High School Department

I8OTH EXAMINATION
TRIGONOMETRY
Thursday, January 28 , $1904-9.15$ a. m. to 12.15 p. m., only

Anszuer eight questions but no more. Include at least three from the third division if credit is desired for buth plane and spheric trigonometry. If more than eight are answered only the first eight answers will be considered. Dizision of groups is not allowed. A, B and C represent the angles of a triangle, a, b and c the opposite sides. In a right triangle \mathcal{C} represents the right angle. Each complete answer will receive $12 \frac{1}{2}$ credits. Papers entitled to 75 or more credits will be accepted.

Give special attention to arrangement of work.
First \quad I Define radian, negative angle, third quadrant, mavdivision tissa of a logarithm, angle of depression.

2 Find the number of degrees in A when $3 \sin A=2 \cos ^{2} A$
3 Write with their algebraic signs the numeric values of six functions of an angle of 585°.

4 Complete and demonstrate the following: the cosine of the difference of two angles is equal to . . .

Second $\quad 5$ In a plane triangle $a=32$ feet, $b=40$ feet, $c=5 m$ division feet; find A, B and C.

6-7 Given in a plane triangle $a=20.94, b=25.96, A=44^{\circ} 11^{\circ}$: find two possible values for each of B, c and C.

8 Show the application of trigonometry to finding the distance across an impassable stream. Give diagram and all formulas necessary to solve the case selected.

Third 9 Prove that if the hypotenuse of a right spheric division triangle is less than 90°, the legs are in the same quadrant, and that if the hypotenuse is greater than 90°, the legs are in different quadrants.

Io In a right spheric triangle $a=77^{\circ} 22^{\prime}, B=151^{\circ} 10^{\prime}$; find A, b and c.

I I In an oblique spheric triangle $A=172^{\circ} 18^{\prime}, B=8^{\circ} \quad \mathbf{2 8}$, $C=4^{\circ} 24^{\prime}$; find a.

12 Find the hour of sunrise and of sunset today at Washington, D. C. ; the latitude of Washington is $38^{\circ} 53^{\prime}$ north and the sun's declination $10^{\circ} 29^{\prime} 20^{\circ}$.

