Wednesday, June 15 , $1904-9.15 \mathrm{a}$. m. to $12.15 \mathrm{p} . \mathrm{m}$. , only
Answer eight questions but no more, including at least one from each of the three divisions. If more than eight are answered anly the first eight answers will be considered. Draw carefully and neatly each fisure in construction or proof, using letters instead of numerals. Arrange work logically. Eaih camplete answer will receive $121 / 2$ credits. Papers entulled to 75 or more credits will be accepted.
First I Prove that the sum of two.lines drawn from a point division to the extremities of a straight line is greater than the sum of two lines similarly drawn but included by them.

2 Prove that two right triangles are equal if a leg and the hypotenuse of the one are equal respectively to a leg and the hypotenuse of the other.

3 Prove that a diameter perpendicular to a chord bisects the chord and the are subtended by it.

4 Complete the following: an inscribed anghe is measured by . . . Demonstrate two cases.

5 Complete and demonstrate the following: the areas of two similar triangles are to each other as . . .

Second 6 Find the number of sides of a regular polygon if division (a) an interior angle is 135°, (b) an exterior angle is 72°. Mention the name of the polygon in each case.

7 Find the area of a triangle whose base is 10 inches and whose base angles are 120° and 30° respectively.

8 The sides of a triangle are 8 inches, 9 inches and P1 inches respectively; find the median to the longent side.

9 The area of an equilateral triangle is $48 \sqrt{3}$; find the altitude of the triangle.

10 The centers of two circles whose radii are 12 inches and 9 inches respectively are 28 inches apart; find how far from the center of each circle the line of centers is eut by acommon tangent.
Third is Show how to construct the triangle mentioned division in question 7 .

12 Show how to find the center of agiven circle. Give proof.
13 Prove that the diagonals of any paralleloggam divide it into four equivalent triangles.

14 Prove that the area of an isosceles right triangle equals one fourth the square of its hypotenuse.

15 Two circles are tangent at: M, and $A_{1} M B$ issos seanticutting. the circumferences at A and B; prove that tangents to the circles at A and B are parallel.

