The University of the State of New York

 The State Education Department
EXAMINATION IN EXPERIMENTAL TWELFTH YEAR MATHEMATICS

June 1963

Name of pupil
Name of school.

Part I

Answer twenty-five of the thirty questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Write your answer on the line at the right.

Questions 1-9: In the space provided for each question write the numeral preceding the expression that best completes the statement or answers the question.

1 If p represents the sentence "John attends college" and q represents the sentence "He has earned a scholarship", select the symbolic sentence which is equivalent to the statement "In order that John attend college, it is necessary that he earn a scholarship."
$(1) q \oplus p$
(2) $\sim q \xrightarrow{\sim} \sim p$
(3) $q \rightarrow p$
(4) $\mathrm{q} \rightarrow \sim \mathrm{p}$
(5) $\sim \mathrm{p} \rightarrow \underset{\sim}{\sim} \mathrm{q}$

2 The inverse of $p \rightarrow \sim q$ is equivalent to
(1) $\mathrm{p} \rightarrow \mathrm{q}$
(2) $\sim \mathrm{p} \rightarrow \sim \mathrm{q}$
(3) $\sim \mathrm{p} \rightarrow \mathrm{q}$
(4) $\mathrm{q} \rightarrow \mathrm{p}$
(5) $\sim \mathrm{q} \rightarrow \sim \mathrm{p}$
2.

3 Which is not a tautology?
(1) $[\sim(p \rightarrow q)] \leftrightarrow[p \wedge \sim q]$
(2) $(\sim p \vee q) \leftrightarrow(p \rightarrow q)$
(3) $[(p \rightarrow q) \wedge \sim p] \leftrightarrow \sim q$
(4) $(p \rightarrow q) \rightarrow(\sim q \rightarrow \sim p)$
(5) $(\mathrm{p} \vee \mathrm{q}) \leftrightarrow(\sim \mathrm{p} \rightarrow \mathrm{q})$
3.

4 The statement $\forall_{x} \exists_{y}(x+y=2 x)$ is a statement about real numbers. The negation of this statement is

5 Given that ($p \vee \sim q$) and $\sim p$ are accepted premises, which statement is a valid conclusion?
(1) $\sim \mathrm{p} \wedge \sim \mathrm{q}$
(2) $\sim p \rightarrow q$
(3) $\mathrm{p} \vee \mathrm{q}$
(4) $\mathrm{p} \rightarrow \mathrm{q}$
(5) $\mathrm{p} \leftrightarrow \mathrm{q}$

6 In the Venn diagram, A, B and C are interiors of the circles lying within the rectangle I. The shaded area is represented by
(1) $(B \cup C)^{\prime}$
(2) $A \cap\left(B^{\prime} \cap C^{\prime}\right)$
(3) $A \cup(B \cap C)^{\prime}$
(4) $A \cap\left(B^{\prime} \cup C\right)$

(5) $A \cup\left(B \cap C^{\prime}\right)$

7 If X, Y and Z represent elements of the Algebra of Sets, which statement is a false generalization?
(1) $X \cup X^{\prime}=I$
(2) $\mathrm{X} \cap \mathrm{X}^{\prime}=\varnothing$
(3) $X \cup(Y \cap Z)=(X \cup Y) \cap(X \cup Z)$
(4) $(X \cup Y)^{\prime}=X^{\prime} \cup Y^{\prime}$
(5) $X \cap(X \quad \cup Y)=X \cap Y$

8 If x and y are elements in the set of real numbers, which is not a function?
(1) $f=\{(x, y): y=|x|+1\}$.
(2) $f=\left\{(x, y) \mid y=x^{3}\right\}$.
(3) $f=\{(x, y): y=x-[x]\}$.
(4) $f=\left\{(x, y): y=36-x^{2}\right\}$.
(5) $f=\{(x, y) \mid y>x\}$.

9 Which statement concerning the exponential function $f=\left\{(x, y) \mid y=a^{x}, a>0\right\}$ is false?
(1) $f(0)=1$.
(2) The domain is the set of all real numbers.
(3) The range $=\{y \mid y \geq 0\}$.
(4) $f^{-1}=\left\{(x, y) \mid y=\log _{a} x, x>0\right\}$.
(5) $f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right) f\left(x_{2}\right)$.
9.

10 Find the smallest positive integer which satisfies the congruence $3 x-2 \equiv x+7$, (mod 13$)$.

10

11 The set of elements $G=\{e, a, b, c\}$ and the binary operation * defined by the table form a group. Referring to the table, find the value: (b*a) * (c*a)

\star	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

11

12 If $(2,3)$ and $(9,-6)$ are plane vectors with real components, find the scalar (inner or dot) product.

12

13 For the function $F=\{(x, y) \mid y=3 x+3,-1 \leq x \leq 2\}$, find the domain of its inverse F^{-1}.

14 If $f=\{(1,2),(2,3),(3,4),(4,5)\}$, $g=\{(0,2),(1,3),(2,5),(3,6)\}$, find the composite $f(g)$. Express as a set of ordered number pairs.

14

15 Find the solution set of $6 x^{2}+x<1$, where x is an element of the set of real numbers.

15
16 Evaluate: $\sum_{k=1}^{5}(3 k-2)^{2}$
16

17 Find the limit, expressed in terms of x : $\operatorname{limit}_{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}$

18 A particle moves along the s-axis. The directed distance in feet of the particle from the origin at the end of t seconds is given by $s=10 t^{2}+4 t$. Find the average velocity from $t=2$ to $t=7$ in feet per second.

19 The function g is defined by $g(x)=\frac{x^{3}-4}{x-2}, x \neq 2$. How must $g(2)$ be defined for g to be continuous for all values of x ?

19

20 Find the coordinates of the inflection point of the curve $y=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x+2$.

20

21 Find the equation of the tangent to the curve $y=3 x^{\frac{1}{2}}$ at the point $(9,9)$.

22 Express in the form a + bi the quotient of $24\left(\cos 213^{\circ}+i \sin 213^{\circ}\right)$ divided by $6\left(\cos 153^{\circ}+i \sin 153^{\circ}\right)$.

22

23 Express in polar form the root of $\mathbf{x}^{5}-32=0$, which when graphed would be a vector in the third quadrant.

24 There are 8 good and 4 bad fuses in a box. If 3 are drawn at random, what is the probability that all 3 will be good?

25 If x and y are the readings on the upper faces of a pair of dice, what is the probability in one toss that $(x+y=5) \vee(x+y=7)$?

26 The directrix of a parabola is the line whose equation is $x=-2$, and the focus is the point $(4,-1)$. Write an equation of the parabola.
27. Find the coordinates of the two foci of $2 x^{2}+3 y^{2}-6=0$.27

28 Find the equations of the asymptotes of $25 x^{2}-16 y^{2}=400$.

28

Find the radius of the sphere whose equation is $x^{2}+y^{2}+z^{2}-4 x-2 y+6 z=11$.

29

30 Find the equation of the plane whose points are equidistant from the two points $A(2,4,-5)$ and B $(0,2,3)$.

30

Part II

Answer five questions from this part.

31 Find to the nearest tenth the real root of the equation
$x^{3}+2 x-8=0$ [10]

32 If n is any positive integer, prove by mathematical induction that $1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{n^{2}\left(n^{2}+1\right)^{2}}{4} . \quad[10]$

33 a Find an equation of the locus of the centers of circles passing through the point $(2,0)$ and tangent to the line $x=-1$.
[8]
\underline{b} What is the name of the curve defined in part \underline{a} ?

34 Find in terms of r the altitude of the right circular cone of largest volume that can be inscribed in a sphere of radius r. [10]

35 The function f is defined for nonnegative real numbers by the formula $f(x)=\sqrt{x}$.
a What is the domain of $-f$? [1]
\bar{b} Sketch and label the graph of f.
\bar{C} What is the range of f ? [1]
d Write an expression for the inverse of f.
\bar{e} On the same set of axes, sketch and label the graph of the
f Is the inverse of f a function?

36 a Sketch the graph of the surface $\{(x, y, x) \mid 2 x+3 y+4 z=12\}$ that lies in the first octant; and label the intercepts, indicating their coordinates. [4]
b Write the equations of the traces in the coordinate planes.
c. Find the volume of the pyramid formed by the surface and the coordinate planes.
[3]
d Find in radical form the sum of all the edges of the pyramid. [2]

37 a $\operatorname{Graph}\left\{(x, y) \mid\left(x^{2}-y^{2}<9\right) \wedge\left(x^{2}+y^{2} \leq 9\right) \wedge x \geq 0\right\}$.
b Indicate and explain clearly what sections of the boundary belong to the solution set. [3]

38 An experiment consists of tossing a coin and rolling a die.
a List the elements of the sample space or graph the sample space
using a "tree" diagram.
b Find the probability of each of the following statements:
p: The coin falls heads.
$\mathrm{q}:$ The die falls "5".
[1]
r: The coin falls heads and the die falls "5". [2]
s : The coin falls tails and the die does not fall "5".

