Examination June, 1978 Ninth Year Mathematics

Elementary Algebra

PART ONE Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Write your answers in the spaces provided.

1

3.

7

9____

10_

11_____

- 1. Solve for x: 8x = 2(x + 15)
- 2. Solve for x: $\frac{18}{12} = \frac{x}{2}$

3. If 19 is subtracted from three times a certain number, the difference is 110. What is the number?

4. On a map, 1 centimeter equals 50 kilometers. If two cities are 175 kilometers apart, how many centimeters apart are they on the map?

5. Express as a trinomial the product (x - 5)(x - 3).

6. If $C = \frac{5}{9}(F - 32)$, find C when F = 41.

7. If $\cos B = .6289$, find angle B to the nearest degree.

8. The lengths of the sides of a triangle are represented by x + 1, 2x + 3, and 3x - 5. Express the perimeter of the triangle as a binomial in terms of x.

9. Solve for x: 7x - 3 = 3x - 7

10. Solve for x: 1.2x - .35 = .5x + 5.25

11. Solve for *a*: $\frac{a}{2} + \frac{a}{6} = 2$

EXAMINATION June, 1978 Ninth Year Mathematics

	12.	Factor completely: $x^2 - 49$	12				
ir	13. 1 simp	Express the product $\frac{(x+y)^2}{4} \cdot \frac{2}{x+y}$ as a single fraction <i>lest form.</i>	13				
			14				
	14.	Factor completely: $a^2 + 7a + 12$	14				
	15.	Find the positive square root of 57 to the <i>nearest tenth</i> .	15				
	16.	If 5% of a number is 30, what is the number?	16				
	17.	Subtract $4m - h$ from $4m + h$.	17				
	18.	Express $\frac{x^2 + 3x}{2(x + 3)}$ as a fraction in <i>lowest terms</i> .	18				
DIRECTIONS (19-30): Write in the space provided the numeral preceding the expression that best completes each statement or answers each question.							
x	19.	What is the remainder when $4x^2 - 5x + 7$ is divided by					
	(1) 6	(2) -2 (3) 8 (4) 16	19				
• is	20.	If $n + 7$ is an even number, the next larger even number					
	(1) n (2) n	$\begin{array}{cccc} + 5 & & (3) \ 10n + 7 \\ + 9 & & (4) \ 2n + 14 \end{array}$	20				
ti	21. When $12x^4 - 3x^3 + 6x^2$ is divided by $3x^2$, the quo-						
	ent is (1) 9 (2) 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21				
	22. The product of $7y^3$ and $4y^5$ is(1) $11y^8$ (2) $11y^{15}$ (3) $28y^8$ (4) $28y^{15}$ 22						
23. Which ordered pair is the solution of the following system of equations? 3x + 2y = 4							

2

EXAMINATION June, 1978 Ninth Year Mathematics

24. Which fr	action has the gr	reatest value?						
(1) $\frac{1}{2}$	(2) $\frac{5}{8}$	(3) $\frac{3}{5}$	(4) $\frac{3}{4}$	24				
25. Which is	the solution set	for $2x > x + 3$	3?					
(1) $\{x \mid x > 1\}$		(3) $\{x \mid x\}$	= 3}					
(2) $[x \mid x > \frac{3}{2}]$	+	(4) $\{x \mid x\}$	> 3}	25				
26. A point on the graph of $x + 3y = 13$ is								
(1) $(4,4)$	(2) (-2,3)	(3) (-5,6)	(4) 4,-3)	26				
27. The solution set of the equation $x^2 - 3x - 10 = 0$ is								
$(1) \{-2,5\}$	(2) $\{-2, -5\}$	(3) {2,-5}	(4) {2,5}	27				
28. If $x + ay$	y = m, then y equations $y = m$	Juals	•					
(1) $\frac{m-x}{a}$	(2) $\frac{m+x}{a}$	(3) $\frac{m}{a} - \mathbf{x}$	(4) $\frac{m}{a} + x$	28				
29. The expr	ession $\sqrt{27} + \gamma$	$\sqrt{12}$ is equivale	ent to					
(1) $\sqrt{39}$	(2) $13\sqrt{3}$	$(3) 5\sqrt{6}$	(4) $5\sqrt[6]{3}$	29				
30. Which st (1) The set of	atement is <i>false</i> integers is close	d under subtra	ction.					
(2) The set of	integers is close	d under divisio	n					

(3) The set of natural numbers is closed under addition.

(4) The set of natural numbers is closed under multiplication.

PART TWO Answer four questions from this part. Show all work unless otherwise directed.

31. Answer both a and b.

a On the same set of coordinate axes, graph the following system of inequalities:

 $\begin{array}{l} y > x + 4\\ x + y \leqslant 2 \end{array} \quad [8]$

b Which of the following points is in the solution set of the graph drawn in answer to a? (1) (2,3) (2) (-5,2) (3) (0,6) (4) (-1,0) [2]

3

30____

- 32. Answer both a and b.
- a Solve for c: $\frac{c+2}{2} \frac{c-1}{3} = 4$ [5]
- b Perform the indicated operation and express the result in simplest form:

$$\frac{x-3}{x^2-4x} \cdot \frac{x^2-16}{x^2+x-12}$$
 [5]

33. The total attendance at a school play was 850. The tickets for senior citizens were \$1.50 each, and the regular tickets were \$2.00 each. If the total receipts were \$1,650, how many tickets of each kind were sold? [Only an algebraic solution will be accepted.] [5,5]

34. Find three consecutive odd integers such that twice the sum of the second and third is 43 more than three times the first. [Only an algebraic solution will be accepted.] [5,5]

35. The length of a rectangle is 1 centimeter less than twice the width. If the perimeter of the rectangle is 76 centimeters, find the number of centimeters in each dimension of the rectangle. [Only an algebraic solution will be accepted.] [5,5]

36. Answer both a and b.

In the accompanying diagram, right triangle ABC has a right angle at C, AB = 18, and BC = 7. Find angle B to the nearest degree. [5]

EXAMINATION June, 1978 Ninth Year Mathematics

b In the accompanying diagram, right triangle DEF has a right angle at F, angle $D = 50^{\circ}$, and EF = 8. Find DF to the nearest integer. [5]

37. The replacement set for x for each of the open sentences below is $\{-2, -1, 0, 1, 2\}$. On your answer paper write the letters a through e and next to each letter, write the solution set of each open sentence. [Each answer must be a subset of the replacement set.] [10]

a (x - 1)(x + 2) = 0 $b -1 < x \le 1$ c 5x + 1 < 3x + 1 $d x^{2} = 1$ e |x| = -2 5