High School Department

172D EXAMINATION

TRIGONOMETRY

Thursday, January 30 , 1902 - $9.15 \mathrm{a} . \mathrm{m}$. to $12.15 \mathrm{p} . \mathrm{m}$., only
Answer cight questions but no more. Include at least three from the
third division if credit is desired for both plane and spheric trigonometry.
If more than eight are answered only the first eight answers will be con-
sidered. Division of groups is not allowed. A, B and C represent the.
angles of a triangle, a, b and c the opposite sides. In a right triangle C
represents the right angle. Each complete answer will receive $121 / 2$
credits. Papers entitled to 75 or more credits will be accepted.

Give special attention to arrangement of work.
First \quad I Perform the operations indicated in the following division expressions, using logarithms where possible: $\overline{2.18}^{6}$, $\sqrt[5]{7776,} 21 \times 18 \times .05, \frac{45 \times 63}{14+13}$
2 The two legs of a right triangle are 5 feet and 12 feet respectively; express as common fractions the values of six functions of the smaller angle of the triangle.

3 Write the algebraic sign of each of six functions of a) an angle of $175^{\circ}, b$) an angle of 225°.

4 Assuming the values of $\sin (A+B)$ and $\cos (A+B)$; find the value of $\tan 2 A$ in terms of $\tan A$.

Second
division 5 Prove that in any plane triangle $\frac{c}{a+b}=\frac{a-b}{m-n}, m$ and n being the segments of c made by a perpendicular from C.

6 In a right triangle $c=128$ feet, $A=37^{\circ} 30^{\prime}$; find B, a and b.
7-8 Given $b=75, c=64, C=27^{\circ} 30^{\prime}$; find two possible values for B and for a.

Third 9 Write the four formulas known as Napier's analogies. division 10 Given in a spheric triangle $a=174^{\circ} 13^{\prime}, b=94^{\circ} 8^{\prime}$, $c=90^{\circ}$; find the three angles.

II Given $a=52^{\circ} 45^{\prime}, b=71^{\circ} 12^{\prime} 40^{\prime \prime}, A=46^{\circ} 22^{\prime}$; find two possible values for B.

12 Prove that in any spheric triangle $\cos A=\sin B \sin C$ $\cos a-\cos B \cos C$.

