the interval 0^{\circ} \le A < 360^{\circ}, solve for all values of A in the equation
    \cos 2A = -3\sin A - 1.
32 Point P lies outside circle O, which has a diameter of \overline{AOC}. The angle
    formed by tangent \overline{PA} and secant \overline{PBC} measures 30°. Sketch the con-
    ditions given above and find the number of degrees in the measure of
    minor arc CB.
```

Part IV

Answer all questions in this part. Each correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [12]

34 The 1999 win-loss statistics for the American League East baseball teams on a particular date is shown in the accompanying chart.

	W	L
New York	52	34
Boston	49	39
Toronto	47	43
Tampa Bay	39	49
Baltimore	36	51

Find the mean for the number of wins, \overline{W} , and the mean for the number of losses, \overline{L} , and determine if the point $(\overline{W}, \overline{L})$ is a point on the line of best fit. Justify your answer.

Scrap Graph Paper — This sheet will *not* be scored.

Tear Here

Scrap Graph Paper — This sheet will *not* be scored.

The University of the State of New York

REGENTS HIGH SCHOOL EXAMINATION

MATHEMATICS B

Wednesday, June 20, 2001 - 9:15 a.m. to 12:15 p.m., only

ANSWER SHEET

Pupil	Sex: \Box Male \Box Female Grade
Teacher	School

Your answers to Part I should be recorded on this answer sheet.

Part I

Answer all 20 questions in this part.

1	6	11	16
2	7	12	17
3	8	13	18
4	9	14	19
5	10	15	20

Your answers for Parts II, III, and IV should be written in the test booklet.

The declaration below should be signed when you have completed the examination.

I do hereby affirm, at the close of this examination, that I had no unlawful knowledge of the questions or answers prior to the examination and that I have neither given nor received assistance in answering any of the questions during the examination.

Signature

		MATH	EMATICS	В
Questi	on	Maximum Credit	Credits Earned	Rater's/Scorer's Initials
Part I 1	-20	40		
Part II	21	2		
	22	2		
	23	2		
	24	2		
	25	2		
	26	2		
Part III	27	4		
	28	4		
	29	4		
	30	4		
	31	4		
	32	4		
Part IV	33	6		
	34	6		
Maximu	ım	88		
			Total Raw Score	Checked by

Tear Here

Tear Here

Notes to raters. . .

- Each paper should be scored by a minimum of three raters.
- The table for converting the total raw score to the scaled score is provided in the scoring key for this examination.
- The scaled score is the student's final examination score.

FOR TEACHERS ONLY

The University of the State of New York

REGENTS HIGH SCHOOL EXAMINATION

MATHEMATICS B

Wednesday, June 20, 2001 — 9:15 a.m. to 12:15 p.m., only

SCORING KEY

Mechanics of Rating

The following procedures are to be followed for scoring student answer papers for the Mathematics B examination. More detailed information about scoring is provided in the publication Information Booklet for Administering and Scoring Regents Examinations in Mathematics A and Mathematics B.

Use only *red* ink or *red* pencil in rating Regents papers. Do not attempt to *correct* the student's work by making insertions or changes of any kind. Use checkmarks to indicate student errors.

Unless otherwise specified, mathematically correct variations in the answers will be allowed. Units need not be given when the wording of the questions allows such omissions.

Each student's answer paper is to be scored by a minimum of three mathematics teachers. On the back of the student's detachable answer sheet, raters must enter their initials in the boxes next to the questions they have scored and also write their name in the box under the heading "Rater's/Scorer's Name."

Raters should record the student's scores for all questions and the total raw score on the student's detachable answer sheet. Then the student's total raw score should be converted to a scaled score by using the conversion chart printed at the end of this key. The student's scaled score should be entered in the box provided on the student's detachable answer sheet. The scaled score is the student's final examination score.

Part I

Allow a total of 40 credits, 2 credits for each of the following. Allow credit if the student has written the correct answer instead of the numeral 1, 2, 3, or 4.

	(1) 1	(6) 2	(11) 4	(16) 3
--	-------	-------	--------	--------

(2) 4 (7) 3 (12) 2 (17) 2

(3) 3 (8) 4 (13) 4 (18) 4

(4) 1 (9) 1 (14) 3 (19) 3

(5) 2 (10) 2 (15) 1 (20) 4

[OVER]

Part II

For each question, use the specific criteria to award a maximum of two credits.

- (21) [2] 49.8, 65.1, and 65.1, and the appropriate use of the area formula is shown.
 - [1] Appropriate work is shown, but one computational or rounding error is made.

or

[1] Only one or two angles are found correctly.

or

[1] Cosine is used instead of sine, but appropriate work is shown.

or

[1] The setup is appropriate, but incorrect work is shown, such as the sine of the angle but not the angle is found.

or

- [1] 49.8, 65.1, and 65.1, but no work is shown.
- **[0]** A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
- (22) [2] 0.3 or an equivalent answer, and appropriate work is shown.
 - [1] Appropriate work is shown, but one computational or rounding error is made.

or

[1] Appropriate work is shown, but no answer is found.

- [1] 0.3 or an equivalent answer, but no work is shown.
- **[0]** A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

- (23) [2] \$6.85, and appropriate work is shown.
 - [1] The correct rate for the first 5 minutes and the correct rate for each additional minute is shown, but the cost of a 30-minute call is not found.

[1] Appropriate work is shown, but one computational error is made.

or

- **[1]** \$6.85, but no work is shown.
- **[0]** The student calculates *either* the rate for the first 5 minutes *or* the rate for each additional minute, but no further work is shown.

or

- **[0]** A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
- (24) [2] 4(x-2) or 4x-8, and appropriate work is shown.
 - [1] The problem is factored correctly but not reduced to simplest form.

0r

[1] Only two of the expressions are factored correctly, but an appropriate answer is found.

or

- **[1]** 4(x-2) or 4x-8, but no work is shown.
- **[0]** Only the formula for volume is shown.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

- (25) [2] 13.3, and appropriate work is shown.
 - [1] Appropriate work is shown, but one computational or rounding error is made.

[1] The correct value is substituted for *n*, and the equation is converted to exponential form, but it is not solved.

or

- **[1]** 13.3, but no work is shown.
- **[0]** A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(26) [2] 25, and appropriate work is shown.

[1] Appropriate work is shown, but one computational or rounding error is made.

or

[1] The solution is incomplete, such as only the correct percent is shown.

- **[1]** 25, but no work is shown.
- **[0]** A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

Part III

For each question, use the specific criteria to award a maximum of four credits.

- (27) **[4]** 11.8, and an appropriate application of the Law of Cosines is shown.
 - [3] Appropriate work is shown, but one computational or rounding error is made.

0r

- [3] The Law of Cosines is correctly applied, but the square root is not found.
- **[2]** The Law of Cosines is applied correctly, and correct substitutions are shown, but no further work is shown.

or

- [2] Appropriate work is shown, but more than one computational error is made.
- [1] The diagram is set up with the correct sides and angles, and the Law of Cosines is written, but substitution is not made.

or

[1] The diagram is set up with the correct sides and angles, but no further work is shown.

- [1] 11.8, but no work is shown.
- **[0]** A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

- (28) [4] 12.6, and appropriate work is shown.
 - [3] Appropriate work is shown, but one computational or rounding error is made.

- [3] Appropriate work is shown, but the quadratic formula is incorrect.
- [2] An appropriate equation is shown and put in standard form, but the quadratic formula is not used correctly.

or

[2] An appropriate equation is shown and put in standard form, but no further work is shown.

or

- [2] Appropriate work is shown, but more than one computational error or one computational and one rounding error are made.
- [1] An appropriate equation is shown, but all other work is missing or is incorrect.

- [1] 12.6, but no work is shown.
- **[0]** A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

- (29) **[4]** Both parabolas are graphed correctly with the line of symmetry x = 3.5 drawn and labeled as x = 3.5.
 - [3] $y = -x^2 + 9$ is graphed incorrectly, but an appropriate translation is drawn, and an appropriate line of symmetry is drawn and labeled correctly.

0r

- **[3]** $y = -x^2 + 9$ and its translation are graphed correctly, but no line of symmetry or an incorrect line of symmetry is drawn for the translation or no equation or an incorrect equation is shown for the line of symmetry.
- [2] $y = -x^2 + 9$ is graphed correctly, but its translation is graphed incorrectly, but an appropriate line of symmetry is drawn and labeled correctly.

or

- [2] $y = -x^2 + 9$ is graphed incorrectly, but an appropriate translation is graphed, but an incorrect line of symmetry is drawn.
- **[1]** $y = -x^2 + 9$ and its translation are graphed incorrectly, but an appropriate line of symmetry is drawn and labeled correctly.

- **[1]** $y = -x^2 + 9$ is graphed correctly, but an incorrect translation and line of symmetry are drawn.
- **[0]** A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

- (30) **[4]** (0,0) and $(\frac{1}{2}, \frac{1}{2})$, and both graphs are drawn correctly.
 - [3] Both graphs are drawn correctly, but one or both points of intersection are stated incorrectly.

- [3] The graph of $y = 2x^2$ is incorrect, but the inverse is appropriate or correct, and the appropriate points of intersection are stated correctly.
- [2] Both points of intersection are found correctly, using an algebraic solution.

or

[2] The graph of $y = 2x^2$ is incorrect, but the inverse is appropriate or correct, but no further work is shown.

or

[2] The graph of $y = 2x^2$ is correct, but the inverse is incorrect, but the appropriate points of intersection are stated.

or

- [2] The graph of $y = 2x^2$ is incorrect, but the inverse is correct, but the points of intersection are not stated or are incorrect.
- [1] Both graphs are incorrect, but the points of intersection are appropriate, based on the incorrect graphs.

or

[1] The graph of $y = 2x^2$ is correct, but the inverse is incorrect, and the points of intersection are labeled or stated incorrectly.

or

[1] (0,0) and $\left(\frac{1}{2},\frac{1}{2}\right)$, but no work is shown.

[0] Straight lines are used as graphs of the functions.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

- (31) **[4]** 210° and 330°, and appropriate work is shown.
 - [3] Correct substitution and factoring are shown, with at least the reference angle of 30° found.

[3] Correct substitution is shown, and the equation is put in standard form and factored correctly, but an incorrect reference angle is used to find appropriate answers.

or

- [3] An incorrect quadratic equation is solved correctly, and appropriate angles are determined.
- [2] Correct substitution is shown, and the equation is put in standard form and factored correctly, but no angles are found.
- [1] Correct substitution is shown, but the equation is not factored or is factored incorrectly.

or

- **[1]** 210° and 330°, but no work is shown.
- **[0]** 210° or 330° or 30°, but no work is shown.

or

- **[0]** A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
- (32) **[4]** 60°, and an appropriate sketch is drawn, and appropriate work is shown.
 - **[3]** A correct sketch is shown, and $m\widehat{AB}$ is correct.

or

- [3] A correct sketch is shown, but one computational error is made, leading to an incorrect \widehat{AB} , but \widehat{CB} is appropriate, based on the incorrect \widehat{AB} .
- [2] A correct sketch is shown, but an incorrect procedure is used to find either the correct or incorrect m \widehat{AB} , but m \widehat{CB} is appropriate, based on the incorrect m \widehat{AB} .

or

- [2] An incorrect sketch is shown, but an appropriate \widehat{CB} is found, based on the incorrect sketch.
- [1] Only a correct sketch is shown.

- **[1]** 60°, but no work is shown.
- **[0]** A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

Part IV

For each question, use the specific criteria to award a maximum of six credits.

(33) **[6]** A complete and correct proof is shown, such as the example below:

Statements	Reasons
1 Chords \overline{AB} and \overline{CD} of circle <i>O</i> intersect at <i>E</i> , and chords \overline{AB} and \overline{CD} are drawn.	1 Given
$2 \ \angle A \cong \angle C$	2 Inscribed angles of a circle that intercept the same arc are congruent.
$3 \angle AED \cong \angle CEB$	3 Vertical angles are congruent.
$4 \ \triangle AED \sim \triangle CEB$	4 $AA \cong AA$
$5 \frac{AE}{CE} = \frac{ED}{EB}$	5 Corresponding sides of similar triangles are in proportion.
6 (AE)(EB) = (CE)(ED)	6 In a proportion, the product of the means equals the product of the extremes.

[5] $\triangle AED$ and $\triangle CEB$ are correctly proved to be similar, and the appropriate proportion is written with justification.

- [5] A correct proof is shown, but one of the justifications is missing or is incorrect.
- [4] $\triangle AED$ and $\triangle CEB$ are correctly proved to be similar, but no further work is shown.
- [3] A correct proof is shown, but more than one justification is missing or is incorrect.
- [2] The triangles are said to be similar, and the conclusion is written.
- [1] Only one correct statement and justification are given.
- **[0]** A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

- (34) **[6]** $\overline{W} = 44.6$ and $\overline{L} = 43.2$, the line of best-fit equation (y = -1.007559x + 88.137149) is shown, and an appropriate justification of point ($\overline{W}, \overline{L}$) fitting or not fitting, depending on the rounding of the equation, is given.
 - [5] \overline{W} or \overline{L} is incorrect, but the rest of the work is appropriate.

[5] All conditions of the problem are met, except it is not stated whether $(\overline{W}, \overline{L})$ lies or does not lie on the line of best fit.

or

- [5] \overline{W} and \overline{L} and the equation of the line of best fit are correct, but one error results in an incorrect conclusion, such as the calculation or interchanging of \overline{W} and \overline{L} .
- [4] Both \overline{W} and \overline{L} are incorrect, but the rest of the work is appropriate.

or

[4] \overline{W} and \overline{L} are correct, but the equation of the line of best fit is incorrect, but the justification is appropriate, based on the incorrect equation.

or

[4] \overline{W} and \overline{L} are correct, a correct scatter plot is drawn, a correct line of best fit is drawn, $(\overline{W}, \overline{L})$ is plotted correctly, and a statement indicating that the point does or does not fit the line is given, with an appropriate explanation, but no equation is used.

0**r**

- [4] All conditions of the problem are met, except for the justification of whether $(\overline{W}, \overline{L})$ lies on the line.
- [3] \overline{W} and \overline{L} are correct, but the equation of the line of best fit is stated incorrectly, and no further work is shown.
- [2] Only \overline{W} and \overline{L} are found correctly.
- [1] Only one mean is found correctly.
- **[0]** A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

Regents Examination in Mathematics B

June 2001

Chart for Converting Total Test Raw Scores to Final Examination Scores (Scaled Scores)

Raw Score	Scaled	Raw Score	Scaled	Raw Score	Scaled
Score	Score	Score	Score	Scole	Score
88	100	58	83	28	54
87	99	57	82	27	53
86	99	56	82	26	51
85	98	55	81	25	50
84	98	54	80	24	48
83	97	53	80	23	47
82	97	52	79	22	45
81	96	51	78	21	44
80	96	50	77	20	42
79	95	49	76	19	40
78	95	48	76	18	38
77	94	47	75	17	37
76	94	46	74	16	35
75	93	45	73	15	33
74	93	44	72	14	31
73	92	43	71	13	29
72	91	42	70	12	27
71	91	41	69	11	25
70	90	40	68	10	23
69	90	39	67	9	21
68	89	38	66	8	19
67	89	37	65	7	17
66	88	36	64	6	15
65	87	35	63	5	12
64	87	34	62	4	10
63	86	33	60	3	8
62	86	32	59	2	5
61	85	31	58	1	3
60	84	30	57	0	0
59	84	29	55		

To determine the student's final examination score, find the student's total test raw score in the column labeled "Raw Score" and then locate the scaled score that corresponds to that raw score. The scaled score is the student's final examination score. Enter this score in the space labeled "Scaled Score" on the student's answer sheet.

All student answer papers that receive a scaled score of 60 through 64 **must** be scored a second time. For the second scoring, a different committee of teachers may score the student's paper or the original committee may score the paper, except that no teacher may score the same open-ended questions that he/she scored in the first rating of the paper. The school principal is responsible for assuring that the student's final examination score is based on a fair, accurate, and reliable scoring of the student's answer paper.

Because scaled scores corresponding to raw scores in the conversion chart may change from one examination to another, it is crucial that for each administration, the conversion chart provided in the scoring key for that administration be used to determine the student's final score. The chart above is usable only for this administration of the mathematics B examination.