FUNCTIONS

Function Notation, Evaluating Functions

Common Core Standard
F-IF. 2 Use function notation, evaluate functions for
inputs in their domains, and interpret statements that
use function notation in terms of a context.

Next Generation Standard
AI-F.IF. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

LEARNING OBJECTIVES

Students will be able to:

1) use function notation,
2) evaluate functions for specific input values, and
3) use function notation in context.

Overview of Lesson

Teacher Centered Introduction	Student Centered Activities
Overview of Lesson	guided practice \leftarrow Teacher: anticipates, monitors, selects, sequences, and connects student work
- activate students' prior knowledge	- developing essential skills
- vocabulary	- Regents exam questions
- learning objective(s)	- formative assessment assignment (exit slip, explain the math, or journal
- big ideas: direct instruction	entry)
- modeling	

function notation
dependent variable

VOCABULARY

independent variable
composition of functions

BIG IDEAS

Function Notation

In function notation, $f(x)$ is used instead of the letter y to denote the dependent variable. It is read as " f of x " or "the value $\mathrm{f}(\mathrm{x})$ is a function of x ," which is the independent variable. Other letters may also be used.

There are four primary advantages to using function notation:

1) The use of function notation indicates that the relationship is a function.
2) The use of function notation explicitly defines which variable is the dependent variable and which variable is the independent variable.
3) The use of function notation simplifies evaluation of the dependent variable for specific values of the independent variable.

$$
\text { Example: } \begin{aligned}
\text { If } f(x) & =2 x, \text { then } \\
f(2) & =2(2)=4, \text { and } \\
f(3) & =2(3)=6, \text { and } \\
f(4) & =2(4)=8, \text { etc. }
\end{aligned}
$$

4) The use of function notation allows greater flexibility and specificity in naming variables.

Example \#1: If total cost is a function of the number of pencils bought, a function rule might begin with $C(p)=$.

Example \#2: If miles driven at a constant speed is a function of hours driving, a function rule might begin with $M(h)=$.

When graphing using function notation, the label of the y-axis is changed to reflect the function notation being used.

Evaluating Functions

To evaluate a function for a specific input, simply replace the dependent variable with the desired input throughout the function.

Example: Given the function $f(x)=3 x^{2}+4$, find the value of $f(5)$ as follows:

$$
\begin{aligned}
& f(x)=3 x^{2}+4 \\
& f(5)=3(5)^{2}+4 \\
& f(5)=3(25)+4 \\
& f(5)=75+4 \\
& f(5)=79
\end{aligned}
$$

Composition of Functions

Some functions are defined using other functions. Such functions are called compositions of functions. For example, if $f(x)=2 x$ and $g(x)=3 f(x)$, then the function $g(x)$ is defined in terms of the function $f(x)$. Since we know that $f(x)=2 x$, we can use substitution to write $g(x)=3(2 x)$.

DEVELOPING ESSENTIAL SKILLS

Evaluate the following functions for the given input values:

$f(x)=2 x+3$	$f(x)=3 x-1$
$f(1)=$	$f(1)=$
$f(2)=$	$f(2)=$
$f(3)=$	$f(3)=$
$f(4)=$	$f(4)=$
$f(5)=$	$f(5)=$

$f(x)=x^{2}+2 x+3$	$f(x)=2 x+3$
$f(1)=$	$g(x)=f(x)^{2}$
$f(2)=$	$g(1)=$
$f(3)=$	$g(2)=$
$f(4)=$	$g(3)=$
$f(5)=$	$g(4)=$
	$g(5)=$

ANSWERS

$f(x)=2 x+3$	$f(x)=3 x-1$
$f(1)=5$	$f(1)=2$
$f(2)=7$	$f(2)=5$
$f(3)=9$	$f(3)=8$
$f(4)=11$	$f(4)=11$
$f(5)=13$	$f(5)=14$
$f(x)=x^{2}+2 x+3$	$f(x)=2 x+3$
$f(1)=6$	$g(x)=f(x)^{2}$
$f(2)=11$	$g(1)=25$
$f(3)=18$	$g(2)=49$
$f(4)=27$	$g(3)=81$
$f(5)=28$	$g(4)=121$
	$g(5)=169$

REGENTS EXAM QUESTIONS (through June 2018)

F.IF.A.2: Function Notation, Evaluating Functions

408) Given that $f(x)=2 x+1$, find $g(x)$ if $g(x)=2[f(x)]^{2}-1$.
409) The graph of $y=f(x)$ is shown below.

Which point could be used to find $f(2)$?

1) A
2) B
3) C
4) D
5) The value in dollars, $v(x)$, of a certain car after x years is represented by the equation $v(x)=25,000(0.86)^{x}$. To the nearest dollar, how much more is the car worth after 2 years than after 3 years?
6) 2589
7) 6510
8) 15,901
9) 18,490
10) If $f(n)=(n-1)^{2}+3 n$, which statement is true?
11) $f(3)=-2$
12) $f(-2)=3$
13) $f(-2)=-15$
14) $f(-15)=-2$
15) The equation to determine the weekly earnings of an employee at The Hamburger Shack is given by $w(x)$, where x is the number of hours worked.

$$
w(x)= \begin{cases}10 x, & 0 \leq x \leq 40 \\ 15(x-40)+400, & x>40\end{cases}
$$

Determine the difference in salary, in dollars, for an employee who works 52 hours versus one who works 38 hours. Determine the number of hours an employee must work in order to earn $\$ 445$. Explain how you arrived at this answer.
413) If $f(x)=\frac{\sqrt{2 x+3}}{6 x-5}$, then $f\left(\frac{1}{2}\right)=$

1) 1
2) -2
3) -1
4) $-\frac{13}{3}$
5) Lynn, Jude, and Anne were given the function $f(x)=-2 x^{2}+32$, and they were asked to find $f(3)$. Lynn's answer was 14 , Jude's answer was 4 , and Anne's answer was ± 4. Who is correct?
6) Lynn, only
7) Anne, only
8) Jude, only
9) Both Lynn and Jude
10) If $f(x)=\frac{1}{2} x^{2}-\left(\frac{1}{4} x+3\right)$, what is the value of $f(8)$?
11) 11
12) 17
13) 27
14) 33
15) For a recently released movie, the function $y=119.67(0.61)^{x}$ models the revenue earned, y, in millions of dollars each week, x, for several weeks after its release. Based on the equation, how much more money, in millions of dollars, was earned in revenue for week 3 than for week 5 ?
16) 37.27
17) 27.16
18) 17.06
19) 10.11
20) If $k(x)=2 x^{2}-3 \sqrt{x}$, then $k(9)$ is
21) 315
22) 307
23) 159
24) 153

SOLUTIONS

408) ANS:

Step 1. Understand this as a composition of functions problem.
Step 2. Strategy: Substitute the expression for $f(x)$ into the equation for $g(x)$.
Step 3. Execution of Strategy.

$$
\begin{aligned}
& f(x)=2 x+1 \text { and } g(x)=2[f(x)]^{2}-1 \\
& g(x)=2(2 x+1)^{2}-1 \quad \text { (answer) } \\
& g(x)=2\left(4 x^{2}+4 x+1\right)-1 \quad \text { (alternate answer) } \\
& g(x)=8 x^{2}+8 x+2-1 \quad \text { (alternate answer) } \\
& g(x)=8 x^{2}+8 x+1 \quad \text { (alternate answer) }
\end{aligned}
$$

PTS: 2 NAT: F.IF.A. 2 TOP: Functional Notation Evaluating Functions
409) ANS: 1

Strategy: Understand that the meaning of $f(2)$ is the value of y when $x=2$, then eliminate wrong answers.

Choose answer choice A because represents $f(2)$ with coordinates $(2,0) . f(2)=0$.
Answer choice b is wrong because if represents $f(0) . f(0)=2$
Answer choice c is wrong because if represents $f(-2) . \quad f(-2)=0$
Answer choice d is wrong because if represents $f(-1) . \quad f(-1)=-2$
PTS: 2 NAT: F.IF.A. 2 TOP: Functional Notation Evaluating Functions
410) ANS: 1

Strategy \#1
Input $25,000(0.86)^{2}-25,000(0.86)^{3}$ into a graphing calculator and press enter.

Strategy \＃2：Input the function rule in a graphing calculator and obtain the value of the car after 2 years and 3 years from the table of values．Then，compute the difference．

STEP 1：Input the function rule and obtain data from the table of values．

	X	V_{1}	
	0	25000	
110－20）	1	21504	
ソ $⿻ 上 丨_{3}=$	$\stackrel{2}{2}$	18490	
$\mathrm{Y}_{4}=$	4	15907	
$\mathrm{Y}=$	5	11761	
$\mathrm{Y}_{6}=$			

STEP 2：Compare the value of the car after 2 years and after 3 years．
The car is worth $\$ 18,490$ after 2 years．
The car is worth $\$ 15,901$ after 3 years．
The difference is $18490-15901=2589$
$25,000(0.86)^{2}-25,000(0.86)^{3}=18490-15901.40=2588.60$
PTS： 2 NAT：F．IF．A． 2 TOP：Functional Notation Evaluating Functions
411）ANS： 2
Strategy \＃1：Input $f(n)=(n-1)^{2}+3 n$ into a graphing calculator and inspect the table of values．

x	$f(x)$
3	13
-2	3
-15	211

Strategy \＃2：Manually calculate the answer．

$$
\begin{aligned}
& f(n)=(n-1)^{2}+3 n \\
& f(-2)=(-2-1)^{2}+3(-2) \\
& f(-2)=(-3)^{2}-6 \\
& f(-2)=9-6 \\
& f(-2)=3
\end{aligned}
$$

PTS： 2 NAT：F．IF．A． 2 TOP：Functional Notation Evaluating Functions
412）ANS：
a）The difference in salary，in dollars，for an employee who works 52 hours versus one who works 38 hours，is \＄200．
b）An employee must work 43 hours in order to earn $\$ 445$ ．See work below．
Strategy：Part a：Use the piecewise function to first determine the salaries of 1 ）an employee who works 52 hours，and 2）an employee who works 38 hours．Then，find the difference of the two salaries．

Working 38 Hours	Working 52 Hours

$x=38$	$x=52$
$w(x)= \begin{cases}10 x, & 0 \leq x \leq 40 \\ 15(x-40)+400, x>40\end{cases}$	$w(x)= \begin{cases}10 x, & 0 \leq x \leq 40 \\ 15(x-40)+400, & x>40\end{cases}$
$w(38)=\left\{\begin{array}{lll}10(38), & 0 \leq x \leq 40 \\ \text { not applicable, } & x>40\end{array}\right.$	$w(52)= \begin{cases}\text { not applicable, } & 0 \leq x \leq 40 \\ 15(52-40)+400, & x>40\end{cases}$
$w(38)=\left\{\begin{array}{lll}10(38), & 0 \leq x \leq 40\end{array}\right.$	$w(52)= \begin{cases}15(52-40)+400, & x>40\end{cases}$
$w(38)=380$	$w(52)= \begin{cases}15(12)+400, & x>40\end{cases}$
$w(52)=\{180+400$,	$x>40$
$w(52)=580$	

The difference between the values of $w(38)$ and $w(52)$ is $\$ 200$.
Strategy: Part b: The employee must work more than 40 hours, and compensation for hours worked in excess of 40 hours is found in the second formula and is equal to $\$ 15$ per hour. The compensation worked in excess of 40 hours is $\$ 445-\$ 400=\$ 45$, so

$$
\frac{45 \text { dollars }}{15 \text { dollars/hour }}=3 \text { hours }
$$

The employee must work a total of 43 hours. The employee receives $\$ 400$ for the first 40 hours and $\$ 45$ for the 3 hours in excess of 40 hours.

PTS: 4 NAT: F.IF.A. 2 TOP: Functional Notation Evaluating Functions
413) ANS: 3

Strategy: Substitute $\frac{1}{2}$ for x, and solve.

$$
\begin{aligned}
& f(x)=\frac{\sqrt{2 x+3}}{6 x-5} \\
& f\left(\frac{1}{2}\right)=\frac{\sqrt{2\left(\frac{1}{2}\right)+3}}{6\left(\frac{1}{2}\right)-5} \\
& f\left(\frac{1}{2}\right)=\frac{\sqrt{4}}{-2} \\
& f\left(\frac{1}{2}\right)=\frac{2}{-2} \\
& f\left(\frac{1}{2}\right)=-1
\end{aligned}
$$

PTS: 2
NAT: F.IF.A. 2
TOP: Functional Notation Evaluating Functions

$$
\begin{aligned}
& f(x)=-2(x)^{2}+32 \\
& f(3)=-2(3)^{2}+32 \\
& f(3)=-2(9)+32 \\
& f(3)=-18+32 \\
& f(3)=14
\end{aligned}
$$

PTS: 2
NAT: F.IF.A. 2 TOP: Functional Notation
415) ANS: 3

$$
\begin{aligned}
& f(x)=\frac{1}{2} x^{2}-\left(\frac{1}{4} x+3\right) \\
& f(8)=\frac{1}{2} 8^{2}-\left(\frac{1}{4}(8)+3\right) \\
& f(8)=\frac{1}{2}(64)-(2+3) \\
& f(8)=32-(5) \\
& f(8)=27
\end{aligned}
$$

PTS: 2 NAT: F.IF.A. 2 TOP: Functional Notation
416) ANS: 3

Strategy \#1. Input the function rule in a graphing calculator, then use the table of values to identify the revenues earned in weeks 3 and 5 , then compute the difference.

	X	$Y 1$	
	0	119.6	
	$\frac{1}{2}$	72.95	
	$\frac{1}{3}$	24.59	
	4	16.569	
	5	10.107	
	$\overline{6}=6$		

The table of values shows that the movie earned 27.163 million dollars in week 3.
The table of values shows that the movie earned 10.107 million dollars in week 5 .
The difference is $(27.163-10.107)=17.056$
Strategy \#2. Use a graphing calculator to evaluate the expression $119.67(0.61)^{5}-119.67(0.61)^{3}$, which equals 17.056..

PTS: 2 NAT: F.IF.A. 2 TOP: Functional Notation Evaluating Functions
417) ANS: 4

Strategy: Substitute and solve.

Notes	Left Expression	Sign	Right Expression
Given	$k(x)$	$=$	$2 x^{2}-3 \sqrt{x}$
Substitute 9 for x	$k(9)$	$=$	$2(9)^{2}-3 \sqrt{9}$
Exponents and Radicals	$k(9)$	$=$	$2(81)-3 \sqrt{3}$
Simplify	$k(9)$	$=$	$162-9$

Simplify	$k(9)$	$=$	153

PTS: 2
NAT: F.IF.A. 2 TOP: Functional Notation

