C – Expressions and Equations, Lesson 5, Transforming Formulas (r. 2018)

EXPRESSIONS AND EQUATIONS Transforming Formulas

Common Core Standard	Next Generation Standard
A-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=IR$ to highlight resistance R.	AI-A.CED.4 Rewrite formulas to highlight a quantity of interest, using the same reasoning as in solving equations. e.g., Rearrange Ohm's law $V = IR$ to highlight resistance R .

LEARNING OBJECTIVES

Students will be able to:

1) rewrite (transform) formulas to isolate specific variables.

Teacher Centered Introduction	Student Centered Activities
Overview of Lesson	guided practice Teacher: anticipates, monitors, selects, sequences, and connects student work
- activate students' prior knowledge	
- vocabulary	- developing essential skills
- learning objective(s)	- Regents exam questions
- big ideas: direct instruction	- formative assessment assignment (exit slip, explain the math, or journal entry)
- modeling	

VOCABULARY

formula

transform

transformation

isolate

BIG IDEAS

Properties and operations can be used to transform **<u>formulas</u>** to isolate different variables in the same ways that equations are manipulated to isolate a variable.

Example: The **formula** P = 2l + 2w can be used to find the perimeter of a rectangle. In English, P = 2l + 2w translates as "The *perimeter equals two times the length plus two times the width*." In the **formula** P = 2l + 2w, the *P* variable is already isolated. You can isolate the *l* variable or the *w* variables, as follows. (*Note that the steps and operations are the same as with regular equations.*)

	<u> </u>
To isolate the <i>l</i> variable:	To isolate the <i>w</i> variable:
Start with the formula:	Start with the formula:
P = 2l + 2w	P = 2l + 2w
Move the term 2w to the left expression.	Move the term $2l$ to the left expression.
P-2w=2l	P-2l=2w
Divide both sides of the equation by 2.	Divide both sides of the equation by 2.

$\frac{P-2w}{2} = l$	$\frac{P-2l}{2} = w$
You now have a formula for l in terms of	You now have a formula for l in terms of
P and w .	P and w .

DEVELOPING ESSENTIAL SKILLS

Isolate each variable in the Volume formula for a rectangular prism V = lwh.

$$V = lwh$$
$$\frac{V}{wh} = l$$
$$\frac{V}{lh} = w$$
$$\frac{V}{lw} = h$$

Isolate each variable in the slope intercept formula of a line y = mx + b.

$$y = mx + b$$
$$\frac{y - b}{x} = m$$
$$\frac{y - b}{m} = x$$
$$y - mx = b$$

REGENTS EXAM QUESTIONS

A.CED.A.4: Transforming Formulas

69) The formula for the volume of a cone is $V = \frac{1}{3} \pi r^2 h$. The radius, *r*, of the cone may be expressed as

1)
$$\sqrt{\frac{3V}{\pi h}}$$

2) $\sqrt{\frac{V}{3\pi h}}$
3) $\sqrt{\frac{V}{\pi h}}$
4) $\frac{1}{3}\sqrt{\frac{V}{\pi h}}$

70) The formula for the area of a trapezoid is $A = \frac{1}{2}h(b_1 + b_2)$. Express b_1 in terms of A, h, and b_2 . The area of a trapezoid is 60 square feet, its height is 6 ft, and one base is 12 ft. Find the number of feet in the other base.

71) The equation for the volume of a cylinder is $V = \pi r^2 h$. The positive value of *r*, in terms of *h* and *V*, is 1) $r = \sqrt{\frac{V}{\pi h}}$

$$r = \sqrt{V\pi h} \qquad \qquad 4) \qquad r = \frac{V}{2\pi}$$

72) The distance a free falling object has traveled can be modeled by the equation $d = \frac{1}{2}at^2$, where *a* is acceleration due to gravity and *t* is the amount of time the object has fallen. What is *t* in terms of *a* and *d*?

1)
$$t = \sqrt{\frac{da}{2}}$$

2) $t = \sqrt{\frac{2d}{a}}$
3) $t = \left(\frac{da}{d}\right)^2$
4) $t = \left(\frac{2d}{a}\right)^2$

- 73) The volume of a large can of tuna fish can be calculated using the formula $V = \pi r^2 h$. Write an equation to find the radius, *r*, in terms of *V* and *h*. Determine the diameter, to the nearest inch, of a large can of tuna fish that has a volume of 66 cubic inches and a height of 3.3 inches.
- 74) Michael borrows money from his uncle, who is charging him simple interest using the formula I = Prt. To figure out what the interest rate, *r*, is, Michael rearranges the formula to find *r*. His new formula is *r* equals

1)
$$\frac{I-P}{t}$$

2) $\frac{P-I}{t}$
3) $\frac{I}{Pt}$
4) $\frac{Pt}{I}$

- 75) The formula for the sum of the degree measures of the interior angles of a polygon is S = 180(n-2). Solve for *n*, the number of sides of the polygon, in terms of *S*.
- 76) Solve the equation below for x in terms of a.

$$4(ax+3) - 3ax = 25 + 3a$$

- 77) Boyle's Law involves the pressure and volume of gas in a container. It can be represented by the formula $P_1V_1 = P_2V_2$. When the formula is solved for P_2 , the result is 1) $P_1V_1V_2$ 3) P_1V_1
 - 1) $P_1V_1V_2$ 2) $\frac{V_2}{P_1V_1}$ 3) $\frac{P_1V_1}{V_2}$ 4) $\frac{P_1V_2}{V_1}$
- 78) The formula for blood flow rate is given by $F = \frac{p_1 p_2}{r}$, where F is the flow rate, p_1 the initial pressure, p_2 the final pressure, and r the resistance created by blood vessel size. Which formula can *not* be derived from the given formula?
 - 1) $p_1 = Fr + p_2$ 2) $p_2 = p_1 - Fr$ 3) $r = F(p_2 - p_1)$ 4) $r = \frac{p_1 - p_2}{F}$
- 79) Using the formula for the volume of a cone, express r in terms of V, h, and π .

- 80) The formula $F_g = \frac{GM_1M_2}{r^2}$ calculates the gravitational force between two objects where G is the gravitational constant, M_1 is the mass of one object, M_2 is the mass of the other object, and r is the distance between them. Solve for the positive value of r in terms of F_g , G, M_1 , and M_2 .
- 81) Students were asked to write a formula for the length of a rectangle by using the formula for its perimeter, $p = 2\ell + 2w$. Three of their responses are shown below.

I.
$$\ell = \frac{1}{2}p - w$$

II. $\ell = \frac{1}{2}(p - 2w)$
III. $\ell = \frac{p - 2w}{2}$

Which responses are correct?

1) I and II, only

2) II and III, only

I and III, only
 I, II, and III

SOLUTIONS

69) ANS: 1

Strategy: Use the four column method.

Notes	Left Expression	Sign	Right Expression
Given			12
	V	=	$\frac{-3}{3}$ nr n
Multiply both			
expressions by 3	3 <i>V</i>	=	$\pi r^2 h$
Divide both	3 <i>V</i>		$\pi r^2 h$
expressions by πh	πh	=	$\frac{\pi h}{\pi h}$
Simplify	3V		
	πh	=	r^2
Take square root of	$\sqrt{3V}$		
both sides.	$\sqrt{\frac{\pi h}{\pi h}}$	=	r

PTS: 2 NAT: A.CED.A.4 TOP: Transforming Formulas

70) ANS:

a)
$$b_1 = \frac{2A}{h} - b_2$$

b) The other base is 8 feet.

Strategy: Use the four column method to isolate b_1 and create a new formula, then use it to find the length of the other base.

Notes	Left Expression	Sign	Right Expression
Given	A	=	$\frac{1}{2}h(b_1+b_2)$
Multiply both expressions by 2	2 <i>A</i>	=	$h(b_1 + b_2)$

Divide both expressions by h	$\frac{2A}{h}$	=	$\frac{h(b_1+b_2)}{h}$
Simplify	$\frac{2A}{h}$	=	$b_1 + b_2$
Subtract b_2 from both expressions	$\frac{2A}{h} - b_2$	=	b_1

Substitute the values stated in the problem in the formula.

$$A = 60, \ h = 6, \ b_2 = 12$$
$$b_1 = \frac{2A}{h} - b_2$$
$$b_1 = \frac{2(60)}{6} - 12$$
$$b_1 = \frac{120}{6} - 12$$
$$b_1 = 20 - 12$$
$$b_1 = 8 \text{ feet}$$

PTS: 4 NAT: A.CED.A.4 TOP: Transforming Formulas 71) ANS: 1

Strategy: Use the four column method to isolate *r*.

Notes	Left Expression	Sign	Right Expression
Given	V	=	$\pi r^2 h$
Divide both expressions by πh	$\frac{V}{\pi h}$	=	$\frac{\pi r^2 h}{\pi h}$
Simplify	$\frac{V}{\pi h}$	=	r^2
Take square root of both expressions.	$\sqrt{\frac{V}{\pi h}}$	=	ř

PTS: 2 NAT: A.CED.A.4 TOP: Transforming Formulas 72) ANS: 2

Strategy: Use the four column method. Isolate *t*.

Notes	Left Expression	Sign	Right Expression
Given	d	=	$\frac{1}{2} \alpha t^2$
Multiply both expressions by 2	2d	=	at^2
Divide both expressions by <i>a</i>	$\frac{2d}{a}$	=	$\frac{at^2}{a}$
Simplify	$\frac{2d}{a}$	=	t^2

Take square root of both expressions	$\sqrt{\frac{2d}{a}}$	=	t
	y u		

PTS: 2 NAT: A.CED.A.4 TOP: Transforming Formulas 73) ANS:

a)
$$r = \sqrt{\frac{V}{\pi h}}$$

b) 5 inches

Strategy: Use the four column method to isolate r and create a new formula, then use the new formula to answer the problem.

Notes	Left Expression	Sign	Right Expression
Given	V	=	$\pi r^2 h$
Divide both expressions by πh	$\frac{V}{\pi h}$	=	$\frac{\pi r^2 h}{\pi h}$
Simplify	$\frac{V}{\pi h}$	=	r^2
Take square root of both expressions.	$\sqrt{\frac{V}{\pi h}}$	=	r

Substitute the values from the problem into the new equation.

$$V = 66, h = 3.3$$
$$r = \sqrt{\frac{V}{\pi h}}$$
$$r = \sqrt{\frac{66}{\pi (3.3)}}$$
$$r = \sqrt{\frac{20}{\pi}}$$
$$r \approx \sqrt{6.4}$$
$$r \approx 2.52$$

If the radius is approximately 2.5 inches, the diameter is approximately 5 inches.

PTS: 4 NAT: A.CED.A.4 TOP: Transforming Formulas 74) ANS: 3 Strategy: Isolate r, as follows:

$$I = \Pr t$$
$$I = Pt(r)$$
$$\frac{I}{Pt} = r$$

PTS: 2 NAT: A.CED.A.4 TOP: Transforming Formulas 75) ANS:

$$S = 180(n-2)$$
$$S = 180n - 360$$
$$S + 360 = 180n$$
$$\frac{S + 360}{180} = n$$
or
$$\frac{S}{180} + 2 = n$$

NAT: A.CED.A.4 TOP: Transforming Formulas

PTS: 2 76) ANS: $x = \frac{13}{\alpha} + 3$

$$4(ax + 3) - 3ax = 25 + 3a$$
$$4ax + 12 - 3ax = 25 + 3a$$
$$ax + 12 = 25 + 3a$$
$$ax = 13 + 3a$$
$$ax - 3a = 13$$
$$a(x - 3) = 13$$
$$x - 3 = \frac{13}{a}$$
$$x - 3 = \frac{13}{a}$$
$$x = \frac{13}{a} + 3$$

PTS: 2 77) ANS: 3 NAT: A.CED.A.4

AND. J			
Given	P_1V_1	Ш	P_2V_2
Divide by V_2	$\frac{P_1V_1}{V_2}$	=	$\frac{P_1 \mathscr{V}_2}{\mathscr{V}_2}$
Simplify	$\frac{P_1V_1}{V_2}$	II	P_1

	PTS:	2	NAT: A.CED.A.4	TOP:	Transforming Formulas
78)	ANS:	3			
					$r_{-} \frac{p_{1} - p_{2}}{p_{1} - p_{2}}$
					$r = \frac{r}{r}$

$$rF = p_1 - p_2$$
$$r = \frac{p_1 - p_2}{F}$$

If
$$r = \frac{p_1 - p_2}{F}$$
, then $r = F(p_2 - p_1)$ cannot be true.

PTS: 2 NAT: A.CED.A.4 TOP: Transforming Formulas 79) ANS:

$$V = \frac{1}{3} \pi r^2 h.$$
$$3V = \pi r^2 h$$
$$\frac{3V}{\pi h} = \frac{\pi r^2 h}{\pi h}$$
$$\frac{3V}{\pi h} = r^2$$
$$\frac{3V}{\pi h} = r$$

PTS: 2 NAT: A.CED.A.4 TOP: Transforming Formulas 80) ANS:

$$\begin{split} F_g &= \frac{GM_1M_2}{r^2} \\ r^2 F_g &= GM_1M_2 \\ r^2 &= \frac{GM_1M_2}{F_g} \\ r &= \sqrt{\frac{GM_1M_2}{F_g}} \end{split}$$

PTS: 2 NAT: A.CED.A.4 TOP: Transforming Formulas 81) ANS: 4

Strategy: Transform the formula to isolate the l variable.

$$p = 2l + 2w$$
$$p - 2w = 2l$$
$$\frac{p - 2w}{2} = l$$

This is solution III. NOTE that solution III can also be expressed as:

$$\frac{1}{2}\left(p-2w\right)=l$$

This is solution II. NOTE also that the distributive property of multiplication can transform solution II into: $\frac{1}{2}p - w = l$

This is solution I.

The correct answer choice is I, II, and III.

PTS: 2 NAT: A.CED.A.4 TOP: Transforming Formulas