239TH HIGH SCHOOL EXAMINATION

PLANE GEOMETRY

Wednesday, June 15, 1927 - 9.15 a. m. to 12.15 p. m., only

Write at top of first page of answer paper (a) name of school where you have studied, (b) number of weeks and recitations a week in plane geometry.

The minimum time requirement is five recitations a week for a school year.

Name the author of the textbook you have used in plane geometry.

Answer eight questions, including not more than three from group I and at least one from group II.

Group I

Do not answer more than three questions from this group.

- 1 Prove that when two straight lines are cut by a third, if the alternate interior angles are equal, the two straight lines are parallel. [12½]
- 2 Prove that the tangents drawn to a circle from an external point are equal. $[12\frac{1}{2}]$
- 3 Prove that if two triangles have the angles of one respectively equal to the angles of the other, the triangles are similar. $[12\frac{1}{2}]$
- 4 Prove that the area of a trapezoid is equal to one half the product of its altitude and the sum of its bases. $[12\frac{1}{2}]$

Group II

Answer at least one question from this group.

Problems in this group should be constructed accurately with ruler and compasses. Leave all construction lines on the paper.

- 5 Inscribe an equilateral triangle in a given circle. [12]
- 6 Given two parallel lines.
 - a Construct a parallelogram having its base AB in one of the given lines, the opposite side CD in the other given line and the diagonals intersecting in O. [3]
 - b A number of parallelograms are constructed as in answer to a, each having the same line AB for its base; what is the locus of point O for these parallelograms? [9½]

Group III

Irrational results may be left in the form of \(\pi \) and radicals unless otherwise stated.

- 7 ABC is any triangle and angle A is bisected by a line meeting BC in D; prove that AB is longer than BD. $[12\frac{1}{2}]$
- 8 In a circle the length of an arc of 72° is 6 inches; find the area of the circle. $[12\frac{1}{2}]$
- 9 In the parallelogram ABCD, angle $B = 120^{\circ}$, AB = 20 and BC = 12. Find the length of the altitude on AB drawn from C and the length of diagonal AC. [12]
 - 10 a Prove that if the altitude on a side of a triangle is the mean proportional between the segments of that side, then the two triangles formed by this altitude are similar. [9]
 - b State the converse of a. [Proof not required in b] $[3\frac{1}{2}]$
- 11 A line 6 inches long is drawn parallel to side AB of triangle ABC and terminated by sides AC and BC. This line cuts off a triangle whose area is $\frac{4}{9}$ of triangle ABC. Find the length of base AB. [12 $\frac{1}{2}$]
- 12 ABC is an inscribed equilateral triangle. R and S are the mid-points of arcs AC and BC respectively. Line RS intersects side AC at D and side BC at E.
 - a Prove DR = DC. [6]
 - b Prove DC = DE. $\begin{bmatrix} 6\frac{1}{2} \end{bmatrix}$
- 13 A railway curve is in the form of an arc of a circle. Two points A and B are taken on this curve. The length of chord AB is found to be 120 feet and the distance from the mid-point of this chord to the curve is found to be 12 feet. What is the radius of the circle? [12 $\frac{1}{2}$]