\qquad

Algebra I Regents Bimodal Worksheets

1 The following table shows the heights, in inches, of the players on the opening-night roster of the 2015-2016 New York Knicks.

84	80	87	75	77	79	80	74	76	80	80	82	82

The population standard deviation of these data is approximately

2 Olivia entered a baking contest. As part of the contest, she needs to demonstrate how to measure a gallon of milk if she only has a teaspoon measure. She converts the measurement using the ratios below:

$$
\frac{4 \text { quarts }}{1 \text { gallon }} \bullet \frac{2 \text { pints }}{1 \text { quart }} \bullet \frac{2 \text { cups }}{1 \text { pint }} \bullet \frac{\frac{1}{4} \text { cup }}{4 \text { tablespoons }} \bullet \frac{3 \text { teaspoons }}{1 \text { tablespoon }}
$$

Which ratio is incorrectly written in Olivia's conversion?

3 The value of Tony's investment was $\$ 1140$ on January 1st. On this date three years later, his investment was worth $\$ 1824$. The average rate of change for this investment was $\$ 19$ per

4 David correctly factored the expression $m^{2}-12 m-64$. Which expression did he write?

5 The value of x which makes $\frac{2}{3}\left(\frac{1}{4} x-2\right)=\frac{1}{5}\left(\frac{4}{3} x-1\right)$ true is

6 The expression $4 x^{2}-25$ is equivalent to

7 What is an equation of the line that passes through the points $(2,7)$ and $(-1,3)$?

8 When solving the equation
$12 x^{2}-7 x=6-2\left(x^{2}-1\right)$, Evan wrote
$12 x^{2}-7 x=6-2 x^{2}+2$ as his first step. Which property justifies this step?

9 At an ice cream shop, the profit, $P(c)$, is modeled by the function $P(c)=0.87 c$, where c represents the number of ice cream cones sold. An appropriate domain for this function is

10 If $C=2 a^{2}-5$ and $D=3-a$, then $C-2 D$ equals

11 What is the solution to $2+3(2 a+1)=3(a+2)$?

12 The quadratic equation $x^{2}-6 x=12$ is rewritten in the form $(x+p)^{2}=q$, where q is a constant. What is the value of p ?

Algebra I Regents Bimodal Worksheet \# 2
www.jmap.org

13 A population of bacteria can be modeled by the function $f(t)=1000(0.98)^{t}$, where t represents the time since the population started decaying, and $f(t)$ represents the population of the remaining bacteria at time t. What is the rate of decay for this population?

14 Students were asked to write a formula for the length of a rectangle by using the formula for its perimeter, $p=2 \ell+2 w$. Three of their responses are shown below.
I. $\ell=\frac{1}{2} p-w$
II. $\ell=\frac{1}{2}(p-2 w)$
III. $\ell=\frac{p-2 w}{2}$

Which responses are correct?

15 Which type of function is shown in the graph below?

16 If $y=3 x^{3}+x^{2}-5$ and $z=x^{2}-12$, which polynomial is equivalent to $2(y+z)$?

17 What are the zeros of $f(x)=(2 x-4)(3 x+4)$?

Name: \qquad

18 When solving $p^{2}+5=8 p-7$, Kate wrote $p^{2}+12=8 p$. The property she used is

19 Which value of x makes $\frac{x-3}{4}+\frac{2}{3}=\frac{17}{12}$ true?

20 Students were asked to write $2 x^{3}+3 x+4 x^{2}+1$ in standard form. Four student responses are shown below.

Alexa: $4 x^{2}+3 x+2 x^{3}+1$
Carol: $2 x^{3}+3 x+4 x^{2}+1$
Ryan: $2 x^{3}+4 x^{2}+3 x+1$
Eric: $\quad 1+2 x^{3}+3 x+4 x^{2}$
Which student's response is correct?

21 Which domain is most appropriate for a function that represents the number of items, $f(x)$, placed into a laundry basket each day, x, for the month of January?

22 The length of a rectangular flat-screen television is six inches less than twice its width, x. If the area of the television screen is 1100 square inches, which equation can be used to determine the width, in inches?

23 Alicia purchased H half-gallons of ice cream for $\$ 3.50$ each and P packages of ice cream cones for $\$ 2.50$ each. She purchased 14 items and spent $\$ 43$. Which system of equations could be used to determine how many of each item Alicia purchased?

24 If $f(x)=2\left(3^{x}\right)+1$, what is the value of $f(2)$?

Algebra I Regents Bimodal Worksheet \# 3 www.jmap.org

25 Which of the equations below have the same solution?
I. $\quad 10(x-5)=-15$
II. $4+2(x-2)=9$
III. $\frac{1}{3} x=\frac{3}{2}$

26 The first term in a sequence is 5 and the fifth term is 17 . What is the common difference?

27 Skyler mows lawns in the summer. The function $f(x)$ is used to model the amount of money earned, where x is the number of lawns completely mowed. A reasonable domain for this function would be

28 When the equation $\frac{x-1}{2}-\frac{a}{4}=\frac{3 a}{4}$ is solved for x in terms of a, the solution is

29 When the function $g(x)=\left\{\begin{array}{r}5 x, x \leq 3 \\ x^{2}+4, x>3\end{array}\right.$ is graphed correctly, how should the points be drawn on the graph for an x-value of 3 ?

30 Mike uses the equation $b=1300(2.65)^{x}$ to determine the growth of bacteria in a laboratory setting. The exponent represents

31 The amount of energy, Q, in joules, needed to raise the temperature of m grams of a substance is given by the formula $Q=m C\left(T_{f}-T_{i}\right)$, where C is the specific heat capacity of the substance. If its initial temperature is T_{i}, an equation to find its final temperature, T_{f}, is

32 When the expression $2 x(x-4)-3(x+5)$ is written in simplest form, the result is

33 A company ships an average of 30,000 items each week. The approximate number of items shipped each minute is calculated using the conversion

34 Bamboo plants can grow 91 centimeters per day. What is the approximate growth of the plant, in inches per hour?

35 Joe has dimes and nickels in his piggy bank totaling $\$ 1.45$. The number of nickels he has is 5 more than twice the number of dimes, d. Which equation could be used to find the number of dimes he has?

36 If the function $f(x)=x^{2}$ has the domain $\{0,1,4,9\}$, what is its range?

37 The math department needs to buy new textbooks and laptops for the computer science classroom. The textbooks cost $\$ 116.00$ each, and the laptops cost $\$ 439.00$ each. If the math department has $\$ 6500$ to spend and purchases 30 textbooks, how many laptops can they buy?

38 At Benny's Cafe, a mixed-greens salad costs \$5.75. Additional toppings can be added for $\$ 0.75$ each. Which function could be used to determine the cost, $c(s)$, in dollars, of a salad with s additional toppings?
\qquad

39 At Berkeley Central High School, a survey was conducted to see if students preferred cheeseburgers, pizza, or hot dogs for lunch. The results of this survey are shown in the table below.

	Cheeseburgers	Pizza	Hot Dogs
Females	32	44	24
Males	36	30	34

Based on this survey, what percent of the students preferred pizza?

40 Which interval represents the range of the function $h(x)=2 x^{2}-2 x-4$?

41 Given: $f(x)=\frac{2}{3} x-4$ and $g(x)=\frac{1}{4} x+1$
Four statements about this system are written below.
I. $f(4)=g(4)$
II. When $x=12, f(x)=g(x)$.
III. The graphs of $f(x)$ and $g(x)$ intersect at $(12,4)$.
IV. The graphs of $f(x)$ and $g(x)$ intersect at $(4,12)$.
Which statement(s) are true?

42 Ian is saving up to buy a new baseball glove. Every month he puts $\$ 10$ into a jar. Which type of function best models the total amount of money in the jar after a given number of months?

43 What is the solution to $\frac{3}{2} b+5<17$?

44 If $x \neq 0$, then the common ratio of the sequence $x, 2 x^{2}, 4 x^{3}, 8 x^{4}, 16 x^{5}, \ldots$ is

45 For the sequence $-27,-12,3,18, \ldots$, the expression that defines the nth term where $a_{1}=-27$ is

46 The expression $\frac{1}{3} x\left(6 x^{2}-3 x+9\right)$ is equivalent to

47 A high school sponsored a badminton tournament. After each round, one-half of the players were eliminated. If there were 64 players at the start of the tournament, which equation models the number of players left after 3 rounds?

48 Students were asked to write $6 x^{5}+8 x-3 x^{3}+7 x^{7}$ in standard form. Shown below are four student responses.

Anne: $7 x^{7}+6 x^{5}-3 x^{3}+8 x$
Bob: $\quad-3 x^{3}+6 x^{5}+7 x^{7}+8 x$
Carrie: $8 x+7 x^{7}+6 x^{5}-3 x^{3}$
Dylan: $8 x-3 x^{3}+6 x^{5}+7 x^{7}$ Which student is correct?

49 In a geometric sequence, the first term is 4 and the common ratio is -3 . The fifth term of this sequence is

Algebra I Regents Bimodal Worksheet \# 5 www.jmap.org

50 The functions $f(x)=x^{2}-6 x+9$ and $g(x)=f(x)+k$ are graphed below.

Which value of k would result in the graph of $g(x)$?

51 The graph of $f(x)$ is shown below.

What is the value of $f(-3)$?

Name: \qquad

52 The zeros of the function $p(x)=x^{2}-2 x-24$ are

53 A high school club is researching a tour package offered by the Island Kayak Company. The company charges $\$ 35$ per person and $\$ 245$ for the tour guide. Which function represents the total cost, $C(x)$, of this kayak tour package for x club members?

54 A store manager is trying to determine if they should continue to sell a particular brand of nails. To model their profit, they use the function $p(n)$, where n is the number of boxes of these nails sold in a day. A reasonable domain for this function would be

55 What is the value of the third quartile in the box plot shown below?

56 The shaded boxes in the figures below represent a sequence.

Figure 1

Figure 2

Figure 3

If figure 1 represents the first term and this pattern continues, how many shaded blocks will be in figure 35 ?
\qquad

57 Jenna took a survey of her senior class to see whether they preferred pizza or burgers. The results are summarized in the table below.

	Pizza	Burgers
Male	23	42
Female	31	26

Of the people who preferred burgers, approximately what percentage were female?

58 The domain of the function $f(x)=x^{2}+x-12$ is

59 If $f(x)=x^{2}+2 x+1$ and $g(x)=7 x-5$, for which values of x is $f(x)=g(x)$?

60 The graph of $y=\frac{1}{2} x^{2}-x-4$ is shown below. The points $A(-2,0), B(0,-4)$, and $C(4,0)$ lie on this graph.

Which of these points can determine the zeros of the equation $y=\frac{1}{2} x^{2}-x-4$?

62 Given: the sequence $4,7,10,13, \ldots$
When using the arithmetic sequence formula $a_{n}=a_{1}+(n-1) d$ to determine the 10th term, which variable would be replaced with the number 3 ?

63 Bryan's hockey team is purchasing jerseys. The company charges $\$ 250$ for a onetime set-up fee and $\$ 23$ for each printed jersey. Which expression represents the total cost of x number of jerseys for the team?

64 When $3 a+7 b>2 a-8 b$ is solved for a, the result is

65 What is the solution to the equation $\frac{3}{5}\left(x+\frac{4}{3}\right)=1.04$?

66 What is the equation of the line that passes through the point $(6,-3)$ and has a slope of $-\frac{4}{3}$?

67 The expression $36 x^{2}-9$ is equivalent to

61 If $k(x)=2 x^{2}-3 \sqrt{x}$, then $k(9)$ is

Algebra I Regents Bimodal Worksheet \# 7 www.jmap.org

68 What are the zeros of $m(x)=x\left(x^{2}-16\right)$?

69 Ian throws a ball up in the air and lets it fall to the ground. The height of the ball, $h(t)$, is modeled by the equation $h(t)=-16 t^{2}+6 t+3$, with $h(t)$ measured in feet, and time, t, measured in seconds. The number 3 in $h(t)$ represents

70 The value of x that satisfies the equation $\frac{4}{3}=\frac{x+10}{15}$ is

71 If $f(x)=x^{2}+2$, which interval describes the range of this function?

72 The expression $\left(3 x^{2}+4 x-8\right)+2(11-5 x)$ is equivalent to

73 Caitlin graphs the function $f(x)=a x^{2}$, where a is a positive integer. If Caitlin multiplies a by -2 , when compared to $f(x)$, the new graph will become

74 When factored completely, $-x^{3}+10 x^{2}+24 x$ is

1) $-x(x+4)(x-6)$
2) $-x(x-4)(x-6)$
3) $-x(x+2)(x-12)$
4) $-x(x-2)(x+12)$

Name: \qquad

76 The expression $\left(5 x^{2}-x+4\right)-3\left(x^{2}-x-2\right)$ is equivalent to

77 Which of the three situations given below is best modeled by an exponential function?
I. A bacteria culture doubles in size every day.
II. A plant grows by 1 inch every 4 days.
III. The population of a town declines by 5% every 3 years.

78 The function f is graphed on the set of axes below.

What is a possible factorization of this function?

79 During summer vacation, Ben decides to sell hot dogs and pretzels on a food cart in Manhattan. It costs Ben $\$ 0.50$ for each hot dog and $\$ 0.40$ for each pretzel. He has only $\$ 100$ to spend each day on hot dogs and pretzels. He wants to sell at least 200 items each day. If h is the number of hot dogs and p is the number of pretzels, which inequality would be part of a system of inequalities used to determine the total number of hot dogs and pretzels Ben can sell?

Algebra I Regents Bimodal Worksheet \# 8
www.jmap.org
80 Given: $f(x)=(x-2)^{2}+4$

$$
g(x)=(x-5)^{2}+4
$$

When compared to the graph of $f(x)$, the graph of $g(x)$ is

81 Joe compared gas prices in England and New York State one day. In England, gas sold for 1.35 euros per liter, and one dollar equaled 0.622 euros. A correct way to figure out this cost, in dollars per gallon, is

82 The box plot below summarizes the data for the average monthly high temperatures in degrees Fahrenheit for Orlando, Florida.

The third quartile is

83 The solution to $3(x-8)+4 x=8 x+4$ is

84 A movie theater's popcorn box is a rectangular prism with a base that measures 6 inches by 4 inches and has a height of 8 inches. To create a larger box, both the length and the width will be increased by x inches. The height will remain the same. Which function represents the volume, $V(x)$, of the larger box?

85 How many real-number solutions does $4 x^{2}+2 x+5=0$ have?

Name: \qquad

87 Which polynomial is twice the sum of $4 x^{2}-x+1$ and $-6 x^{2}+x-4$?

88 A function is defined as $K(x)=2 x^{2}-5 x+3$. The value of $K(-3)$ is

89 Given the following data set:
$65,70,70,70,70,80,80,80,85,90,90,95,95,95,100$
Which representations are correct for this data set?

III

86 What is the solution to $-3(x-6)>2 x-2$?
\qquad

91 Thirty-two teams are participating in a basketball tournament. Only the winning teams in each round advance to the next round, as shown in the table below.

Number of Rounds Completed, x	0	1	2	3	4	5
Number of Teams Remaining, $f(x)$	32	16	8	4	2	1

Which function type best models the relationship between the number of rounds completed and the number of teams remaining?

92 One Saturday afternoon, three friends decided to keep track of the number of text messages they received each hour from 8 a.m. to noon. The results are shown below.
Emily said that the number of messages she received increased by 8 each hour.
Jessica said that the number of messages she received doubled every hour.
Chris said that he received 3 messages the first hour, 10 the second hour, none the third hour, and 15 the last hour.
Which of the friends' responses best classifies the number of messages they received each hour as a linear function?

93 The expression $-4.9 t^{2}+50 t+2$ represents the height, in meters, of a toy rocket t seconds after launch. The initial height of the rocket, in meters, is

94 What is the solution to the inequality below?

$$
4-\frac{2}{5} x \geq \frac{1}{3} x+15
$$

95 The zeros of a polynomial function are $-2,4$, and 0 . What are all the factors of this function?

1) $(x+2)$ and $(x-4)$
2) $(x-2)$ and $(x+4)$
3) $x,(x+2)$, and $(x-4)$
4) $x,(x-2)$, and $(x+4)$

96 If point $(K,-5)$ lies on the line whose equation is $3 x+y=7$, then the value of K is

97 Ashley only has 7 quarters and some dimes in her purse. She needs at least $\$ 3.00$ to pay for lunch. Which inequality could be used to determine the number of dimes, d, she needs in her purse to be able to pay for lunch?

98 What is the value of x in the equation

$$
\frac{5(2 x-4)}{3}+9=14 ?
$$

99 Britney is solving a quadratic equation. Her first step is shown below.

$$
\text { Problem: } 3 x^{2}-8-10 x=3(2 x+3)
$$

Step 1: $\quad 3 x^{2}-10 x-8=6 x+9$
Which two properties did Britney use to get to step 1 ?
I. addition property of equality
II. commutative property of addition
III. multiplication property of equality
IV. distributive property of multiplication over addition

100 The roots of $x^{2}-5 x-4=0$ are
\qquad

101 A survey was given to 12th-grade students of West High School to determine the location for the senior class trip. The results are shown in the table below.

	Niagara Falls	Darien Lake	New York City
Boys	56	74	103
Girls	71	92	88

To the nearest percent, what percent of the boys chose Niagara Falls?

102 Josh graphed the function $f(x)=-3(x-1)^{2}+2$. He then graphed the function $g(x)=-3(x-1)^{2}-5$ on the same coordinate plane. The vertex of $g(x)$ is

103 The function $f(x)=2 x^{2}+6 x-12$ has a domain consisting of the integers from -2 to 1 , inclusive. Which set represents the corresponding range values for $f(x)$?

The expression $3\left(x^{2}+2 x-3\right)-4\left(4 x^{2}-7 x+5\right)$ is equivalent to

Materials A and B decay over time. The function for the amount of material A is $A(t)=1000(0.5)^{2 t}$ and for the amount of material B is $B(t)=1000(0.25)^{t}$, where t represents time in days. On which day will the amounts of material be equal?

106 If the original function $f(x)=2 x^{2}-1$ is shifted to the left 3 units to make the function $g(x)$, which expression would represent $g(x)$?

107 In the process of solving the equation $10 x^{2}-12 x-16 x=6$, George wrote $2\left(5 x^{2}-14 x\right)=2(3)$, followed by $5 x^{2}-14 x=3$. Which properties justify George's process?
A. addition property of equality
B. division property of equality
C. commutative property of addition
D. distributive property

108 A population of paramecia, P, can be modeled using the exponential function $P(t)=3(2)^{t}$, where t is the number of days since the population was first observed. Which domain is most appropriate to use to determine the population over the course of the first two weeks?

109 What are the solutions to the equation $3(x-4)^{2}=27$?

110 A dolphin jumps out of the water and then back into the water. His jump could be graphed on a set of axes where x represents time and y represents distance above or below sea level. The domain for this graph is best represented using a set of
\qquad

111 The function f is shown in the table below.

\mathbf{x}	$\mathbf{f (x)}$
0	1
1	3
2	9
3	27

Which type of function best models the given data?

112 Sarah travels on her bicycle at a speed of 22.7 miles per hour. What is Sarah's approximate speed, in kilometers per minute?

113 What is the range of the function
$f(x)=(x-4)^{2}+1$?

1) $x>4$
2) $x \geq 4$
3) $f(x)>1$
4) $f(x) \geq 1$

114 Joe deposits $\$ 4000$ into a certificate of deposit (CD) at his local bank. The CD earns 3\% interest, compounded annually. The value of the CD in x years can be found using the function

1) $f(x)=4000+0.3 x$
2) $f(x)=4000+0.03 x$
3) $f(x)=4000(1.3)^{x}$
4) $f(x)=4000(1.03)^{x}$

115 The solution to $2 x^{2}=72$ is

116 The solutions to $(x+4)^{2}-2=7$ are

117 If the zeros of the function $g(x)$ are $\{-3,0,4\}$, which function could represent $g(x)$?

118 The $24^{\text {th }}$ term of the sequence $-5,-11,-17,-23, \ldots$ is

119 If $f(x)=\frac{3 x+4}{2}$, then $f(8)$ is

120 A swimmer set a world record in the women's 1500-meter freestyle, finishing the race in 15.42 minutes. If 1 meter is approximately 3.281 feet, which set of calculations could be used to convert her speed to miles per hour?

121 The height of a ball Doreen tossed into the air can be modeled by the function $h(x)=-4.9 x^{2}+6 x+5$, where x is the time elapsed in seconds, and $h(x)$ is the height in meters. The number 5 in the function represents

122 The function $g(x)$ is defined as $g(x)=-2 x^{2}+3 x$. The value of $g(-3)$ is
\qquad www.jmap.org

123 Three quadratic functions are given below.
I.

$$
f(x)=(x+2)^{2}+5
$$

II.

\mathbf{x}	-4	-3	-2	-1	0	1
$\mathbf{g}(\mathbf{x})$	-3	2	5	5	2	-3

Which of these functions have the same vertex?

124 Each day, a local dog shelter spends an average of $\$ 2.40$ on food per dog. The manager estimates the shelter's daily expenses, assuming there is at least one dog in the shelter, using the function $E(x)=30+2.40 x$. Which statements regarding the function $E(x)$ are correct?
I. x represents the number of dogs at the shelter per day.
II. x represents the number of volunteers at the shelter per day.
III. 30 represents the shelter's total expenses per day.
IV. 30 represents the shelter's nonfood expenses per day.

125 Compared to the graph of $f(x)=x^{2}$, the graph of $g(x)=(x-2)^{2}+3$ is the result of translating $f(x)$

126 What is the range of the box plot shown below?

127 A grocery store sells packages of beef. The function $C(w)$ represents the cost, in dollars, of a package of beef weighing w pounds. The most appropriate domain for this function would be

128 The expression $(m-3)^{2}$ is equivalent to
\qquad

129 The functions $f(x), q(x)$, and $p(x)$ are shown below.

$$
q(x)=(x-1)^{2}-6
$$

\mathbf{x}	$\mathbf{p (x)}$
2	5
3	4
4	3
5	4
6	5

When the input is 4 , which functions have the same output value?

130 A laboratory technician used the function $t(m)=2(3)^{2 m+1}$ to model her research. Consider the following expressions:

$$
\begin{array}{lll}
\text { I. } 6(3)^{2 m} & \text { II. } 6(6)^{2 m} & \text { III. } 6(9)^{m}
\end{array}
$$

The function $t(m)$ is equivalent to

131 Peter has \$100 to spend on drinks for his party. Bottles of lemonade cost $\$ 2$ each, and juice boxes cost $\$ 0.50$ each. If x is the number of bottles of lemonade and y is the number of juice boxes, which inequality models this situation?

132 The expression $16 x^{2}-81$ is equivalent to

133 Given $f(x)=-3 x^{2}+10$, what is the value of $f(-2)$?

134 An outdoor club conducted a survey of its members. The members were asked to state their preference between skiing and snowboarding. Each member had to pick one. Of the 60 males, 45 stated they preferred to snowboard. Twenty-two of the 60 females preferred to ski. What is the relative frequency that a male prefers to ski?

135 The range of $f(x)=x^{2}+2 x-5$ is the set of all real numbers

Algebra I Regents Bimodal Worksheet \# 14 www.jmap.org

136 The function $f(x)$ is graphed below.

The domain of this function is

137 A box plot is shown below.

Which number represents the third quartile?

138 Which domain would be the most appropriate to use for a function that compares the number of emails sent (x) to the amount of data used for a cell phone plan (y)?

139 The formula for electrical power, P, is $P=I^{2} R$, where I is current and R is resistance. The formula for I in terms of P and R is

140 Sunny purchases a new car for $\$ 29,873$. The car depreciates 20% annually. Which expression can be used to determine the value of the car after t years?

Name: \qquad

141 The Utica Boilermaker is a 15 -kilometer road race. Sara is signed up to run this race and has done the following training runs:
I. 10 miles
II. 44,880 feet
III. 15,560 yards

Which run(s) are at least 15 kilometers?

142 The solution to $\frac{2}{3}(3-2 x)=\frac{3}{4}$ is

1) $-\frac{11}{8}$
2) $\frac{5}{8}$
3) $-\frac{33}{16}$
4) $\frac{15}{16}$

143 Joy wants to buy strawberries and raspberries to bring to a party. Strawberries cost $\$ 1.60$ per pound and raspberries cost $\$ 1.75$ per pound. If she only has $\$ 10$ to spend on berries, which inequality represents the situation where she buys x pounds of strawberries and y pounds of raspberries?

144 What is the degree of the polynomial $2 x+x^{3}+5 x^{2}$?

145 Three expressions are shown below.
I. $\left(x^{3}\right)^{3}$
II. $x^{4} \bullet x^{5}$
III. $x^{10} \bullet x^{-1}$

Which expressions are equivalent for all positive values of x ?

146 What is the constant term of the polynomial $4 d+6+3 d^{2}$?
\qquad

147 Some adults were surveyed to find out if they would prefer to buy a sports utility vehicle (SUV) or a sports car. The results of the survey are summarized in the table below.

	SUV	Sports Car	Totals
Male	21	38	59
Female	135	46	181
Totals	156	84	240

Of the number of adults that preferred sports cars, approximately what percent were males?

148 A middle school conducted a survey of students to determine if they spent more of their time playing games or watching videos on their tablets. The results are shown in the table below.

	Playing Games	Watching Videos	Total
Boys	138	46	184
Girls	54	142	196
Total	192	188	380

Of the students who spent more time playing games on their tablets, approximately what percent were boys?

149 The length, width, and height of a rectangular box are represented by $2 x, 3 x+1$, and $5 x-6$, respectively. When the volume is expressed as a polynomial in standard form, what is the coefficient of the 2nd term?

150 The product of $\left(x^{2}+3 x+9\right)$ and $(x-3)$ is

1) $x^{3}-27$
2) $x^{2}+4 x+6$
3) $x^{3}-6 x^{2}-18 x-27$
4) $-6 x^{4}+x^{3}-18 x^{2}-27$

151 A ball is thrown into the air from the top of a building. The height, $h(t)$, of the ball above the ground t seconds after it is thrown can be modeled by $h(t)=-16 t^{2}+64 t+80$. How many seconds after being thrown will the ball hit the ground?

152 Lizzy has 30 coins that total $\$ 4.80$. All of her coins are dimes, D, and quarters, Q. Which system of equations models this situation?

153 When the temperature is $59^{\circ} \mathrm{F}$, the speed of sound at sea level is 1225 kilometers per hour. Which process could be used to convert this speed into feet per second?

1) $\frac{1225 \mathrm{~km}}{1 \mathrm{hr}} \bullet \frac{0.62 \mathrm{mi}}{1 \mathrm{~km}} \bullet \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \bullet \frac{1 \mathrm{mi}}{5280 \mathrm{ft}} \bullet \frac{1 \mathrm{~min}}{60 \mathrm{sec}}$
2) $\frac{1225 \mathrm{~km}}{1 \mathrm{hr}} \bullet \frac{0.62 \mathrm{mi}}{1 \mathrm{~km}} \bullet \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \bullet \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \bullet \frac{1 \mathrm{~min}}{60 \mathrm{sec}}$
3) $\frac{1225 \mathrm{~km}}{1 \mathrm{hr}} \bullet \frac{1 \mathrm{~km}}{0.62 \mathrm{mi}} \bullet \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \bullet \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \bullet \frac{1 \mathrm{~min}}{60 \mathrm{sec}}$
4) $\frac{1225 \mathrm{~km}}{1 \mathrm{hr}} \bullet \frac{0.62 \mathrm{mi}}{1 \mathrm{~km}} \bullet \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \bullet \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \bullet \frac{1 \mathrm{~min}}{60 \mathrm{sec}}$
\qquad

154 Students were asked to name their favorite sport from a list of basketball, soccer, or tennis. The results are shown in the table below.

	Basketball	Soccer	Tennis
Girls	42	58	20
Boys	84	41	5

What percentage of the students chose soccer as their favorite sport?

Given the set $\{x \mid-2 \leq x \leq 2$, where x is an integer $\}$, what is the solution of $-2(x-5)<10$?

156 If the domain of the function $f(x)=2 x^{2}-8$ is $\{-2,3,5\}$, then the range is

157 Emily was given \$600 for her high school graduation. She invested it in an account that earns 2.4% interest per year. If she does not make any deposits or withdrawals, which expression can be used to determine the amount of money that will be in the account after 4 years?

158 The following conversion was done correctly:

$$
\frac{3 \text { miles }}{1 \text { hour }} \bullet \frac{1 \text { hour }}{60 \text { minutes }} \bullet \frac{5280 \text { feet }}{1 \text { mile }} \bullet \frac{12 \text { inches }}{1 \text { foot }}
$$ What were the final units for this conversion?

159 Mrs. Allard asked her students to identify which of the polynomials below are in standard form and explain why.
I. $15 x^{4}-6 x+3 x^{2}-1$
II. $12 x^{3}+8 x+4$
III. $2 x^{5}+8 x^{2}+10 x$

Which student's response is correct?

160 Three expressions are written below.
A. $\left(2 x y^{2}\right)^{3}$
B. $(2 x)^{3} y^{6}$
C. $\left(2 x^{2} y^{2}\right)\left(4 x y^{3}\right)$

Which expressions are equivalent to $8 x^{3} y^{6}$?

1) A and B, only
2) B and C, only
3) A and C, only
4) A, B, and C

161 An ice cream shop sells ice cream cones, c, and milkshakes, m. Each ice cream cone costs $\$ 1.50$ and each milkshake costs $\$ 2.00$. Donna has $\$ 19.00$ to spend on ice cream cones and milkshakes. If she must buy 5 ice cream cones, which inequality could be used to determine the maximum number of milkshakes she can buy?

162 The length of a rectangular patio is 7 feet more than its width, w. The area of a patio, $A(w)$, can be represented by the function

163 What would be the order of these quadratic functions when they are arranged from the narrowest graph to the widest graph?

$$
f(x)=-5 x^{2} \quad g(x)=0.5 x^{2} \quad h(x)=3 x^{2}
$$

Algebra I Regents Bimodal Worksheet \# 17
www.jmap.org

Name: \qquad

164 The quadratic functions $r(x)$ and $q(x)$ are given below.

\boldsymbol{x}	$\boldsymbol{r}(\boldsymbol{x})$
-4	-12
-3	-15
-2	-16
-1	-15
0	-12
1	7

$$
q(x)=x^{2}+2 x-8
$$

The function with the smaller minimum value is

165 A child is playing outside. The graph below shows the child's distance, $d(t)$, in yards from home over a period of time, t, in seconds.

Which interval represents the child constantly moving closer to home?

The expression $3(x+4)-(2 x+7)$ is equivalent to

167 Nicci's sister is 7 years less than twice Nicci's age, a. The sum of Nicci's age and her sister's age is 41 . Which equation represents this relationship?

168 If the parent function of $f(x)$ is $p(x)=x^{2}$, then the graph of the function $f(x)=(x-k)^{2}+5$, where $k>0$, would be a shift of

169 If $f(x)=4 x+5$, what is the value of $f(-3)$?

170 What is the solution to the inequality $2 x-7>2.5 x+3$?

1) $x>-5$
2) $x<-5$
3) $x>-20$
4) $x<-20$

171 The function $G(m)$ represents the amount of gasoline consumed by a car traveling m miles. An appropriate domain for this function would be

172 The formula for the area of a trapezoid is $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$. The height, h, of the trapezoid may be expressed as

Algebra I Regents Bimodal Worksheet \# 18
www.jmap.org
173 Last weekend, Emma sold lemonade at a yard sale. The function $P(c)=.50 c-9.96$ represented the profit, $P(c)$, Emma earned selling c cups of lemonade. Sales were strong, so she raised the price for this weekend by 25 cents per cup. Which function represents her profit for this weekend?

174 Which equation is equivalent to $y=x^{2}+24 x-18$?

175 Which expression is equivalent to $2\left(x^{2}-1\right)+3 x(x-4)$?

176 The function $f(x)=|x|$ is multiplied by k to create the new function $g(x)=k|x|$. Which statement is true about the graphs of $f(x)$ and $g(x)$ if $k=\frac{1}{2}$?

177 The formula $A x+B y=C$ represents the equation of a line in standard form. Which expression represents y in terms of A, B, C, and x ?

178 If $g(x)=-x^{2}-x+5$, then $g(-4)$ is equal to

179 When written in factored form, $4 w^{2}-11 w-3$ is equivalent to

180 When written in standard form, the product of $(3+x)$ and $(2 x-5)$ is

182 When $3 x^{2}+7 x-6+2 x^{3}$ is written in standard form, the leading coefficient is

183 Given the following three sequences:
I. $2,4,6,8,10 \ldots$
II. $2,4,8,16,32 \ldots$
III. $a, a+2, a+4, a+6, a+8 \ldots$

Which ones are arithmetic sequences?

184 Which expression is equivalent to $\left(-4 x^{2}\right)^{3}$?

185 Eric deposits $\$ 500$ in a bank account that pays 3.5% interest, compounded yearly. Which type of function should he use to determine how much money he will have in the account at the end of 10 years?

186 The amount Mike gets paid weekly can be represented by the expression $2.50 a+290$, where a is the number of cell phone accessories he sells that week. What is the constant term in this expression and what does it represent?

187 If $f(x)=2 x+6$ and $g(x)=|x|$ are graphed on the same coordinate plane, for which value of x is $f(x)=g(x)$?

1) 6
2) 2
3) -2
4) -6

188 On the main floor of the Kodak Hall at the Eastman Theater, the number of seats per row increases at a constant rate. Steven counts 31 seats in row 3 and 37 seats in row 6 . How many seats are there in row 20?
\qquad www.jmap.org

189 The line represented by the equation $4 y+2 x=33.6$ shares a solution point with the line represented by the table below.

\mathbf{x}	\mathbf{y}
-5	3.2
-2	3.8
2	4.6
4	5
11	6.4

The solution for this system is

190 Jim uses the equation $A=P(1+0.05)^{t}$ to find the amount of money in an account, A, of an investment, P, after t years. For this equation, which phrase describes the yearly rate of change?

The diagram below shows the graph of $h(t)$, which models the height, in feet, of a rocket t seconds after it was shot into the air.

The domain of $h(t)$ is

193 Morgan read that a snail moves about 72 feet per day. He performs the calculation $\frac{72 \text { feet }}{1 \text { day }} \bullet \frac{1 \text { day }}{24 \text { hours }} \bullet \frac{1 \text { hour }}{60 \text { minutes }} \bullet \frac{12 \text { inches }}{1 \text { foot }}$ to convert this rate to different units. What are the units for the converted rate?

194 The diagrams below represent the first three terms of a sequence.

Assuming the pattern continues, which formula determines a_{n}, the number of shaded squares in the nth term?

195 Faith wants to use the formula $C(f)=\frac{5}{9}(f-32)$ to convert degrees Fahrenheit, f, to degrees Celsius, $C(f)$. If Faith calculated $C(68)$, what would her result be?
\qquad www.jmap.org

Algebra I Regents Bimodal Worksheets

196 The table below shows the average yearly balance in a savings account where interest is compounded annually. No money is deposited or withdrawn after the initial amount is deposited.

Year	Balance, in Dollars
0	380.00
10	562.49
20	832.63
30	1232.49
40	1824.39
50	2700.54

Which type of function best models the given data?

197 The table below represents the function F.

\boldsymbol{x}	3	4	6	7	8
$\boldsymbol{F}(\boldsymbol{x})$	9	17	65	129	257

The equation that represents this function is

198 A typical cell phone plan has a fixed base fee that includes a certain amount of data and an overage charge for data use beyond the plan. A cell phone plan charges a base fee of $\$ 62$ and an overage charge of $\$ 30$ per gigabyte of data that exceed 2 gigabytes. If C represents the cost and g represents the total number of gigabytes of data, which equation could represent this plan when more than 2 gigabytes are used?

199 If a population of 100 cells triples every hour, which function represents $p(t)$, the population after t hours?

203 When $3 x+2 \leq 5(x-4)$ is solved for x, the solution is
202 The point $(3, w)$ is on the graph of $y=2 x+7$. What is the value of w ?
201 Connor wants to attend the town carnival. The price of admission to the carnival is $\$ 4.50$, and each ride costs an additional 79 cents. If he can spend at most $\$ 16.00$ at the carnival, which inequality can be used to solve for r, the number of rides Connor can go on, and what is the maximum number of rides he can go on?
is
,

200 The zeros of the function $f(x)=3 x^{2}-3 x-6$ are

Algebra I Regents Bimodal Worksheet \# 21 www.jmap.org

204 The graph of $y=f(x)$ is shown below.

Which point could be used to find $f(2)$?

205
A cell phone company charges $\$ 60.00$ a month for up to 1 gigabyte of data. The cost of additional data is $\$ 0.05$ per megabyte. If d represents the number of additional megabytes used and c represents the total charges at the end of the month, which linear equation can be used to determine a user's monthly bill?

206 What are the solutions to the equation $x^{2}-8 x=24$?

207 What is the largest integer, x, for which the value of $f(x)=5 x^{4}+30 x^{2}+9$ will be greater than the value of $g(x)=3^{x}$?

Sara was asked to solve this word problem: "The product of two consecutive integers is 156 . What are the integers?" What type of equation should she create to solve this problem?

209 What are the zeros of the function
$f(x)=x^{2}-13 x-30$?

210 Keith determines the zeros of the function $f(x)$ to be -6 and 5 . What could be Keith's function?

211 If $A=3 x^{2}+5 x-6$ and $B=-2 x^{2}-6 x+7$, then $A-B$ equals

212 Which expression is equivalent to $2(3 g-4)-(8 g+3)$?

213 Mo's farm stand sold a total of 165 pounds of apples and peaches. She sold apples for $\$ 1.75$ per pound and peaches for $\$ 2.50$ per pound. If she made $\$ 337.50$, how many pounds of peaches did she sell?

214 An astronaut drops a rock off the edge of a cliff on the Moon. The distance, $d(t)$, in meters, the rock travels after t seconds can be modeled by the function $d(t)=0.8 t^{2}$. What is the average speed, in meters per second, of the rock between 5 and 10 seconds after it was dropped?

215 Miriam and Jessica are growing bacteria in a laboratory. Miriam uses the growth function $f(t)=n^{2 t}$ while Jessica uses the function $g(t)=n^{4 t}$, where n represents the initial number of bacteria and t is the time, in hours. If Miriam starts with 16 bacteria, how many bacteria should Jessica start with to achieve the same growth over time?

Algebra I Regents Bimodal Worksheet \# 22 www.jmap.org

$$
\begin{array}{ll}
\text { I } & 2\left(2 x^{2}-2 x-60\right) \\
\text { II } & 4\left(x^{2}-x-30\right) \\
\text { III } & 4(x+6)(x-5) \\
\text { IV } & 4 x(x-1)-120
\end{array}
$$

The expression $4 x^{2}-4 x-120$ is equivalent to

217 Milton has his money invested in a stock portfolio. The value, $v(x)$, of his portfolio can be modeled with the function $v(x)=30,000(0.78)^{x}$, where x is the number of years since he made his investment. Which statement describes the rate of change of the value of his portfolio?

218 The equation $A=1300(1.02)^{7}$ is being used to calculate the amount of money in a savings account. What does 1.02 represent in this equation?

219 Given the graph of the line represented by the equation $f(x)=-2 x+b$, if b is increased by 4 units, the graph of the new line would be shifted 4 units

220 The owner of a small computer repair business has one employee, who is paid an hourly rate of $\$ 22$. The owner estimates his weekly profit using the function $P(x)=8600-22 x$. In this function, x represents the number of

221 Which expression is equivalent to $36 x^{2}-100$?

Name: \qquad

223 The inequality $7-\frac{2}{3} x<x-8$ is equivalent to

224 Which inequality is represented by the graph below?

225 The expression $3\left(x^{2}-1\right)-\left(x^{2}-7 x+10\right)$ is equivalent to

226 A part of Jennifer's work to solve the equation $2\left(6 x^{2}-3\right)=11 x^{2}-x$ is shown below.

Given: $2\left(6 x^{2}-3\right)=11 x^{2}-x$
Step 1: $12 x^{2}-6=11 x^{2}-x$
Which property justifies her first step?

227 For a recently released movie, the function $y=119.67(0.61)^{x}$ models the revenue earned, y, in millions of dollars each week, x, for several weeks after its release. Based on the equation, how much more money, in millions of dollars, was earned in revenue for week 3 than for week 5?

222 What is the minimum value of the function $y=|x+3|-2$?

Algebra I Regents Bimodal Worksheet \# 23 www.jmap.org

228 The equation for the volume of a cylinder is $V=\pi r^{2} h$. The positive value of r, in terms of h and V, is

229 Michael borrows money from his uncle, who is charging him simple interest using the formula $I=P r t$. To figure out what the interest rate, r, is, Michael rearranges the formula to find r. His new formula is r equals

230 Last week, a candle store received $\$ 355.60$ for selling 20 candles. Small candles sell for $\$ 10.98$ and large candles sell for $\$ 27.98$. How many large candles did the store sell?

231 The value in dollars, $v(x)$, of a certain car after x years is represented by the equation $v(x)=25,000(0.86)^{x}$. To the nearest dollar, how much more is the car worth after 2 years than after 3 years?

232 The expression $9 m^{2}-100$ is equivalent to

233 If Lylah completes the square for $f(x)=x^{2}-12 x+7$ in order to find the minimum, she must write $f(x)$ in the general form $f(x)=(x-a)^{2}+b$. What is the value of a for $f(x)$?

234 Which value of x is a solution to the equation $13-36 x^{2}=-12$?

Name: \qquad

235 Gretchen has \$50 that she can spend at the fair. Ride tickets cost $\$ 1.25$ each and game tickets cost $\$ 2$ each. She wants to go on a minimum of 10 rides and play at least 12 games. Which system of inequalities represents this situation when r is the number of ride tickets purchased and g is the number of game tickets purchased?

236 Given the functions $h(x)=\frac{1}{2} x+3$ and $j(x)=|x|$, which value of x makes $h(x)=j(x)$?

237 How does the graph of $f(x)=3(x-2)^{2}+1$ compare to the graph of $g(x)=x^{2}$?

238 The range of the function defined as $y=5^{x}$ is

239 Which polynomial function has zeros at $-3,0$, and 4 ?

240 Which value of x results in equal outputs for $j(x)=3 x-2$ and $b(x)=|x+2|$?

241 If $f(x)=x^{2}$, which function is the result of shifting $f(x) 3$ units left and 2 units down?

1) $g(x)=(x+2)^{2}-3$
2) $g(x)=(x-2)^{2}+3$
3) $g(x)=(x+3)^{2}-2$
4) $g(x)=(x-3)^{2}+2$
\qquad

242 Given the functions $\mathrm{g}(x), \mathrm{f}(x)$, and $\mathrm{h}(x)$ shown below:

$$
g(x)=x^{2}-2 x
$$

x	$\mathrm{f}(\mathrm{x})$
0	1
1	2
2	5
3	7

The correct list of functions ordered from greatest to least by average rate of change over the interval $0 \leq x \leq 3$ is

243 The graph of the equation $y=a x^{2}$ is shown below.

If a is multiplied by $-\frac{1}{2}$, the graph of the new equation is

244 An equation is given below.

$$
4(x-7)=0.3(x+2)+2.11
$$

The solution to the equation is

245 Which domain would be the most appropriate set to use for a function that predicts the number of household online-devices in terms of the number of people in the household?

246 John has four more nickels than dimes in his pocket, for a total of $\$ 1.25$. Which equation could be used to determine the number of dimes, x, in his pocket?
\qquad

The tables below show the values of four different functions for given values of x.

\mathbf{x}	f(x)	X	g(x)	\mathbf{X}	h(x)	\mathbf{X}	k(x)
1	12	1	-1	1	9	1	-2
2	19	2	1	2	12	2	4
3	26	3	5	3	17	3	14
4	33	4	13	4	24	4	28

Which table represents a linear function?.

248 Which inequality is represented in the graph below?

249 In the function $f(x)=(x-2)^{2}+4$, the minimum value occurs when x is

250 Abigail's and Gina's ages are consecutive integers. Abigail is younger than Gina and Gina's age is represented by x. If the difference of the square of Gina's age and eight times Abigail's age is 17, which equation could be used to find Gina's age?

251 Andy has \$310 in his account. Each week, w, he withdraws $\$ 30$ for his expenses. Which expression could be used if he wanted to find out how much money he had left after 8 weeks?

252 The distance a free falling object has traveled can be modeled by the equation $d=\frac{1}{2} a t^{2}$, where a is acceleration due to gravity and t is the amount of time the object has fallen. What is t in terms of a and d ?

253 Joe has a rectangular patio that measures 10 feet by 12 feet. He wants to increase the area by 50% and plans to increase each dimension by equal lengths, x. Which equation could be used to determine x ?

254 The zeros of the function $f(x)=x^{2}-5 x-6$ are

255 What is the solution to the system of equations below?

$$
\begin{gathered}
y=2 x+8 \\
3(-2 x+y)=12
\end{gathered}
$$

256 What are the roots of the equation $x^{2}+4 x-16=0$?
\qquad www.jmap.org

257
A public opinion poll was taken to explore the relationship between age and support for a candidate in an election. The results of the poll are summarized in the table below.

Age	For	Against	No Opinion
$21-40$	30	12	8
$41-60$	20	40	15
Over 60	25	35	15

What percent of the 21-40 age group was for the candidate?

258
The table below shows the number of grams of carbohydrates, x, and the number of Calories, y, of six different foods.

Carbohydrates (x)	Calories (y)
8	120
9.5	138
10	147
6	88
7	108
4	62

Which equation best represents the line of best fit for this set of data?

259 What is the value of x in the equation $\frac{x-2}{3}+\frac{1}{6}=\frac{5}{6}$?

The function $V(t)=1350(1.017)^{t}$ represents the value $V(t)$, in dollars, of a comic book t years after its purchase. The yearly rate of appreciation of the comic book is

261 What is the domain of the relation shown below?

$$
\{(4,2),(1,1),(0,0),(1,-1),(4,-2)\}
$$

262 Dan took 12.5 seconds to run the 100 -meter dash. He calculated the time to be approximately

263 An online company lets you download songs for $\$ 0.99$ each after you have paid a $\$ 5$ membership fee. Which domain would be most appropriate to calculate the cost to download songs?

264 A plumber has a set fee for a house call and charges by the hour for repairs. The total cost of her services can be modeled by $c(t)=125 t+95$. Which statements about this function are true?
I. A house call fee costs $\$ 95$.
II. The plumber charges $\$ 125$ per hour.
III. The number of hours the job takes is represented by t.

Algebra I Regents Bimodal Worksheet \# 27 www.jmap.org

265 What is the solution set of the equation $(x-2)(x-a)=0$?

266
During the 2010 season, football player McGee’s earnings, m, were 0.005 million dollars more than those of his teammate Fitzpatrick's earnings, f. The two players earned a total of 3.95 million dollars. Which system of equations could be used to determine the amount each player earned, in millions of dollars?

267 Fred is given a rectangular piece of paper. If the length of Fred's piece of paper is represented by $2 x-6$ and the width is represented by $3 x-5$, then the paper has a total area represented by

268 Two texting plans are advertised. Plan A has a monthly fee of $\$ 15$ with a charge of $\$ 0.08$ per text. Plan B has a monthly fee of $\$ 3$ with a charge of $\$ 0.12$ per text. If t represents the number of text messages in a month, which inequality should be used to show that the cost of Plan A is less than the cost of Plan B ?

1) $15+0.08 t<3+0.12 t$
2) $15+0.08 t>3+0.12 t$
3) $15 t+0.08<3 t+0.12$
4) $15 t+0.08>3 t+0.12$

The daily cost of production in a factory is calculated using $c(x)=200+16 x$, where x is the number of complete products manufactured. Which set of numbers best defines the domain of $c(x)$?

270 What is the solution to the inequality $2+\frac{4}{9} x \geq 4+x$?

Name: \qquad

271 Alicia has invented a new app for smart phones that two companies are interested in purchasing for a 2 -year contract. Company A is offering her $\$ 10,000$ for the first month and will increase the amount each month by $\$ 5000$. Company B is offering $\$ 500$ for the first month and will double their payment each month from the previous month. Monthly payments are made at the end of each month. For which monthly payment will company B 's payment first exceed company A 's payment?

272 Konnor wants to burn 250 Calories while exercising for 45 minutes at the gym. On the treadmill, he can burn $6 \mathrm{Cal} / \mathrm{min}$. On the stationary bike, he can burn $5 \mathrm{Cal} / \mathrm{min}$. If t represents the number of minutes on the treadmill and b represents the number of minutes on the stationary bike, which expression represents the number of Calories that Konnor can burn on the stationary bike?

273 Corinne is planning a beach vacation in July and is analyzing the daily high temperatures for her potential destination. She would like to choose a destination with a high median temperature and a small interquartile range. She constructed box plots shown in the diagram below.

Which destination has a median temperature above 80 degrees and the smallest interquartile range?

274 What are the solutions to the equation
$x^{2}-8 x=10$?

Algebra I Regents Bimodal Worksheet \# 28 www.jmap.org

275 Which trinomial is equivalent to
$3(x-2)^{2}-2(x-1)$?

276 The zeros of the function $f(x)=(x+2)^{2}-25$ are

277
The volume of a trapezoidal prism can be found using the formula $V=\frac{1}{2} a(b+c) h$. Which equation is correctly solved for b ?

278 Lynn, Jude, and Anne were given the function $f(x)=-2 x^{2}+32$, and they were asked to find $f(3)$. Lynn's answer was 14 , Jude's answer was 4 , and Anne's answer was ± 4. Who is correct?

279 Which representations are functions?

1 | \mathbf{x} | \mathbf{y} |
| :---: | ---: |
| 2 | 6 |
| 3 | -12 |
| 4 | 7 |
| 5 | 5 |
| 2 | -6 |

II $\{(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13)\}$

$$
\text { IV } y=2 x+1
$$

280 If $4 x^{2}-100=0$, the roots of the equation are

A car leaves Albany, NY, and travels west toward Buffalo, NY. The equation $D=280-59 t$ can be used to represent the distance, D, from Buffalo after t hours. In this equation, the 59 represents the

Name: \qquad

282 Beverly did a study this past spring using data she collected from a cafeteria. She recorded data weekly for ice cream sales and soda sales. Beverly found the line of best fit and the correlation coefficient, as shown in the diagram below.

Beverly's Cafeteria Study

Given this information, which statement(s) can correctly be concluded?
I. Eating more ice cream causes a person to become thirsty.
II. Drinking more soda causes a person to become hungry.
III. There is a strong correlation between ice cream sales and soda sales.

283 Which value of x satisfies the equation $\frac{5}{6}\left(\frac{3}{8}-x\right)=16$?

284 Given the following expressions:

$$
\begin{array}{ll}
\text { I. }-\frac{5}{8}+\frac{3}{5} & \text { III. }(\sqrt{5}) \cdot(\sqrt{5}) \\
\text { II. } \frac{1}{2}+\sqrt{2} & \text { IV. } 3 \cdot(\sqrt{49})
\end{array}
$$

Which expression(s) result in an irrational number?
\qquad

The table below shows the temperature, $T(m)$, of a cup of hot chocolate that is allowed to chill over several minutes, m.

Time, m (minutes)	0	2	4	6	8
Temperature, T(m) $\left({ }^{\circ} \mathrm{F}\right)$	150	108	78	56	41

Which expression best fits the data for $T(m)$?

Joey enlarged a 3-inch by 5-inch photograph on a copy machine. He enlarged it four times. The table below shows the area of the photograph after each enlargement.

Enlargement	0	1	2	3	4
Area (square inches)	15	18.8	23.4	29.3	36.6

What is the average rate of change of the area from the original photograph to the fourth enlargement, to the nearest tenth?

287
A parking garage charges a base rate of $\$ 3.50$ for up to 2 hours, and an hourly rate for each additional hour. The sign below gives the prices for up to 5 hours of parking.

Parking Rates	
2 hours	$\$ 3.50$
3 hours	$\$ 9.00$
4 hours	$\$ 14.50$
5 hours	$\$ 20.00$

Which linear equation can be used to find x, the additional hourly parking rate?

288

289 The value of the x-intercept for the graph of $4 x-5 y=40$ is

290 The range of the function $f(x)=x^{2}+2 x-8$ is all real numbers

291 A company that manufactures radios first pays a start-up cost, and then spends a certain amount of money to manufacture each radio. If the cost of manufacturing r radios is given by the function $c(r)=5.25 r+125$, then the value 5.25 best represents
\qquad

292 Mrs. Smith's math class surveyed students to determine their favorite flavors of soft ice cream. The results are shown in the table below.

	Chocolate	Vanilla	Twist
Juniors	42	27	45
Seniors	67	42	21

Of the students who preferred chocolate, approximately what percentage were seniors?

1) 27.5
2) 44.7
3) 51.5
4) 61.5

293 The graph below shows the distance in miles, m, hiked from a camp in h hours.

Which hourly interval had the greatest rate of change?

What is the solution to $2 h+8>3 h-6$?

295 Krystal was given $\$ 3000$ when she turned 2 years old. Her parents invested it at a 2% interest rate compounded annually. No deposits or withdrawals were made. Which expression can be used to determine how much money Krystal had in the account when she turned 18 ?

296 A store sells self-serve frozen yogurt sundaes. The function $C(w)$ represents the cost, in dollars, of a sundae weighing w ounces. An appropriate domain for the function would be

297 A construction worker needs to move $120 \mathrm{ft}^{3}$ of dirt by using a wheelbarrow. One wheelbarrow load holds $8 \mathrm{ft}^{3}$ of dirt and each load takes him 10 minutes to complete. One correct way to figure out the number of hours he would need to complete this job is

298 When factored completely, the expression $p^{4}-81$ is equivalent to

299 The highest possible grade for a book report is 100 . The teacher deducts 10 points for each day the report is late. Which kind of function describes this situation?

300 The length of the shortest side of a right triangle is 8 inches. The lengths of the other two sides are represented by consecutive odd integers. Which equation could be used to find the lengths of the other sides of the triangle?

Algebra I Regents Bimodal Worksheet \# 31 www.jmap.org

301 What is the correlation coefficient of the linear fit of the data shown below, to the nearest hundredth?

302 A function is graphed on the set of axes below.

Which function is related to the graph?

303 Let f be a function such that $f(x)=2 x-4$ is defined on the domain $2 \leq x \leq 6$. The range of this function is

304 If $f(x)=\frac{1}{2} x^{2}-\left(\frac{1}{4} x+3\right)$, what is the value of $f(8)$?

Name: \qquad

305 The graph of a quadratic function is shown below.

An equation that represents the function could be

306 The Celluloid Cinema sold 150 tickets to a movie. Some of these were child tickets and the rest were adult tickets. A child ticket cost $\$ 7.75$ and an adult ticket cost $\$ 10.25$. If the cinema sold $\$ 1470$ worth of tickets, which system of equations could be used to determine how many adult tickets, a, and how many child tickets, c, were sold?

307 A construction company uses the function $f(p)$, where p is the number of people working on a project, to model the amount of money it spends to complete a project. A reasonable domain for this function would be

308 The solution of the equation $(x+3)^{2}=7$ is

309 The formula for the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$. The radius, r, of the cone may be expressed as

Algebra I Regents Bimodal Worksheet \# 32 www.jmap.org

310 Peyton is a sprinter who can run the 40 -yard dash in 4.5 seconds. He converts his speed into miles per hour, as shown below.

$$
\frac{40 \mathrm{yd}}{4.5 \mathrm{sec}} \cdot \frac{3 \mathrm{ft}}{1 \mathrm{yd}} \cdot \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \cdot \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}}
$$

Which ratio is incorrectly written to convert his speed?

311 It takes Tim 4.5 hours to run 50 kilometers. Which expression will allow him to change this rate to minutes per mile?

312 When solving the equation $4\left(3 x^{2}+2\right)-9=8 x^{2}+7$, Emily wrote $4\left(3 x^{2}+2\right)=8 x^{2}+16$ as her first step. Which property justifies Emily's first step?

313 What is a common ratio of the geometric sequence whose first term is 5 and third term is 245 ?

314 Anne invested $\$ 1000$ in an account with a 1.3% annual interest rate. She made no deposits or withdrawals on the account for 2 years. If interest was compounded annually, which equation represents the balance in the account after the 2 years?

315 The formula for the surface area of a right rectangular prism is $A=2 l w+2 h w+2 l h$, where l, w, and h represent the length, width, and height, respectively. Which term of this formula is not dependent on the height?

316 If $f(x)=\frac{\sqrt{2 x+3}}{6 x-5}$, then $f\left(\frac{1}{2}\right)=$

Name: \qquad

317 The cost of a pack of chewing gum in a vending machine is $\$ 0.75$. The cost of a bottle of juice in the same machine is $\$ 1.25$. Julia has $\$ 22.00$ to spend on chewing gum and bottles of juice for her team and she must buy seven packs of chewing gum. If b represents the number of bottles of juice, which inequality represents the maximum number of bottles she can buy?

318 The function $f(x)$ is graphed on the set of axes below.

What is the equation of the axis of symmetry for $f(x)$?

1) $x=-1$
2) $x=-3$
3) $y=-1$
4) $y=-3$

319 A company produces x units of a product per month, where $C(x)$ represents the total cost and $R(x)$ represents the total revenue for the month. The functions are modeled by $C(x)=300 x+250$ and $R(x)=-0.5 x^{2}+800 x-100$. The profit is the difference between revenue and cost where $P(x)=R(x)-C(x)$. What is the total profit, $P(x)$, for the month?
\qquad

320 A radio station did a survey to determine what kind of music to play by taking a sample of middle school, high school, and college students. They were asked which of three different types of music they prefer on the radio: hip-hop, alternative, or classic rock. The results are summarized in the table below.

	Hip-Hop	Alternative	Classic Rock
Middle School	28	18	4
High School	22	22	6
College	16	20	14

What percentage of college students prefer classic rock?

321 The expression $49 x^{2}-36$ is equivalent to

322 What is the degree of the polynomial
$5 x-3 x^{2}-1+7 x^{3}$?

1) 1
2) 2
3) 3
4) 5

323
A satellite television company charges a one-time installation fee and a monthly service charge. The total cost is modeled by the function $y=40+90 x$. Which statement represents the meaning of each part of the function?

324 Kendal bought x boxes of cookies to bring to a party. Each box contains 12 cookies. She decides to keep two boxes for herself. She brings 60 cookies to the party. Which equation can be used to find the number of boxes, x, Kendal bought?

325 Morgan throws a ball up into the air. The height of the ball above the ground, in feet, is modeled by the function $h(t)=-16 t^{2}+24 t$, where t represents the time, in seconds, since the ball was thrown. What is the appropriate domain for this situation?

326 Jordan works for a landscape company during his summer vacation. He is paid $\$ 12$ per hour for mowing lawns and $\$ 14$ per hour for planting gardens. He can work a maximum of 40 hours per week, and would like to earn at least $\$ 250$ this week. If m represents the number of hours mowing lawns and g represents the number of hours planting gardens, which system of inequalities could be used to represent the given conditions?

327 The range of the function $f(x)=|x+3|-5$ is

328 The eleventh term of the sequence $3,-6,12,-24, \ldots$, is

1) -3072
2) -6144
3) 3072
4) 6144

329 A student is asked to solve the equation $4(3 x-1)^{2}-17=83$. The student's solution to the problem starts as $4(3 x-1)^{2}=100$

$$
(3 x-1)^{2}=25
$$

A correct next step in the solution of the problem is

Algebra I Regents Bimodal Worksheet \# 34 www.jmap.org

330 The function $h(x)$, which is graphed below, and the function $g(x)=2|x+4|-3$ are given.

Which statements about these functions are true?
I. $\quad g(x)$ has a lower minimum value than $h(x)$.
II. For all values of $x, h(x)<g(x)$.
III. For any value of $x, g(x) \neq h(x)$.

331 The expression $\left(-x^{2}+3 x-7\right)-\left(4 x^{2}+5 x-2\right)$ is equivalent to

1) $-5 x^{2}-2 x-9$
2) $-5 x^{2}-2 x-5$
3) $-5 x^{2}+8 x-9$
4) $-5 x^{2}+8 x-5$

332 Which expression is equivalent to $16 x^{2}-36$?

333 Sam and Jeremy have ages that are consecutive odd integers. The product of their ages is 783 . Which equation could be used to find Jeremy's age, j, if he is the younger man?

Name: \qquad

334 For which function defined by a polynomial are the zeros of the polynomial -4 and -6 ?

335 A ball is thrown into the air from the edge of a 48-foot-high cliff so that it eventually lands on the ground. The graph below shows the height, y, of the ball from the ground after x seconds.

For which interval is the ball's height always decreasing?

336 Which value of x satisfies the equation $\frac{7}{3}\left(x+\frac{9}{28}\right)=20$?

337 When directed to solve a quadratic equation by completing the square, Sam arrived at the equation $\left(x-\frac{5}{2}\right)^{2}=\frac{13}{4}$. Which equation could have been the original equation given to Sam?

338 When factored completely, $x^{3}-13 x^{2}-30 x$ is
\qquad

The table below shows the average diameter of a pupil in a person's eye as he or she grows older.

Age (years)	Average Pupil Diameter (mm)
20	4.7
30	4.3
40	3.9
50	3.5
60	3.1
70	2.7
80	2.3

What is the average rate of change, in millimeters per year, of a person's pupil diameter from age 20 to age 80 ?

340
A laboratory technician studied the population growth of a colony of bacteria. He recorded the number of bacteria every other day, as shown in the partial table below.

\mathbf{t} (time, in days)	0	2	4
$\mathbf{f (t)}$ (bacteria)	25	15,625	$9,765,625$

Which function would accurately model the technician's data?

341 How many of the equations listed below represent the line passing through the points $(2,3)$ and (4,-7)?

$$
\begin{aligned}
& 5 x+y=13 \\
& y+7=-5(x-4) \\
& y=-5 x+13 \\
& y-7=5(x-4)
\end{aligned}
$$

342 What is the product of $2 x+3$ and $4 x^{2}-5 x+6$?

343 When $(2 x-3)^{2}$ is subtracted from $5 x^{2}$, the result is

344 The Speedy Jet Ski Rental Company charges an insurance fee and an hourly rental rate. The total cost is modeled by the function $R(x)=30+40 x$. Based on this model, which statements are true?
I. $R(x)$ represents the total cost.
II. x is the number of hours rented.
III. $\$ 40$ is the insurance fee.
IV. $\$ 30$ is the hourly rental rate.

1) I, only
2) I and II, only
3) I, III, and IV, only
4) I, II, III, and IV

345 In a sequence, the first term is 4 and the common difference is 3 . The fifth term of this sequence is

Algebra I Regents Bimodal Worksheet \# 36 www.jmap.org

346 The function $h(t)=-16 t^{2}+144$ represents the height, $h(t)$, in feet, of an object from the ground at t seconds after it is dropped. A realistic domain for this function is

347
If $f(x)=x^{2}-2 x-8$ and $g(x)=\frac{1}{4} x-1$, for which values of x is $f(x)=g(x)$?

348 If the quadratic formula is used to find the roots of the equation $x^{2}-6 x-19=0$, the correct roots are

349 An equation used to find the velocity of an object is given as $v^{2}=u^{2}+2 a s$, where u is the initial velocity, v is the final velocity, a is the acceleration of the object, and s is the distance traveled. When this equation is solved for a, the result is

1) $a=\frac{v^{2} u^{2}}{2 s}$
2) $a=\frac{v^{2}-u^{2}}{2 s}$
3) $a=v^{2}-u^{2}-2 s$
4) $a=2 s\left(v^{2}-u^{2}\right)$

350 Grisham is considering the three situations below. I. For the first 28 days, a sunflower grows at a rate of 3.5 cm per day.
II. The value of a car depreciates at a rate of 15% per year after it is purchased.
III. The amount of bacteria in a culture triples every two days during an experiment.
Which of the statements describes a situation with an equal difference over an equal interval?

Name: \qquad

351 Which equation and ordered pair represent the correct vertex form and vertex for
$j(x)=x^{2}-12 x+7$?

352 If $f(x)=x^{2}+2 x+1$ and $g(x)=3 x+5$, then what is the value of $f(1)-g(3)$?

1) 10
2) 8
3) -10
4) -8

353 Boyle's Law involves the pressure and volume of gas in a container. It can be represented by the formula $P_{1} V_{1}=P_{2} V_{2}$. When the formula is solved for P_{2}, the result is

354 What are the solutions to the equation
$3 x^{2}+10 x=8$?

355 In 2013, the United States Postal Service charged $\$ 0.46$ to mail a letter weighing up to 1 oz . and $\$ 0.20$ per ounce for each additional ounce. Which function would determine the cost, in dollars, $c(z)$, of mailing a letter weighing z ounces where z is an integer greater than 1 ?

356 The function $f(x)=3 x^{2}+12 x+11$ can be written in vertex form as

357 The zeros of the function $f(x)=2 x^{2}-4 x-6$ are

Algebra I Regents Bimodal Worksheet \# 37 www.jmap.org

358 To watch a varsity basketball game, spectators must buy a ticket at the door. The cost of an adult ticket is $\$ 3.00$ and the cost of a student ticket is $\$ 1.50$. If the number of adult tickets sold is represented by a and student tickets sold by s, which expression represents the amount of money collected at the door from the ticket sales?

359 The third term in an arithmetic sequence is 10 and the fifth term is 26 . If the first term is a_{1}, which is an equation for the nth term of this sequence?

360 The graph of the function $f(x)=\sqrt{x+4}$ is shown below.

The domain of the function is

361 What is the solution of the equation
$2(x+2)^{2}-4=28$?

362 The country of Benin in West Africa has a population of 9.05 million people. The population is growing at a rate of 3.1% each year. Which function can be used to find the population 7 years from now?

Name: \qquad

363 Some banks charge a fee on savings accounts that are left inactive for an extended period of time. The equation $y=5000(0.98)^{x}$ represents the value, y, of one account that was left inactive for a period of x years. What is the y-intercept of this equation and what does it represent?

364 Officials in a town use a function, C, to analyze traffic patterns. $C(n)$ represents the rate of traffic through an intersection where n is the number of observed vehicles in a specified time interval. What would be the most appropriate domain for the function?

Algebra I Regents Bimodal Worksheets

Answer Section

1 ANS:
3.5

PTS: 2 REF: 061922ai TOP: Dispersion KEY: basic
2 ANS:
$\frac{1}{4}$ cup
4 tablespoons
PTS: 2 REF: 081812ai TOP: Conversions KEY: dimensional analysis
3 ANS:
month
$\left(\frac{\$ 1824-1140}{3-0 \mathrm{yr}}\right)\left(\frac{1 \mathrm{yr}}{12 \mathrm{~m}}\right)=\frac{\$ 19}{\mathrm{~m}}$
PTS: 2
REF: 062105ai TOP: Rate of Change
4 ANS:
$(m-16)(m+4)$
PTS: 2 REF: 081803ai TOP: Factoring Polynomials
KEY: quadratic
5 ANS:
$-11 . \overline{3}$
$\frac{2}{3}\left(\frac{1}{4} x-2\right)=\frac{1}{5}\left(\frac{4}{3} x-1\right)$

$$
10(3 x-24)=3(16 x-12)
$$

$$
30 x-240=48 x-36
$$

$$
-204=18 x
$$

$$
x=-11 . \overline{3}
$$

PTS: 2
REF: 011822ai
TOP: Solving Linear Equations
KEY: fractional expressions
6 ANS:
$(2 x+5)(2 x-5)$
PTS: 2
REF: 081807ai
TOP: Factoring the Difference of Perfect Squares
KEY: quadratic

7 ANS:
$y-7=\frac{4}{3}(x-2)$
$m=\frac{7-3}{2--1}=\frac{4}{3}$
PTS: 2 REF: fall2302ai TOP: Writing Linear Equations
KEY: other forms
8 ANS:
distributive property of multiplication over subtraction
PTS: 2 REF: 011801ai TOP: Identifying Properties
9 ANS:
an integer ≥ 0
PTS: 2 REF: 061821ai TOP: Domain and Range
KEY: context
10 ANS:
$2 a^{2}+2 a-11$
$2 a^{2}-5-2(3-a)=2 a^{2}-5-6+2 a=2 a^{2}+2 a-11$
PTS: 2
REF: 011911ai TOP: Operations with Polynomials
KEY: subtraction
11 ANS:
$\frac{1}{3}$
$2+3(2 a+1)=3(a+2)$

$$
\begin{aligned}
2+6 a+3 & =3 a+6 \\
3 a+5 & =6 \\
3 a & =1 \\
a & =\frac{1}{3}
\end{aligned}
$$

PTS: 2 REF: 012307ai TOP: Solving Linear Equations
12 ANS:
-3
$x^{2}-6 x=12$
$x^{2}-6 x+9=12+9$
$(x-3)^{2}=21$
PTS: 2
REF: 061812ai
TOP: Solving Quadratics
KEY: completing the square

13 ANS:
2\%
PTS: 2 REF: 061923ai TOP: Modeling Exponential Functions
14 ANS:
I, II, and III
PTS: 2 REF: 061823ai TOP: Transforming Formulas
15 ANS:
exponential
PTS: 2 REF: 081907ai TOP: Families of Functions
16 ANS:
$6 x^{3}+4 x^{2}-34$
$2\left(3 x^{3}+2 x^{2}-17\right)$
PTS: 2 REF: 081813ai TOP: Operations with Polynomials
KEY: addition
17 ANS:
$\left\{-\frac{4}{3}, 2\right\}$

$$
\begin{array}{rlrl}
2 x-4 & =0 & 3 x+4 & =0 \\
x & =2 & x & =-\frac{4}{3}
\end{array}
$$

PTS: 2 REF: 062212ai TOP: Zeros of Polynomials
18 ANS:
the addition property of equality
PTS: 2 REF: 061909ai TOP: Identifying Properties
19 ANS:
6
$\frac{x-3}{4}+\frac{8}{12}=\frac{17}{12}$

$$
\frac{x-3}{4}=\frac{9}{12}
$$

$$
\frac{x-3}{4}=\frac{3}{4}
$$

$$
x-3=3
$$

$$
x=6
$$

PTS: 2
REF: 012005ai
TOP: Solving Linear Equations
KEY: fractional expressions

20 ANS:
Ryan
PTS: 2 REF: 012303ai TOP: Modeling Expressions
21 ANS:
whole numbers
PTS: 2 REF: 062206ai TOP: Domain and Range
KEY: context
22 ANS:
$x(2 x-6)=1100$
PTS: 2 REF: 082306ai TOP: Geometric Applications of Quadratics
23 ANS:
$3.50 H+2.50 P=43$
$H+P=14$

PTS: 2 REF: 011803ai TOP: Modeling Linear Systems
24 ANS:
19
$f(2)=2\left(3^{2}\right)+1=19$
PTS: 2 REF: 012001ai TOP: Functional Notation
25 ANS:
II and III, only
$10(x-5)=-154+2(x-2)=9 \quad \frac{1}{3} x=\frac{3}{2}$
$10 x-50=-15 \quad 4+2 x-4=9$

$$
\begin{array}{rlrl}
10 x & =35 & 2 x & =9 \\
x & =\frac{7}{2} & x & =\frac{9}{2} \\
& &
\end{array}
$$

PTS: 2 REF: 082217ai TOP: Solving Linear Equations
26 ANS:
3
$\frac{17-5}{5-1}=\frac{12}{4}=3$
PTS: 2 REF: 062215ai TOP: Sequences KEY: difference or ratio

27 ANS:
natural numbers
PTS: 2
REF: 012313ai
TOP: Domain and Range

28 ANS:
$2 a+1$
$\frac{x-1}{2}=a$
$x-1=2 a$
$x=2 a+1$
PTS: 2 REF: 062223ai TOP: Transforming Formulas
29 ANS:
a closed circle at $(3,15)$ and an open circle at $(3,13)$
PTS: 2 REF: 081815ai TOP: Graphing Piecewise-Defined Functions
30 ANS:
the number of time periods
PTS: 2 REF: 062308ai TOP: Modeling Exponential Functions
31 ANS:
$T_{f}=\frac{Q}{m C}+T_{i}$

$$
\frac{Q}{m C}=T_{f}-T_{i}
$$

$\frac{Q}{m C}+T_{i}=T_{f}$
PTS: 2 REF: 012318ai TOP: Transforming Formulas
32 ANS:
$2 x^{2}-11 x-15$
$2 x^{2}-8 x-3 x-15$

$$
2 x^{2}-11 x-15
$$

PTS: 2 REF: 012301ai TOP: Operations with Polynomials
KEY: subtraction
33 ANS:
$\frac{30,000 \text { items }}{1 \text { week }} \bullet \frac{1 \text { week }}{7 \text { days }} \bullet \frac{1 \text { day }}{24 \text { hrs }} \bullet \frac{1 \mathrm{hr}}{60 \mathrm{~min}}$
PTS: 2 REF: 062309ai TOP: Conversions KEY: dimensional analysis
34 ANS:
1.49
$\frac{91 \mathrm{~cm}}{\text { day }} \times \frac{1 \text { day }}{24 \mathrm{hrs}} \times \frac{1 \text { inch }}{2.54 \mathrm{~cm}} \approx \frac{1.49 \mathrm{in}}{\mathrm{hr}}$
PTS: 2
REF: 061924ai
TOP: Conversions KEY: dimensional analysis

35 ANS:
$0.10 d+0.05(2 d+5)=1.45$
PTS: 2 REF: 062213ai TOP: Modeling Linear Equations
36 ANS:
$\{0,1,16,81\}$
PTS: 2
REF: 081806ai TOP: Domain and Range
KEY: limited domain
37 ANS:
6
$116(30)+439 L \leq 6500$

$$
439 L \leq 3020
$$

$L \leq 6.879$
PTS: 2 REF: 011904ai TOP: Modeling Linear Inequalities
38 ANS:
$c(s)=0.75 s+5.75$
PTS: 2 REF: 062203ai TOP: Modeling Linear Functions
39 ANS:
37
$\frac{44+30}{32+44+24+36+30+34}=37 \%$
PTS: 2
REF: 082212ai
TOP: Frequency Tables
KEY: two-way
40 ANS:
$[-4.5, \infty)$
$x=\frac{-(-2)}{2(2)}=0.5 \quad h(0.5)=-4.5$
PTS: 2 REF: 081923ai TOP: Domain and Range
KEY: real domain, quadratic
41 ANS:
II and III
I. $f(4)=-\frac{4}{3}$ and $g(4)=2$; II. $f(12)=4$ and $g(12)=4$

PTS: 2 REF: 062111ai TOP: Other Systems
42 ANS:
linear
PTS: 2 REF: 011805ai TOP: Families of Functions

43 ANS:
$b<8$
$\frac{3}{2} b<12$

$$
\begin{aligned}
& b<12\left(\frac{2}{3}\right) \\
& b<8
\end{aligned}
$$

PTS: 2
REF: 062207ai
TOP: Solving Linear Inequalities
44 ANS:
$2 x$
$\frac{2 x^{2}}{x}=2 x$
PTS: 2 REF: 082202ai TOP: Sequences KEY: difference or ratio
45 ANS:
$-27+15(n-1)$
PTS: 2 REF: 081820ai TOP: Sequences KEY: explicit
46 ANS:
$2 x^{3}-x^{2}+3 x$
PTS: 2
REF: 082206ai TOP: Operations with Polynomials
KEY: multiplication
47 ANS:
$y=64(1-.5)^{3}$
PTS: 2
48 ANS:
Anne
PTS: 2
REF: 061905ai TOP: Modeling Expressions
49 ANS:
324
$a_{5}=4(-3)^{5-1}=324$
PTS: 2
50 ANS:
-2
PTS: 2
REF: 012007ai
TOP: Graphing Polynomial Functions
51 ANS:
6

PTS: 2
REF: 081805ai
TOP: Functional Notation

52 ANS:
-4 and 6
$p(x)=x^{2}-2 x-24=(x-6)(x+4)=0$
$x=6,-4$
PTS: 2 REF: 061804ai TOP: Zeros of Polynomials
53 ANS:
$C(x)=35 x+245$
PTS: 2 REF: 062101ai TOP: Modeling Linear Functions
54 ANS:
nonnegative integers
PTS: 2 REF: 062324ai TOP: Domain and Range
KEY: context
55 ANS:
36
The value of the third quartile is the last vertical line of the box.
PTS: 2 REF: 012306ai TOP: Box Plots KEY: interpret
56 ANS:
148
$a_{n}=4 n+8$
$a_{35}=4(35)+8=148$
PTS: 2 REF: 012008ai TOP: Sequences KEY: explicit
57 ANS:
38.2
$\frac{26}{42+26}=0.382$
PTS: 2 REF: 061912ai TOP: Frequency Tables
KEY: two-way
58 ANS:
$(-\infty, \infty)$
PTS: 2 REF: 062320ai TOP: Domain and Range
59 ANS:
2 and 3

$$
\begin{aligned}
x^{2}+2 x+1 & =7 x-5 \\
x^{2}-5 x+6 & =0 \\
(x-3)(x-2) & =0 \\
x & =3,2
\end{aligned}
$$

PTS: 2
REF: 012312ai
TOP: Quadratic-Linear Systems

60 ANS:
A and C, only
PTS: 2 REF: 011909ai TOP: Solving Quadratics
KEY: graph
61 ANS:
153
$k(9)=2(9)^{2}-3 \sqrt{9}=162-9=153$
PTS: 2
REF: 061802ai TOP: Functional Notation
62 ANS:
d
$31=4+(10-1) 3$
PTS: 2 REF: 062118ai TOP: Sequences KEY: explicit
63 ANS:
$23 x+250$
PTS: 2
REF: 081901ai TOP: Modeling Expressions
64 ANS:
$a>-15 b$
$a+7 b>-8 b$

$$
a>-15 b
$$

PTS: 2 REF: 061913ai TOP: Solving Linear Inequalities
65 ANS:
0.4
$\frac{3}{5}\left(x+\frac{4}{3}\right)=1.04$
$3\left(x+\frac{4}{3}\right)=5.2$

$$
\begin{array}{r}
3 x+4=5.2 \\
3 x=1.2 \\
x=0.4
\end{array}
$$

PTS: 2
KEY: decimals
REF: 011905ai TOP: Solving Linear Equations

66 ANS:
$3 y=-4 x+15$
$y+3=-\frac{4}{3}(x-6)$
$3 y+9=-4 x+24$
$3 y=-4 x+15$
PTS: 2 REF: 082321ai TOP: Writing Linear Equations
KEY: other forms
67 ANS:
$(6 x+3)(6 x-3)$
PTS: 2 REF: 082203ai TOP: Factoring the Difference of Perfect Squares
KEY: quadratic
68 ANS:
$-4,0$, and 4
$m(x)=x(x+4)(x-4)$
PTS: 2 REF: 082313ai TOP: Zeros of Polynomials
69 ANS:
the height from which the ball is thrown
PTS: 2 REF: 012315ai TOP: Graphing Quadratic Functions
KEY: key features
70 ANS:
10

$$
\frac{4}{3}=\frac{x+10}{15}
$$

$3 x+30=60$
$x=10$
PTS: 2 REF: 081904ai TOP: Solving Linear Equations
KEY: fractional expressions
71 ANS:
$[2, \infty)$
PTS: 2
REF: 061816ai
TOP: Domain and Range
KEY: real domain, quadratic
72 ANS:
$3 x^{2}-6 x+14$
$\left(3 x^{2}+4 x-8\right)+22-10 x=3 x^{2}-6 x+14$
PTS: 2 REF: 082302ai TOP: Operations with Polynomials
KEY: addition

73 ANS:
narrower and open downward
PTS: 2 REF: 012310ai TOP: Graphing Polynomial Functions
74 ANS: 3
$-x^{3}+10 x^{2}+24 x=-x\left(x^{2}-10 x-24\right)=-x(x+2)(x-12)$
PTS: 2 REF: 012421ai TOP: Factoring Polynomials
75 ANS:
$p<4$
$4 p+2<2 p+10$

$$
\begin{aligned}
2 p & <8 \\
p & <4
\end{aligned}
$$

PTS: 2 REF: 061801ai TOP: Solving Linear Inequalities
76 ANS:
$2 x^{2}+2 x+10$
$5 x^{2}-x+4-3 x^{2}+3 x+6=2 x^{2}+2 x+10$
PTS: 2 REF: 062304ai TOP: Operations with Polynomials
KEY: subtraction
77 ANS:
I and III
II is linear.
PTS: 2 REF: 081823ai TOP: Families of Functions
78 ANS:
$f(x)=(x+1)(x-3)$
PTS: 2
REF: 082315ai TOP: Graphing Quadratic Functions
KEY: key features
79 ANS:
$h+p \geq 200$
PTS: 2 REF: 012324ai TOP: Modeling Systems of Linear Inequalities
80 ANS:
shifted 3 units to the right
PTS: 2 REF: 061904ai TOP: Graphing Polynomial Functions
81 ANS:
$\frac{1.35 \text { euros }}{1 \mathrm{~L}} \cdot \frac{1 \mathrm{~L}}{0.264 \mathrm{gal}} \bullet \frac{\$ 1.00}{0.622 \text { euros }}$
PTS: 2
REF: 082324ai
TOP: Conversions

82 ANS:
90
PTS: 2 REF: 061805ai TOP: Box Plots KEY: interpret
83 ANS:
-28
$3 x-24+4 x=8 x+4$

$$
7 x-24=8 x+4
$$

$$
-28=x
$$

PTS: 2 REF: 062106ai TOP: Solving Linear Equations
KEY: integral expressions
84 ANS:
$V(x)=(6+x)(4+x)(8)$
PTS: 2
REF: 062312ai
TOP: Geometric Applications of Quadratics
85 ANS:
zero
$b^{2}-4 a c=2^{2}-4(4)(5)=-76$
PTS: 2
REF: 061822ai TOP: Using the Discriminant
86 ANS:
$x<4$
$-3(x-6)>2 x-2$
$-3 x+18>2 x-2$

$$
20>5 x
$$

$$
4>x
$$

PTS: 2 REF: 082310ai TOP: Solving Linear Inequalities
87 ANS:
$-4 x^{2}-6$
PTS: 2 REF: 011813ai TOP: Operations with Polynomials
KEY: addition
88 ANS:
36
$K(-3)=2(-3)^{2}-5(-3)+3=18+15+3=36$
PTS: 2
REF: 062103ai TOP: Functional Notation
89 ANS:
I, II, and III
PTS: 2 REF: 012022ai TOP: Dot Plots

90 ANS:
2

$$
\begin{aligned}
-2+8 x & =3 x+8 \\
5 x & =10 \\
x & =2
\end{aligned}
$$

PTS: 2 REF: 081804ai TOP: Solving Linear Equations
KEY: integral expressions
91 ANS:
exponential
PTS: 2 REF: 012316ai TOP: Families of Functions
92 ANS:
Emily, only
PTS: 2
REF: 012308ai TOP: Families of Functions
93 ANS:
2
$-4.9(0)^{2}+50(0)+2$
PTS: 2
REF: 011811ai
TOP: Graphing Quadratic Functions
KEY: key features
94 ANS:
$x \leq-15$

$$
\begin{aligned}
&-\frac{2}{5} x \geq \frac{1}{3} x+11 \\
&-\frac{11}{15} x \geq 11 \\
&-\frac{15}{11}\left(-\frac{11}{15} x\right) \leq\left(-\frac{15}{11}\right) 11
\end{aligned}
$$

$$
x \leq-15
$$

PTS: 2
REF: 062322ai
TOP: Solving Linear Inequalities
95 ANS: 3
PTS: 2
REF: 012423ai TOP: Zeros of Polynomials
96 ANS:
4
$3 K-5=7$
$3 K=12$
$K=4$
PTS: 2
REF: 082205ai
TOP: Identifying Solutions

97 ANS:
$1.75+0.10 d \geq 3.00$
PTS: 2 REF: 062314ai TOP: Modeling Linear Inequalities
98 ANS:
3.5
$\frac{5(2 x-4)}{3}=5$

$$
\begin{aligned}
10 x-20 & =15 \\
10 x & =35 \\
x & =3.5
\end{aligned}
$$

PTS: 2 REF: 082304ai TOP: Solving Linear Equations
99 ANS:
II and IV
PTS: 2 REF: 011908ai TOP: Identifying Properties
100 ANS:
$\frac{5 \pm \sqrt{41}}{2}$
$\frac{5 \pm \sqrt{(-5)^{2}-4(1)(-4)}}{2(1)}=\frac{5 \pm \sqrt{41}}{2}$
PTS: 2 REF: 061921ai TOP: Solving Quadratics
KEY: quadratic formula
101 ANS:
24
$\frac{56}{56+74+103} \approx 0.24$
PTS: 2
REF: 081906ai TOP: Frequency Tables
KEY: two-way
102 ANS:
7 units below the vertex of $f(x)$
$-5-2=-7$
PTS: 2 REF: 081905ai TOP: Graphing Polynomial Functions
103 ANS:
$\{-16,-12,-4\}$
$f(-2)=f(-1)=-16, f(0)=-12, f(1)=-4$
PTS: 2 REF: 011914ai TOP: Domain and Range
KEY: limited domain

104 ANS:
$-13 x^{2}+34 x-29$
$3\left(x^{2}+2 x-3\right)-4\left(4 x^{2}-7 x+5\right)=3 x^{2}+6 x-9-16 x^{2}+28 x-20=-13 x^{2}+34 x-29$
PTS: 2 REF: 061803ai TOP: Operations with Polynomials
KEY: subtraction
105 ANS:
every day
$1000(0.5)^{2 t}=1000\left(0.5^{2}\right)^{t}=1000(0.25)^{t}$
PTS: 2 REF: 011923ai TOP: Modeling Exponential Functions
106 ANS:
$2(x+3)^{2}-1$
PTS: 2 REF: 011819ai TOP: Graphing Polynomial Functions
107 ANS:
D and B
PTS: 2 REF: 082219ai TOP: Identifying Properties
108 ANS:
$0 \leq t \leq 14$
PTS: 2
REF: 012021ai
TOP: Domain and Range
KEY: context
109 ANS:
1 and 7
$3(x-4)^{2}=27$

$$
\begin{aligned}
(x-4)^{2} & =9 \\
x-4 & = \pm 3 \\
x & =1,7
\end{aligned}
$$

PTS: 2 REF: 011814ai TOP: Solving Quadratics
KEY: taking square roots
110 ANS:
positive real numbers
Time is continuous and positive.
PTS: 2 REF: 081921ai TOP: Domain and Range
KEY: context
111 ANS:
exponential growth function
PTS: 2
REF: 061906ai TOP: Families of Functions

112 ANS:
0.6
$\frac{22.7 \mathrm{~m}}{\mathrm{hr}} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \times \frac{1.609 \mathrm{~km}}{1 \mathrm{~m}}=\frac{0.6 \mathrm{~km}}{\mathrm{~min}}$
PTS: 2
REF: 062123ai TOP: Conversions KEY: dimensional analysis
113 ANS: 4
Vertex $(4,1)$
PTS: 2
REF: 012424ai
TOP: Domain and Range
114 ANS: 4
PTS: 2
REF: 012420ai TOP: Modeling Exponential Functions
115 ANS:
$\{ \pm 6\}$
$2 x^{2}=72$
$x^{2}=36$
$x= \pm 6$
PTS: 2 REF: 062318ai TOP: Solving Quadratics
KEY: taking square roots
116 ANS:
-1 and -7
$(x+4)^{2}=9$
$x+4= \pm 3$
$x=-1,-7$
PTS: 2
REF: 012015ai TOP: Solving Quadratics
KEY: taking square roots
117 ANS:
$g(x)=x(x+3)(x-4)$
PTS: 2 REF: 012322ai TOP: Zeros of Polynomials
118 ANS:
-143
$a_{24}=-5+(24-1)(-6)=-143$
PTS: 2 REF: 062305ai TOP: Sequences KEY: explicit
119 ANS:
14
$f(8)=\frac{3(8)+4}{2}=\frac{28}{2}=14$
PTS: 2
REF: 082201ai TOP: Functional Notation

120 ANS:
$\frac{1500 \text { meters }}{15.42 \text { min }} \bullet \frac{60 \mathrm{~min}}{1 \text { hour }} \bullet \frac{3.281 \text { feet }}{1 \text { meter }} \bullet \frac{1 \text { mile }}{5280 \text { feet }}$
PTS: 2 REF: 082221ai TOP: Conversions
121 ANS:
the initial height of the ball
$h(0)=-4.9(0)^{2}+6(0)+5=5$
PTS: 2 REF: 011913ai TOP: Graphing Quadratic Functions
KEY: key features
122 ANS:
-27
$g(-3)=-2(-3)^{2}+3(-3)=-18-9=-27$
PTS: 2 REF: 011902ai TOP: Functional Notation
123 ANS:
I and III, only
f and h 's vertex is $(-2,5)$. g 's axis of symmetry is $x=-1.5$.
PTS: 2 REF: 062319ai TOP: Comparing Quadratic Functions
124 ANS:
I and IV
PTS: 2 REF: 081817ai TOP: Modeling Linear Functions
125 ANS:
2 units right and 3 units up
PTS: 2 REF: 081808ai TOP: Graphing Polynomial Functions
126 ANS:
7
$8-1=7$
PTS: 2 REF: 081915ai TOP: Box Plots KEY: interpret
127 ANS:
positive rational numbers
PTS: 2 REF: 061920ai TOP: Domain and Range
KEY: context
128
NS:
$m^{2}-6 m+9$
PTS: 2 REF: 062217ai TOP: Operations with Polynomials
KEY: multiplication

129 ANS:
$f(x), q(x)$, and $p(x)$
$f(4)=q(4)=p(4)=3$
PTS: 2 REF: 011921ai TOP: Comparing Functions
130 ANS:
I and III
$t(m)=2(3)^{2 m+1}=2(3)^{2 m}(3)^{1}=6(3)^{2 m}=6\left(3^{2}\right)^{m}=6(9)^{m}$
PTS: 2 REF: 012019ai TOP: Modeling Exponential Functions
131 ANS:
$2 x+0.50 y \leq 100$
PTS: 2 REF: 062205ai TOP: Modeling Linear Inequalities
132 ANS:
$(4 x-9)(4 x+9)$
PTS: 2 REF: 081908ai TOP: Factoring the Difference of Perfect Squares
KEY: quadratic
133 ANS:
-2
$f(-2)=-3(-2)^{2}+10=-12+10=-2$
PTS: 2 REF: 012304ai TOP: Functional Notation
134 ANS:
0.25
$\frac{60-45}{60}=\frac{15}{60}=\frac{1}{4}$

PTS: 2 REF: 081814ai TOP: Frequency Tables
KEY: two-way
135 ANS:
greater than or equal to -6
$x=\frac{-2}{2(1)}=-1 ; \quad f(-1)=(-1)^{2}+2(-1)-5=-6$

PTS: 2 REF: 082316ai TOP: Domain and Range
136 ANS:
$x \geq-1$
PTS: 2 REF: 011917ai TOP: Domain and Range
KEY: graph
ANS:
60
The value of the third quartile is the last vertical line of the box.
PTS: 2 REF: 082307ai TOP: Box Plots KEY: interpret

138 ANS:

whole numbers
PTS: 2 REF: 062116ai TOP: Domain and Range
KEY: context
139 ANS:
$I=\sqrt{\frac{P}{R}}$
$P=I^{2} R$
$I^{2}=\frac{P}{R}$
$I=\sqrt{\frac{P}{R}}$
PTS: 2 REF: 011920ai TOP: Transforming Formulas
140 ANS:
29,873(1-.20) ${ }^{t}$
PTS: 2 REF: 012311ai TOP: Modeling Exponential Functions
141 ANS:
I, only
I. $10 \mathrm{mi}\left(\frac{1.609 \mathrm{~km}}{1 \mathrm{mi}}\right)=16.09 \mathrm{~km}$; II. $44880 \mathrm{ft}\left(\frac{1 \mathrm{mi}}{5280 \mathrm{ft}}\right)\left(\frac{1.609 \mathrm{~km}}{1 \mathrm{mi}}\right) \approx 13.6765 \mathrm{~km}$; III.
$15560 \mathrm{yd}\left(\frac{3 \mathrm{ft}}{1 \mathrm{yd}}\right)\left(\frac{1 \mathrm{mi}}{5280 \mathrm{ft}}\right)\left(\frac{1.609 \mathrm{~km}}{1 \mathrm{mi}}\right) \approx 14.225 \mathrm{~km}$
PTS: 2 REF: 061815ai TOP: Conversions KEY: dimensional analysis
142 ANS: 4
$\frac{3}{2}\left(\frac{2}{3}(3-2 x)=\frac{3}{4}\right)$
$3-2 x=\frac{9}{8}$
$24-16 x=9$
$15=16 x$
$x=\frac{15}{16}$
PTS: 2 REF: 012416ai TOP: Solving Linear Equations
143 ANS:
$1.60 x+1.75 y \leq 10$
PTS: 2
REF: 061806ai TOP: Modeling Linear Inequalities

144 ANS:

3
PTS: 2 REF: 082309ai TOP: Modeling Expressions
145 ANS:
I, II, and III
Each expression equals x^{9}.
PTS: 2 REF: 082311ai TOP: Powers of Powers
146 ANS:
6

PTS: 2 REF: 082208ai TOP: Modeling Expressions
147 ANS:
45.2
$\frac{38}{84} \approx 45.2 \%$
PTS: 2
REF: 062317ai TOP: Frequency Tables
KEY: two-way
148 ANS:
72
$\frac{138}{192} \approx 72 \%$
PTS: 2
REF: 012010ai TOP: Frequency Tables
KEY: two-way
149
ANS:
-26
$\left(6 x^{2}+2 x\right)(5 x-6)=30 x^{3}-36 x^{2}+10 x^{2}-12 x=30 x^{3}-26 x^{2}-12 x$
PTS: 2 REF: 081824ai TOP: Operations with Polynomials
KEY: multiplication
150 ANS: 1
$\left(x^{2}+3 x+9\right)(x-3)=x^{3}-3 x^{2}+3 x^{2}-9 x+9 x-27=x^{3}-27$
PTS: 2
REF: 012415ai TOP: Operations with Polynomials
KEY: multiplication

151 ANS:
5

$$
\begin{aligned}
h(t) & =0 \\
-16 t^{2}+64 t+80 & =0 \\
t^{2}-4 t-5 & =0 \\
(t-5)(t+1) & =0 \\
t & =5,-1
\end{aligned}
$$

PTS: 2
REF: 081910ai
TOP: Graphing Quadratic Functions
KEY: key features
152 ANS:
$D+Q=30$
. $10 D+.25 Q=4.80$
PTS: 2 REF: 081809ai TOP: Modeling Linear Systems
ANS: 2 PTS: 2
154 ANS:
39.6\%
$\frac{58+41}{42+58+20+84+41+5}=\frac{99}{250}=0.396$
PTS: 2
REF: 061809ai
TOP: Frequency Tables
KEY: two-way
155 ANS:
1, 2
$-2(x-5)<10$
$x-5>-5$
$x>0$
PTS: 2
REF: 011817ai TOP: Interpreting Solutions
156 ANS:
\{0, 10, 42 $\}$
$f(-2)=0, f(3)=10, f(5)=42$
PTS: 2
REF: 011812ai
TOP: Domain and Range
KEY: limited domain
157 ANS:
$600(1+0.024)^{4}$
PTS: 2
REF: 082209ai
TOP: Modeling Exponential Functions
158 ANS:
inches per minute
PTS: 2 REF: 011924ai TOP: Conversions KEY: dimensional analysis

159 ANS:

Fred said II and III because the exponents are decreasing.
PTS: 2 REF: 061819ai TOP: Modeling Expressions
160 ANS: 1
$C=8 x^{3} y^{5}$
PTS: 2 REF: 012419ai TOP: Powers of Powers
161 ANS:
$1.50(5)+2.00 m \leq 19.00$
PTS: 2 REF: 062107ai TOP: Modeling Linear Inequalities
162 ANS:
$A(w)=w^{2}+7 w$
$w(w+7)=w^{2}+7 w$
PTS: 2 REF: 081920ai TOP: Geometric Applications of Quadratics
163 ANS:
$f(x), h(x), g(x)$
PTS: 2 REF: 082211ai TOP: Graphing Polynomial Functions
164 ANS:
$r(x)$, and the value is -16
The minimum of $r(x)$ is -16 . The minimum of $q(x)$ is $-9\left(x=\frac{-2}{2(1)}=-1, q(-1)=-9\right)$.
PTS: 2 REF: 081917ai TOP: Comparing Quadratic Functions
165 ANS:
$0 \leq t \leq 2$
PTS: 2 REF: 081918ai TOP: Relating Graphs to Events
166 ANS:
$x+5$
$3(x+4)-(2 x+7)=3 x+12-2 x-7=x+5$

PTS: 2
REF: 062102ai TOP: Operations with Polynomials
KEY: subtraction
167 ANS:
$a+(2 a-7)=41$
PTS: 2 REF: 061915ai TOP: Modeling Linear Equations
168 ANS:
k units to the right and a move of 5 units up
PTS: 2 REF: 062113ai TOP: Graphing Polynomial Functions

169 ANS:
-7
$f(-3)=-12+5=-7$
PTS: 2 REF: 061902ai TOP: Functional Notation
170 ANS: 4
$2 x-7>2.5 x+3$
$-10>0.5 x$
$-20>x$
PTS: 2 REF: 012418ai TOP: Solving Linear Inequalities
171 ANS:
nonnegative rational numbers
PTS: 2
REF: 082322ai
TOP: Domain and Range
KEY: context
172 ANS:
$\frac{2 A}{b_{1}+b_{2}}$
$2 A=\left(b_{1}+b_{2}\right) h$
$\frac{2 A}{b_{1}+b_{2}}=h$
PTS: 2 REF: 062315ai TOP: Transforming Formulas
173 ANS:
$P(c)=.75 c-9.96$
$P(c)=(.50+.25) c-9.96=.75 c-9.96$
PTS: 2 REF: 011807ai TOP: Modeling Linear Functions
174 ANS:
$y=(x+12)^{2}-162$
$y=x^{2}+24 x+144-18-144$
$y=(x+12)^{2}-162$
PTS: 2 REF: 081911ai TOP: Vertex Form of a Quadratic
175 ANS:
$5 x^{2}-12 x-2$
$2\left(x^{2}-1\right)+3 x(x-4)=2 x^{2}-2+3 x^{2}-12 x=5 x^{2}-12 x-2$
PTS: 2
REF: 081903ai TOP: Operations with Polynomials
KEY: addition

176 ANS:

$g(x)$ is wider than $f(x)$.
PTS: 2 REF: 062316ai TOP: Graphing Absolute Value Functions
177 ANS:
$\frac{C-A x}{B}$
$A x+B y=C$

$$
B y=C-A x
$$

$$
y=\frac{C-A x}{B}
$$

PTS: 2 REF: 062211ai TOP: Transforming Formulas
178 ANS:
-7
$g(-4)=-(-4)^{2}-(-4)+5=-7$
PTS: 2 REF: 062311ai TOP: Functional Notation
179 ANS:
$(4 w+1)(w-3)$
PTS: 2 REF: 061917ai TOP: Factoring Polynomials
KEY: quadratic
180 ANS:
$2 x^{2}+x-15$
(d) is the product, but not written in standard form.

PTS: 2
REF: 062108ai TOP: Operations with Polynomials
KEY: multiplication
181 ANS:
$2 x^{2}+x-21$
$(2 x+7)(x-3)=2 x^{2}-6 x+7 x-21=2 x^{2}+x-21$
PTS: 2
REF: 082308ai TOP: Operations with Polynomials
KEY: multiplication
182 ANS:
2
$2 x^{3}+3 x^{2}+7 x-6$
PTS: 2
REF: 082216ai
TOP: Modeling Expressions
183 ANS:
I and III, only
PTS: 2 REF: 061919ai TOP: Sequences KEY: difference or ratio

184 ANS:
$-64 x^{6}$
PTS: 2 REF: 062114ai TOP: Powers of Powers
185 ANS:
exponential
PTS: 2 REF: 062117ai TOP: Families of Functions
186 ANS:
290, the amount he is guaranteed to be paid each week
PTS: 2
REF: 061817ai TOP: Modeling Linear Functions
187 ANS: 3

PTS: 2 REF: 012417ai TOP: Other Systems
188 ANS:
65

$$
\begin{aligned}
d=\frac{37-31}{6-3}=2 & a_{n}=2 n+25 \\
& a_{20}=2(20)+25=65
\end{aligned}
$$

PTS: 2 REF: 061807ai TOP: Sequences KEY: explicit
189 ANS:
$(6.0,5.4)$

$$
\begin{array}{rlrl}
m & =\frac{5-4.6}{4-2}=\frac{.4}{2}=0.2 & 4(0.2 x+4.2)+2 x & =33.6 \quad y=0.2(6)+4.2=5.4 \\
5 & =.2(4)+b & 0.8 x+16.8+2 x & =33.6 \\
4.2 & =b & 2.8 x & =16.8 \\
y & =0.2 x+4.2 & x & =6
\end{array}
$$

PTS: 2 REF: 061618ai TOP: Solving Linear Systems
KEY: substitution

190 ANS:
increasing by 5%
PTS: 2 REF: 082312ai TOP: Modeling Exponential Functions
191 ANS:
[0,4]
PTS: 2
REF: 082222ai TOP: Domain and Range
192 ANS:
$5 x \sqrt{7}$
PTS: 2
REF: fall2301ai TOP: Operations with Radicals
KEY: addition
193 ANS:
inches/minute
PTS: 2
REF: 012323ai TOP: Conversions
194 ANS:
$a_{n}=4 n+8$
PTS: 2 REF: 061424ai TOP: Sequences KEY: explicit
195 ANS:
20° Celsius
$C(68)=\frac{5}{9}(68-32)=20$
PTS: 2 REF: 011710ai TOP: Conversions KEY: formula

Algebra I Regents Bimodal Worksheets
 Answer Section

196 ANS:
exponential growth function
PTS: 2
REF: 061406ai
TOP: Families of Functions
197 ANS:
$F(x)=2^{x}+1$
PTS: 2 REF: 061415ai TOP: Families of Functions
198 ANS:
$C=62+30(g-2)$
PTS: 2 REF: 081508ai TOP: Modeling Linear Equations
199 ANS:
$p(t)=100(3)^{t}$
PTS: 2
REF: 081714ai
TOP: Families of Functions
200 ANS:
-1 and 2

$$
\begin{aligned}
3 x^{2}-3 x-6 & =0 \\
3\left(x^{2}-x-2\right) & =0 \\
3(x-2)(x+1) & =0 \\
x & =2,-1
\end{aligned}
$$

PTS: 2 REF: 081513ai TOP: Zeros of Polynomials
201 ANS:
$4.50+0.79 r \leq 16.00 ; 14$ rides
PTS: 2 REF: 011513ai TOP: Modeling Linear Inequalities
202 ANS:
13
$w=2(3)+7=13$
PTS: 2
REF: 012302ai
TOP: Identifying Solutions
$x \geq 11$
$3 x+2 \leq 5 x-20$
$22 \leq 2 x$
$11 \leq x$

PTS: 2
REF: 061609ai TOP: Solving Linear Inequalities

204 ANS:
A
PTS: 2
REF: 061420ai TOP: Functional Notation
205 ANS:
$c=60+0.05 d$
PTS: 2 REF: 061422ai TOP: Modeling Linear Equations
206 ANS:
$x=4 \pm 2 \sqrt{10}$
$x^{2}-8 x+16=24+16$

$$
\begin{aligned}
(x-4)^{2} & =40 \\
x-4 & = \pm \sqrt{40} \\
x & =4 \pm 2 \sqrt{10}
\end{aligned}
$$

PTS: 2
REF: 061523ai
TOP: Solving Quadratics
KEY: completing the square
207 ANS:

PTS: 2
REF: 061621ai
TOP: Families of Functions
208
ANS:
quadratic
PTS: 2 REF: 061624ai TOP: Families of Functions
209 ANS:
15 and -2
$x^{2}-13 x-30=0$
$(x-15)(x+2)=0$

$$
x=15,-2
$$

PTS: 2
REF: 061510ai
TOP: Zeros of Polynomials
210 ANS:
$f(x)=(x-5)(x+6)$
PTS: 2
REF: 061412ai
TOP: Zeros of Polynomials

211 ANS:
$5 x^{2}+11 x-13$
PTS: 2 REF: 061403ai TOP: Operations with Polynomials
KEY: subtraction
212 ANS:
$-2 g-11$
$2(3 g-4)-(8 g+3)=6 g-8-8 g-3=-2 g-11$
PTS: 2 REF: 011707ai TOP: Operations with Polynomials
KEY: subtraction
213 ANS:
65

$$
a+p=165 \quad 1.75(165-p)+2.5 p=337.5
$$

$1.75 a+2.5 p=337.5288 .75-1.75 p+2.5 p=337.5$

$$
\begin{aligned}
0.75 p & =48.75 \\
p & =65
\end{aligned}
$$

PTS: 2 REF: 061506ai TOP: Modeling Linear Systems
214 ANS:
12
$\frac{0.8\left(10^{2}\right)-0.8\left(5^{2}\right)}{10-5}=\frac{80-20}{5}=12$
PTS: 2 REF: 011521ai TOP: Rate of Change
215 ANS:
4

$$
16^{2 t}=n^{4 t}
$$

$$
\left(16^{2}\right)^{t}=\left(n^{4}\right)^{t}
$$

$\left(\left(4^{2}\right)^{2}\right)^{t}=\left(\left(n^{2}\right)^{2}\right)^{t}$
PTS: 2 REF: 011519ai TOP: Modeling Exponential Functions
216 ANS:
I, II, and IV
PTS: 2
REF: 081509ai TOP: Factoring Polynomials
KEY: quadratic
217 ANS:
It decreases 22% per year.
PTS: 2
REF: 081624ai TOP: Modeling Exponential Functions
218 ANS:
2\% growth
PTS: 2 REF: 011608ai TOP: Modeling Exponential Functions

219 ANS:
up
PTS: 2 REF: 081501ai TOP: Graphing Polynomial Functions
220 ANS:
hours worked per week
PTS: 2 REF: 011501ai TOP: Modeling Linear Functions
221 ANS:
$4(3 x+5)(3 x-5)$
$36 x^{2}-100=4\left(9 x^{2}-25\right)=4(3 x+5)(3 x-5)$
PTS: 2 REF: 081608ai TOP: Factoring the Difference of Perfect Squares
KEY: quadratic
222 ANS:
-2
PTS: 2
REF: 011712ai
TOP: Graphing Absolute Value Functions
223 ANS:
$x>9$
$7-\frac{2}{3} x<x-8$

$$
15<\frac{5}{3} x
$$

$$
9<x
$$

PTS: 2 REF: 011507ai TOP: Solving Linear Inequalities
224 ANS:
$y \geq 2 x-3$
PTS: 2 REF: 011605ai TOP: Graphing Linear Inequalities
225 ANS:
$2 x^{2}+7 x-13$
$3\left(x^{2}-1\right)-\left(x^{2}-7 x+10\right)$
$3 x^{2}-3-x^{2}+7 x-10$
$2 x^{2}+7 x-13$
PTS: 2 REF: 061610ai TOP: Operations with Polynomials
KEY: subtraction
226
ANS:
distributive property of multiplication over subtraction
PTS: 2 REF: 081701ai TOP: Identifying Properties

227 ANS:
17.06
$119.67(0.61)^{5}-119.67(0.61)^{3} \approx 17.06$
PTS: 2 REF: 011603ai TOP: Evaluating Functions
228 ANS:
$r=\sqrt{\frac{V}{\pi h}}$
PTS: 2
REF: 011516ai TOP: Transforming Formulas
229 ANS:
$\frac{I}{P t}$
PTS: 2 REF: 011606ai TOP: Transforming Formulas
230 ANS:
8

$$
\begin{aligned}
& L+S=20 \quad 27.98 L+10.98(20-L)=355.60 \\
& 27.98 L+10.98 S=355.6027 .98 L+219.60-10.98 L=355.60 \\
& 17 L=136 \\
& L=8
\end{aligned}
$$

PTS: 2 REF: 081510ai TOP: Modeling Linear Systems
231 ANS:
2589
$25,000(0.86)^{2}-25,000(0.86)^{3}=18490-15901.40=2588.60$
PTS: 2
REF: 011508ai TOP: Functional Notation
232 ANS:
$(3 m-10)(3 m+10)$
PTS: 2 REF: 062301ai TOP: Factoring the Difference of Perfect Squares
233 ANS:
6

$$
x^{2}-12 x+7
$$

$x^{2}-12 x+36-29$

$$
(x-6)^{2}-29
$$

PTS: 2
REF: 081520ai TOP: Vertex Form of a Quadratic

234 ANS:
$-\frac{5}{6}$
$36 x^{2}=25$
$x^{2}=\frac{25}{36}$
$x= \pm \frac{5}{6}$
PTS: 2 REF: 011715ai TOP: Solving Quadratics
KEY: taking square roots
235 ANS:
$1.25 r+2 g \leq 50$
$r \geq 10$
$g \geq 12$
PTS: 2 REF: 081810ai TOP: Modeling Systems of Linear Inequalities
236 ANS:
-2
$\frac{1}{2} x+3=|x|-\frac{1}{2} x-3=x$
$\begin{aligned} \frac{1}{2} x+3 & =x & -x-6 & =2 x \\ x+6 & =2 x & -6 & =3 x \\ 6 & =x & -2 & =x\end{aligned}$
PTS: 2 REF: 011617ai TOP: Other Systems
237 ANS:
The graph of $f(x)$ is narrower than the graph of $g(x)$, and its vertex is moved to the right 2 units and up 1 unit.
PTS: 2 REF: 011512ai TOP: Graphing Polynomial Functions
238 ANS:
$y>0$
PTS: 2
REF: 011619ai TOP: Domain and Range
KEY: real domain, exponential
239 ANS:
$f(x)=x(x+3)(x-4)$
PTS: 2
REF: 061710ai
TOP: Zeros of Polynomials

240 ANS:
2
$|x+2|=3 x-2$
$x+2=3 x-2$
$4=2 x$
$x=2$
PTS: 2 REF: 081702ai TOP: Other Systems
241 ANS: 3 PTS: 2 REF: 012407ai TOP: Graphing Polynomial Functions
242 ANS:
$\mathrm{h}(x), \mathrm{f}(x), \mathrm{g}(x)$
Over the interval $0 \leq x \leq 3$, the average rate of change for $\mathrm{h}(x)=\frac{9-2}{3-0}=\frac{7}{3}, \mathrm{f}(x)=\frac{7-1}{3-0}=\frac{6}{3}=2$, and $g(x)=\frac{3-0}{3-0}=\frac{3}{3}=1$.

PTS: 2 REF: spr1301ai TOP: Rate of Change
243 ANS:
wider and opens downward
PTS: 2 REF: 081417ai TOP: Graphing Polynomial Functions
244 ANS:
8.3

$$
\begin{aligned}
4(x-7) & =0.3(x+2)+2.11 \\
4 x-28 & =0.3 x+0.6+2.11 \\
3.7 x-28 & =2.71 \\
3.7 x & =30.71 \\
x & =8.3
\end{aligned}
$$

PTS: 2 REF: 061719ai TOP: Solving Linear Equations
KEY: decimals
245 ANS:
whole numbers
PTS: 2 REF: 011506ai TOP: Domain and Range
KEY: context
246 ANS:
$0.05(x+4)+0.10(x)=\$ 1.25$
PTS: 2
REF: 061416ai TOP: Modeling Linear Equations
247 ANS:
$f(x)$
PTS: 2
REF: 061606ai
TOP: Families of Functions

248 ANS:
$y \geq-3 x+4$
PTS: 2 REF: 061505ai TOP: Graphing Linear Inequalities
249 ANS:
2
PTS: 2 REF: 011601ai TOP: Vertex Form of a Quadratic
250 ANS:
$x^{2}-8(x-1)=17$
PTS: 2
REF: 081723ai TOP: Modeling Quadratics
251 ANS:
280-30(w-1)
PTS: 2
REF: 011718ai TOP: Modeling Expressions
252 ANS:
$t=\sqrt{\frac{2 d}{a}}$

$$
d=\frac{1}{2} a t^{2}
$$

$$
2 d=a t^{2}
$$

$$
\frac{2 d}{a}=t^{2}
$$

$\sqrt{\frac{2 d}{a}}=t$
PTS: 2 REF: 061519ai TOP: Transforming Formulas
253 ANS:
$(10+x)(12+x)=180$
PTS: 2 REF: 011611ai TOP: Geometric Applications of Quadratics
254 ANS:

$$
-1 \text { and } 6
$$

$$
f(x)=x^{2}-5 x-6=(x+1)(x-6)=0
$$

$$
x=-1,6
$$

PTS: 2
REF: 061612ai
TOP: Zeros of Polynomials

255 ANS:
no solution
$3(-2 x+2 x+8)=12$
$24 \neq 12$
PTS: 2 REF: 061708ai TOP: Solving Linear Systems
KEY: substitution
256 ANS:
$-2 \pm 2 \sqrt{5}$
$x^{2}+4 x=16$
$x^{2}+4 x+4=16+4$

$$
\begin{aligned}
(x+2)^{2} & =20 \\
x+2 & = \pm \sqrt{4 \cdot 5} \\
& =-2 \pm 2 \sqrt{5}
\end{aligned}
$$

PTS: 2
REF: 061410ai
TOP: Solving Quadratics
KEY: completing the square
257
ANS:
60
$\frac{30}{30+12+8}=0.6$
PTS: 2 REF: 061615ai TOP: Frequency Tables
KEY: two-way
$y=14.1 x+5.8$
PTS: 2 REF: 081421ai TOP: Regression KEY: linear
259 ANS:
4
$\frac{x-2}{3}=\frac{4}{6}$
$6 x-12=12$
$6 x=24$
$x=4$
PTS: 2
REF: 081420ai
TOP: Solving Linear Equations
KEY: fractional expressions
ANS:
1.7\%

PTS: 2
REF: 061517ai
TOP: Modeling Exponential Functions
$\{0,1,4\}$
PTS: 2 REF: 081710ai TOP: Domain and Range
KEY: limited domain
262 ANS:
0.2083 minute
$12.5 \mathrm{sec} \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=0.208 \overline{3} \mathrm{~min}$
PTS: 2 REF: 061608ai TOP: Conversions KEY: dimensional analysis
263 ANS:
whole numbers greater than or equal to one
PTS: 2 REF: 081620ai TOP: Domain and Range
KEY: context
264 ANS:
I, II, and III
PTS: 2
REF: 081709ai
TOP: Modeling Linear Functions
265 ANS:
2 and a
PTS: 2
REF: 011702ai TOP: Solving Quadratics
KEY: factoring
266 ANS:
$m+f=3.95$
$f+0.005=m$
PTS: 2 REF: 081419ai TOP: Modeling Linear Systems
267 ANS:
$6 x^{2}-28 x+30$
PTS: 2 REF: 011510ai TOP: Operations with Polynomials
KEY: multiplication
268
269
ANS: 1
PTS: 2
REF: 012412ai TOP: Modeling Linear Inequalities
ANS:
whole numbers
PTS: 2
REF: 011719ai TOP: Domain and Range
KEY: context

270 ANS:
$x \leq-\frac{18}{5}$
$2+\frac{4}{9} x \geq 4+x$

$$
-2 \geq \frac{5}{9} x
$$

$$
x \leq-\frac{18}{5}
$$

PTS: 2
271 ANS:
8

x	$A=5000(x-1)+10000$	$B=500(2)^{x-1}$
6	35,000	16,000
7	40,000	32,000
8	45,000	64,000
9	50,000	128,000

PTS: 2
REF: 081518ai TOP: Families of Functions
272 ANS:
5b
PTS: 2
REF: 081712ai TOP: Modeling Expressions
273 ANS:
Pelican Beach
PTS: 2
REF: 011514ai TOP: Central Tendency and Dispersion

274 ANS:
$4 \pm \sqrt{26}$
$x^{2}-8 x+16=10+16$

$$
\begin{aligned}
(x-4)^{2} & =26 \\
x-4 & = \pm \sqrt{26} \\
x & =4 \pm \sqrt{26}
\end{aligned}
$$

PTS: 2 REF: 061722ai TOP: Solving Quadratics
KEY: completing the square
275 ANS:
$3 x^{2}-14 x+14$
$3\left(x^{2}-4 x+4\right)-2 x+2=3 x^{2}-12 x+12-2 x+2=3 x^{2}-14 x+14$
PTS: 2 REF: 081524ai TOP: Operations with Polynomials
KEY: multiplication
276
ANS:
-7 and 3

$$
\begin{aligned}
(x+2)^{2}-25 & =0 \\
((x+2)+5))((x+2)-5)) & =0 \\
x & =-7,3
\end{aligned}
$$

PTS: 2 REF: 081418ai TOP: Zeros of Polynomials
277 ANS:
$b=\frac{2 V}{a h}-c$

$$
V=\frac{1}{2} a(b+c) h
$$

$$
2 V=a(b+c) h
$$

$$
\frac{2 V}{a h}=b+c
$$

$\frac{2 V}{a h}-c=b$
PTS: 2 REF: 082224ai TOP: Transforming Formulas
Lynn, only
$f(3)=-2(3)^{2}+32=-18+32=14$
PTS: 2
REF: 061705ai
TOP: Functional Notation

279 ANS:

II and IV
PTS: 2 REF: 081511ai TOP: Defining Functions
KEY: mixed
280 ANS:
-5 and 5
PTS: 2 REF: 081403ai TOP: Solving Quadratics
KEY: taking square roots
281 ANS:
speed of the car
PTS: 2 REF: 011709ai TOP: Modeling Linear Functions
282 ANS:
III, only
PTS: 2 REF: 061516ai TOP: Analysis of Data
283 ANS:
-18.825
$6\left(\frac{5}{6}\left(\frac{3}{8}-x\right)=16\right)$
$8\left(5\left(\frac{3}{8}-x\right)=96\right)$

$$
\begin{gathered}
15-40 x=768 \\
-40 x=753 \\
x=-18.825
\end{gathered}
$$

PTS: 2 REF: 081713ai TOP: Solving Linear Equations
KEY: fractional expressions
284 ANS:
II, only
I. $-\frac{5}{8}+\frac{3}{5}=\frac{-1}{40} ;$ III. $(\sqrt{5}) \cdot(\sqrt{5})=\frac{5}{1}$; IV. $3 \cdot(\sqrt{49})=\frac{21}{1}$

PTS: 2
REF: 011604ai TOP: Operations with Radicals
KEY: classify
285 ANS:
$150(0.85)^{m}$
PTS: 2 REF: 081617ai TOP: Modeling Exponential Functions

286 ANS:
5.4
$\frac{36.6-15}{4-0}=\frac{21.6}{4}=5.4$
PTS: 2 REF: 061511ai TOP: Rate of Change
287 ANS:
$2 x+3.50=14.50$
PTS: 2 REF: 081614ai TOP: Modeling Linear Equations
288 ANS:
opens upward and is narrower
PTS: 2 REF: 011717ai TOP: Graphing Polynomial Functions
289 ANS:
10
$4 x-5(0)=40$

$$
\begin{aligned}
4 x & =40 \\
x & =10
\end{aligned}
$$

PTS: 2 REF: 081408ai TOP: Graphing Linear Functions
290 ANS:
greater than or equal to -9
$f(x)=x^{2}+2 x-8=x^{2}+2 x+1-9=(x+1)^{2}-9$
PTS: 2 REF: 061611ai TOP: Domain and Range
KEY: real domain, quadratic
291 ANS:
the amount spent to manufacture each radio
PTS: 2 REF: 061407ai TOP: Modeling Linear Functions
292 ANS: 4
$\frac{67}{42+67} \approx 0.615$
PTS: 2 REF: 012409ai TOP: Frequency Tables
KEY: two-way
293 ANS:
hour 0 to hour 1
The graph is steepest between hour 0 and hour 1 .
PTS: 2
REF: 081601ai TOP: Rate of Change

294 ANS:
$h<14$
$2 h+8>3 h-6$
$14>h$
$h<14$
PTS: 2 REF: 081607ai TOP: Solving Linear Inequalities
295 ANS:
$3000(1+0.02)^{16}$
PTS: 2 REF: 011504ai TOP: Modeling Exponential Functions
296 ANS:
nonnegative rational numbers
PTS: 2 REF: 061623ai TOP: Domain and Range
KEY: context
297 ANS:
$\frac{120 \mathrm{ft}^{3}}{1} \bullet \frac{1 \text { load }}{8 \mathrm{ft}^{3}} \bullet \frac{10 \mathrm{~min}}{1 \text { load }} \bullet \frac{1 \mathrm{hr}}{60 \mathrm{~min}}$
PTS: 2 REF: 061720ai TOP: Conversions KEY: dimensional analysis 298 ANS:
$\left(p^{2}+9\right)(p+3)(p-3)$
PTS: 2 REF: 011522ai TOP: Factoring the Difference of Perfect Squares
KEY: higher power
299 ANS:
linear
PTS: 2 REF: 081717ai TOP: Families of Functions
300 ANS:
$x^{2}+8^{2}=(x+2)^{2}$
PTS: 2 REF: spr1304ai TOP: Geometric Applications of Quadratics
301 ANS:
-0.93
PTS: 2 REF: 061411ai TOP: Correlation Coefficient
302 ANS:
$f(x)=\left\{\begin{array}{l}x^{2}, x<1 \\ \frac{1}{2} x+\frac{1}{2}, x>1\end{array}\right.$
PTS: 2
REF: 081422ai
TOP: Graphing Piecewise-Defined Functions

303 ANS:
$0 \leq y \leq 8$
$f(2)=0$
$f(6)=8$
PTS: 2 REF: 081411ai TOP: Domain and Range
KEY: limited domain
304 ANS:
27
$f(8)=\frac{1}{2}(8)^{2}-\left(\frac{1}{4}(8)+3\right)=32-5=27$
PTS: 2 REF: 081704ai TOP: Functional Notation 305

ANS:
$q(x)=-\frac{1}{2}(x-15)^{2}+25$
Vertex $(15,25)$, point $(10,12.5) 12.5=a(10-15)^{2}+25$

$$
\begin{aligned}
-12.5 & =25 a \\
-\frac{1}{2} & =a
\end{aligned}
$$

PTS: 2 REF: 061716ai TOP: Vertex Form of a Quadratic
306 ANS:
$a+c=150$
$10.25 a+7.75 c=1470$

PTS: 2 REF: 061605ai TOP: Modeling Linear Systems
307 ANS:
positive integers
PTS: 2 REF: 011615ai TOP: Domain and Range
KEY: context
308
ANS:
$-3 \pm \sqrt{7}$
PTS: 2 REF: 081523ai TOP: Solving Quadratics
KEY: taking square roots

309
ANS:
$\sqrt{\frac{3 V}{\pi h}}$

$$
V=\frac{1}{3} \pi r^{2} h
$$

$$
3 V=\pi r^{2} h
$$

$$
\frac{3 V}{\pi h}=r^{2}
$$

$\sqrt{\frac{3 V}{\pi h}}=r$
PTS: 2 REF: 061423ai TOP: Transforming Formulas
310 ANS:
$\frac{5280 \mathrm{ft}}{1 \mathrm{mi}}$
PTS: 2 REF: 011502ai TOP: Conversions KEY: dimensional analysis
311 ANS:
$\frac{4.5 \mathrm{hr}}{50 \mathrm{~km}} \bullet \frac{1.609 \mathrm{~km}}{1 \mathrm{mi}} \bullet \frac{60 \mathrm{~min}}{1 \mathrm{hr}}$
PTS: 2 REF: 062222ai TOP: Conversions KEY: dimensional analysis
312 ANS:
addition property of equality
PTS: 2
REF: 061401ai TOP: Identifying Properties
313 ANS:
7
$5 r=a_{2} \quad a_{2} r=245 \quad 5 r=\frac{245}{r}$

$$
\begin{aligned}
a_{2}=\frac{245}{r} 5 r^{2} & =245 \\
r^{2} & =49 \\
r & = \pm 7
\end{aligned}
$$

PTS: 2 REF: 081924ai TOP: Sequences KEY: difference or ratio
314 ANS:
$A=1000(1+0.013)^{2}$
PTS: 2
REF: 061712ai
315
ANS:
2lw
PTS: 2
REF: 061702ai
TOP: Dependent and Independent Variables

316 ANS:
-1
$\frac{\sqrt{2\left(\frac{1}{2}\right)+3}}{6\left(\frac{1}{2}\right)-5}=\frac{\sqrt{4}}{-2}=\frac{2}{-2}=-1$
PTS: 2 REF: 081512ai TOP: Functional Notation
317 ANS:
$0.75(7)+1.25 b \leq 22$
PTS: 2 REF: 081505ai TOP: Modeling Linear Inequalities
318 ANS: $1 \quad$ PTS: 2
319 ANS:
$P(x)=-0.5 x^{2}+500 x-350$
$P(x)=-0.5 x^{2}+800 x-100-(300 x+250)=-0.5 x^{2}+500 x-350$
PTS: 2 REF: 081406ai TOP: Operations with Functions
320 ANS:
28\%
$\frac{14}{16+20+14}=28 \%$
PTS: 2 REF: 011705ai TOP: Frequency Tables
KEY: two-way
321 ANS:
$(7 x-6)(7 x+6)$
PTS: 2 REF: 081703ai TOP: Factoring the Difference of Perfect Squares
KEY: quadratic
322 ANS: 3
PTS: 2
REF: 012414ai TOP: Modeling Expressions
323 ANS:
y is the total cost, x is the number of months of service, $\$ 40$ is the installation fee, and $\$ 90$ is the service charge per month.

PTS: 2 REF: 081402ai TOP: Modeling Linear Functions
324 ANS:
$12 x-24=60$
PTS: 2 REF: 081616ai TOP: Modeling Linear Equations

325 ANS:
$0 \leq t \leq 1.5$
$0=-16 t^{2}+24 t$
$0=-8 t(2 t-3)$
$t=0, \frac{3}{2}$

PTS: 2 REF: 061724ai TOP: Graphing Quadratic Functions
KEY: key features
326 ANS:
$m+g \leq 40$
$12 m+14 g \geq 250$
PTS: 2 REF: 061711ai TOP: Modeling Systems of Linear Inequalities
ANS:
$[-5, \infty)$
PTS: 2
REF: 012018ai
TOP: Domain and Range
KEY: real domain, absolute value
328
ANS: 3
$a_{11}=3(-2)^{11-1}=3072$

PTS: 2 REF: 012404ai TOP: Sequences KEY: explicit
329 ANS:
$3 x-1= \pm 5$
PTS: 2
REF: 061521ai TOP: Solving Quadratics
KEY: taking square roots
330 ANS:
I and III, only

PTS: 2
331

REF: 081718ai
PTS: 2

TOP: Comparing Functions
REF: 012406ai TOP: Operations with Polynomials

KEY: subtraction

332 ANS:
$4(2 x+3)(2 x-3)$
$16 x^{2}-36=4(2 x+3)(2 x-3)$
PTS: 2 REF: 011701ai TOP: Factoring the Difference of Perfect Squares
KEY: quadratic
333 ANS:
$j^{2}+2 j=783$
PTS: 2 REF: 081409ai TOP: Modeling Quadratics
334 ANS:
$y=x^{2}+10 x+24$
$(x+4)(x+6)=0$
$x^{2}+10 x+24=0$
PTS: 2 REF: spr1303ai TOP: Zeros of Polynomials
335 ANS:
$2.5<x<5.5$
PTS: 2
REF: 061409ai
TOP: Graphing Quadratic Functions
KEY: key features
336 ANS:
8.25
$\frac{7}{3}\left(x+\frac{9}{28}\right)=20$

$$
\begin{aligned}
\frac{7}{3} x+\frac{3}{4} & =\frac{80}{4} \\
\frac{7}{3} x & =\frac{77}{4} \\
x & =\frac{33}{4}=8.25
\end{aligned}
$$

PTS: 2
REF: 061405ai
TOP: Solving Linear Equations

337 ANS:
$x^{2}-5 x+3=0$

$$
x^{2}-5 x=-3
$$

$x^{2}-5 x+\frac{25}{4}=\frac{-12}{4}+\frac{25}{4}$

$$
\left(x-\frac{5}{2}\right)^{2}=\frac{13}{4}
$$

PTS: 2 REF: 061518ai TOP: Solving Quadratics
KEY: completing the square
338 ANS:
$x(x+2)(x-15)$
PTS: 2 REF: 011612ai TOP: Factoring Polynomials
KEY: higher power
339 ANS:
-0.04
$\frac{4.7-2.3}{20-80}=\frac{2.4}{-60}=-0.04$.
PTS: 2 REF: 081414ai TOP: Rate of Change
340 ANS:
$f(t)=25^{t+1}$
PTS: 2 REF: 061513ai TOP: Families of Functions
341 ANS:
3
$m=\frac{3--7}{2-4}=-5 \quad 3=(-5)(2)+b \quad y=-5 x+13$ represents the line passing through the points $(2,3)$ and $(4,-7)$. The $b=13$
fourth equation may be rewritten as $y=5 x-13$, so is a different line.
PTS: 2
REF: 081720ai TOP: Writing Linear Equations
KEY: other forms
342 ANS:
$8 x^{3}+2 x^{2}-3 x+18$
$(2 x+3)\left(4 x^{2}-5 x+6\right)=8 x^{3}-10 x^{2}+12 x+12 x^{2}-15 x+18=8 x^{3}+2 x^{2}-3 x+18$
PTS: 2 REF: 081612ai TOP: Operations with Polynomials
KEY: multiplication

343 ANS:
$x^{2}+12 x-9$
$5 x^{2}-\left(4 x^{2}-12 x+9\right)=x^{2}+12 x-9$
PTS: 2
REF: 011610ai
KEY: multiplication
344 ANS: 2
PTS: 2
REF: 012403ai TOP: Modeling Linear Functions
ANS:
16
$a_{n}=3 n+1$
$a_{5}=3(5)+1=16$
PTS: 2 REF: 061613ai TOP: Sequences KEY: explicit
346 ANS:
$0 \leq t \leq 3$

$$
0=-16 t^{2}+144
$$

$16 t^{2}=144$
$t^{2}=9$

$$
t=3
$$

PTS: 2
REF: 081423ai
TOP: Domain and Range
KEY: context
347 ANS:
-1.75 and 4

$$
\begin{aligned}
x^{2}-2 x-8 & =\frac{1}{4} x-1 \\
4 x^{2}-8 x-32 & =x-4 \\
4 x^{2}-9 x-28 & =0 \\
(4 x+7)(x-4) & =0 \\
x & =-\frac{7}{4}, 4
\end{aligned}
$$

PTS: 2
REF: 081517ai
TOP: Quadratic-Linear Systems

348 ANS:
$3 \pm 2 \sqrt{7}$

$$
x^{2}-6 x=19
$$

$x^{2}-6 x+9=19+9$

$$
\begin{aligned}
(x-3)^{2} & =28 \\
x-3 & = \pm \sqrt{4 \cdot 7} \\
x & =3 \pm 2 \sqrt{7}
\end{aligned}
$$

PTS: 2 REF: fall1302ai TOP: Solving Quadratics
KEY: quadratic formula
349 ANS: 2
$v^{2}-u^{2}=2 a s$
$\frac{v^{2}-u^{2}}{2 s}=\frac{2 a s}{2 s}$
$\frac{v^{2}-u^{2}}{2 s}=a$
PTS: 2 REF: 012408ai TOP: Transforming Formulas
350 ANS:
I, only
PTS: 2 REF: 011623ai TOP: Families of Functions
351 ANS:

$$
\begin{aligned}
j(x) & =(x-6)^{2}-29,(6,-29) \\
j(x) & =x^{2}-12 x+36+7-36 \\
& =(x-6)^{2}-29
\end{aligned}
$$

PTS: 2 REF: 061616ai TOP: Vertex Form of a Quadratic
352 ANS: 3

$$
\begin{aligned}
f(1) & =1^{2}+2(1)+1=4 \\
g(3) & =3(3)+5=14 \\
f(1)-g(3) & =-10
\end{aligned}
$$

PTS: 2 REF: 012410ai TOP: Functional Notation
353 ANS:
$\frac{P_{1} V_{1}}{V_{2}}$

PTS: 2
REF: 011704ai
TOP: Transforming Formulas

354 ANS:
$\frac{2}{3}$ and -4
$3 x^{2}+10 x-8=0$
$(3 x-2)(x+4)=0$

$$
x=\frac{2}{3},-4
$$

PTS: 2 REF: 081619ai TOP: Solving Quadratics
KEY: factoring
355 ANS:
$c(z)=0.20(z-1)+0.46$
PTS: 2 REF: 011523ai TOP: Modeling Linear Functions
356 ANS:
$f(x)=3(x+2)^{2}-1$
$3\left(x^{2}+4 x+4\right)-12+11$

$$
3(x+2)^{2}-1
$$

PTS: 2
REF: 081621ai
TOP: Vertex Form of a Quadratic
357 ANS:
3 and -1
$2 x^{2}-4 x-6=0$
$2\left(x^{2}-2 x-3\right)=0$
$2(x-3)(x+1)=0$

$$
x=3,-1
$$

PTS: 2
REF: 011609ai
TOP: Zeros of Polynomials
358 ANS:
$3.00 a+1.50 s$
PTS: 2
REF: 081503ai
TOP: Modeling Expressions
ANS:
$a_{n}=8 n-14$
PTS: 2
REF: 081416ai TOP: Sequences
KEY: explicit
ANS:
$\{x \mid x \geq-4\}$
PTS: 2
REF: 061509ai
TOP: Domain and Range
KEY: graph

361 ANS:
2 and -6
$2(x+2)^{2}=32$
$(x+2)^{2}=16$
$x+2= \pm 4$

$$
x=-6,2
$$

PTS: 2 REF: 061619ai TOP: Solving Quadratics
KEY: taking square roots
362
$f(t)=\left(9.05 \times 10^{6}\right)(1+0.031)^{7}$
PTS: 2 REF: 081507ai TOP: Modeling Exponential Functions
363 ANS:
5000 , the amount of money in the account initially
PTS: 2 REF: 011515ai TOP: Modeling Exponential Functions
364 ANS:
$\{0,1,2,3, \ldots\}$
There are no negative or fractional cars.
PTS: 2 REF: 061402ai TOP: Domain and Range
KEY: context

