Answer eigeltguestions but no more, including at least one from each of the three divisions. If more than eight are answered only the first eight answens quill be wonsidered. Draw carefulty and neatly each figure in tonstruction or proof, using letters instead of numerals. Arrange woriz togically. Each complete answer will receive 121/2 credits. Papers intitled to.75-or more credits will be accepted.
First I Tefine five of the following: axiom, problem, hydivision pothesis, scalene triangle, segment, circumscribed polygon, locus of a point.

2 Write therertheorems that conclude "the two straight lines are parallel." Demonstrate one of these theorems.

3 Complete and demonstrate the following: the sum of the three angles of a triangle is equal to

4 Complete each of the following theorems and demonstrate one of them: $(a)$ if two circles intersect each other ..., (b) if two circles are tangent to each other . . .

5 Prove that the homologous altitudes of two similar triangles have the same ratio as any two homologous sides.

Second 6 Chords drawn from a point in a circumference te division the extremities of adiameter are respectively ro inches and $3 \frac{1}{3}$ inches; find the diameter and the distance of the point from the diameter.

7 From a point within an equilateral triangle the perpendiculars to the sides are respectively 2 inches, 3 inches and 5 inches; find the area of the triangle.

8 The axea of a sector is $48 \pi$, the angle of the sector is $80^{\circ}$; find the radias of the sector.

9 The fbase of a triangle is a 5 feet, its area 60 square feet; find the area of a similar triangle whose altitude is 6 feet.
ro A leg of an isosceles trapezoid is 13 inches and its projection on the longer base is 5 inches; the longer base is 17 inches. Find the area of the trapezoid.

Third in Ghow how to construct a right triangle having division given one leg and the altitude on the hypotenuse.

12 Show how to bisect an angle formed by two converging lines without producing the lines till they meet.

13 Write the formula for the area of any triangle in terms of its sides and from this formula derive the formula for the area of an equilateral itviangle in terms of one side.

14 Prove that the lines joining the middle points of the sides of a triangle divide the triangle into four equal triangles.

15 Prove that lines from the center of a circle to the ends of a leg of the circumscribed trapezoid form a right angle.

