\qquad www.jmap.org

Geometry Regents at Random Worksheets

1 In the circle below, secants $\overline{T S R}$ and $\overline{T M H}$ intersect at $T, S R=5, H M=9, T M=3$, and $T S=x$.

Which equation could be used to find the value of x ?

1) $x(x+5)=36$
2) $x(x+5)=27$
3) $3 x=45$
4) $5 x=27$

2 In the diagram below of $\triangle A B C, X$ and Y are points on $\overline{A B}$ and $\overline{A C}$, respectively, such that $\mathrm{m} \angle A Y X=\mathrm{m} \angle B$.

Which statement is not always true?

1) $\frac{A X}{A C}=\frac{X Y}{C B}$
2) $\frac{A Y}{A B}=\frac{A X}{A C}$
3) $(A Y)(C B)=(X Y)(A B)$
4) $(A Y)(A B)=(A C)(A X)$

3 The endpoints of $\overline{A B}$ are $A(-5,3)$ and $B(7,-5)$.
Point P is on $\overline{A B}$ such that $A P: P B=3: 1$. What are the coordinates of point P ?

1) $(-2,-3)$
2) $(1,-1)$
3) $(-2,1)$
4) $(4,-3)$

4 Triangle RST has vertices with coordinates $R(-3,-2), S(3,2)$ and $T(4,-4)$. Determine and state an equation of the line parallel to $\overline{R T}$ that passes through point S. [The use of the set of axes below is optional.]

5 A circle has a radius of 6.4 inches. Determine and state, to the nearest square inch, the area of a sector whose arc measures 80°.
\qquad www.jmap.org

6 In $\triangle A B C$ below, use a compass and straightedge to construct the altitude from C to $\overline{A B}$. [Leave all construction marks.]

7 A large snowman is made of three spherical snowballs with radii of 1 foot, 2 feet, and 3 feet, respectively. Determine and state the amount of snow, in cubic feet, that is used to make the snowman. [Leave your answer in terms of π.]

8 A gardener wants to buy enough mulch to cover a rectangular garden that is 3 feet by 10 feet. One bag contains 2 cubic feet of mulch and costs $\$ 3.66$. How much will the minimum number of bags cost to cover the garden with mulch 3 inches deep?

1) $\$ 3.66$
2) $\$ 10.98$
3) $\$ 14.64$
4) $\$ 29.28$

9 If $\triangle T A P$ is dilated by a scale factor of 0.5 , which statement about the image, $\triangle T^{\prime} A^{\prime} P^{\prime}$, is true?

1) $\mathrm{m} \angle T^{\prime} A^{\prime} P^{\prime}=\frac{1}{2}(\mathrm{~m} \angle T A P)$
2) $\mathrm{m} \angle T^{\prime} A^{\prime} P^{\prime}=2(\mathrm{~m} \angle T A P)$
3) $T A=2\left(T^{\prime} A^{\prime}\right)$
4) $T A=\frac{1}{2}\left(T^{\prime} A^{\prime}\right)$

10 In the diagram below of parallelogram $A B C D$, diagonal $\overline{B E D}$ and $\overline{E F}$ are drawn, $\overline{E F} \perp \overline{D F C}$, $\mathrm{m} \angle D A B=111^{\circ}$, and $\mathrm{m} \angle D B C=39^{\circ}$.

What is $\mathrm{m} \angle D E F$?

1) 30°
2) 51°
3) 60°
4) 120°

11 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1$, $A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.
\qquad

12 Line segment $P Q$ has endpoints $P(-5,1)$ and $Q(5,6)$, and point R is on $\overline{P Q}$. Determine and state the coordinates of R, such that $P R: R Q=2: 3$. [The use of the set of axes below is optional.]

13 A sandbox in the shape of a rectangular prism has a length of 43 inches and a width of 30 inches. Jack uses bags of sand to fill the sandbox to a depth of 9 inches. Each bag of sand has a volume of 0.5 cubic foot. What is the minimum number of bags of sand that must be purchased to fill the sandbox?

1) 14
2) 13
3) 7
4) 4

14 The endpoints of $\overline{A B}$ are $A(0,4)$ and $B(-4,6)$. Which equation of a line represents the perpendicular bisector of $\overline{A B}$?

1) $y=-\frac{1}{2} x+4$
2) $y=-2 x+1$
3) $y=2 x+8$
4) $y=2 x+9$

15 In the diagram below, $\triangle G H J$ is dilated by a scale factor of $\frac{1}{2}$ centered at point B to map onto $\triangle C D F$.

If $\mathrm{m} \angle D F C=40^{\circ}$, what is $\mathrm{m} \angle H J G$?

1) 20°
2) 40°
3) 60°
4) 80°

16 If the circumference of a standard lacrosse ball is 19.9 cm , what is the volume of this ball, to the nearest cubic centimeter?

1) 42
2) 133
3) 415
4) 1065

17 In $\triangle A B C$, side $\overline{B C}$ is extended through C to D. If $\mathrm{m} \angle A=30^{\circ}$ and $\mathrm{m} \angle A C D=110^{\circ}$, what is the longest side of $\triangle A B C$?

1) $\overline{A C}$
2) $\overline{B C}$
3) $\overline{A B}$
4) $\overline{C D}$
\qquad

18 The surface of the roof of a house is modeled by two congruent rectangles with dimensions 40 feet by 16 feet, as shown below.

Roofing shingles are sold in bundles. Each bundle covers $33 \frac{1}{3}$ square feet. What is the minimum number of bundles that must be purchased to completely cover both rectangular sides of the roof?

1) 20
2) 2
3) 39
4) 4

19 In the diagram below of $\triangle C E R, \overline{L A} \| \overline{C R}$.

If $C L=3.5, L E=7.5$, and $E A=9.5$, what is the length of $\overline{A R}$, to the nearest tenth?

1) 5.5
2) 4.4
3) 3.0
4) 2.8

20 A plane intersects a sphere. Which two-dimensional shape is formed by this cross section?

1) rectangle
2) triangle
3) square
4) circle

21 Given: Triangle $D U C$ with coordinates $D(-3,-1)$, $U(-1,8)$, and $C(8,6)$
Prove: $\triangle D U C$ is a right triangle
Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$.
Prove quadrilateral $D U C U^{\prime}$ is a square.
[The use of the set of axes below is optional.]

22 Segment $A B$ is the perpendicular bisector of $\overline{C D}$ at point M. Which statement is always true?

1) $\overline{C B} \cong \overline{D B}$
2) $\overline{C D} \cong \overline{A B}$
3) $\triangle A C D \sim \triangle B C D$
4) $\triangle A C M \sim \triangle B C M$
\qquad

23 On the set of axes below, $\triangle D E F$ is the image of $\triangle A B C$ after a dilation of scale factor $\frac{1}{3}$.

The center of dilation is at

1) $(0,0)$
2) $(2,-3)$
3) $(0,-2)$
4) $(-4,0)$

24 Line $A B$ is dilated by a scale factor of 2 centered at point A.

Evan thinks that the dilation of $\overline{A B}$ will result in a line parallel to $\overline{A B}$, not passing through points A or B. Nathan thinks that the dilation of $\overline{A B}$ will result in the same line, $\overline{A B}$. Who is correct? Explain why.

25 A square pyramid is intersected by a plane passing through the vertex and perpendicular to the base.

Which two-dimensional shape describes this cross section?

1) square
2) triangle
3) pentagon
4) rectangle

26 Parallelogram $B E T H$, with diagonals $\overline{B T}$ and $\overline{H E}$, is drawn below.

What additional information is sufficient to prove that BETH is a rectangle?

1) $\overline{B T} \perp \overline{H E}$
2) $\overline{B E} \| \overline{H T}$
3) $\overline{B T} \cong \overline{H E}$
4) $\overline{B E} \cong \overline{E T}$
\qquad www.jmap.org

27 In the circle below, $\overline{A D}, \overline{A C}, \overline{B C}$, and $\overline{D C}$ are chords, $\overleftrightarrow{E D F}$ is tangent at point D, and $\overline{A D} \| \overline{B C}$

Which statement is always true?

1) $\angle A D E \cong \angle C A D$
2) $\angle C D F \cong \angle A C B$
3) $\angle B C A \cong \angle D C A$
4) $\angle A D C \cong \angle A D E$

28 In the diagram below of quadrilateral $A D B E, \overline{D E}$ is the perpendicular bisector of $\overline{A B}$.

Which statement is always true?

1) $\angle A D C \cong \angle B D C$
2) $\angle E A C \cong \angle D A C$
3) $\overline{A D} \cong \overline{B E}$
4) $\overline{A E} \cong \overline{A D}$

29 In the diagram below, $\triangle A B C \cong \triangle D E C$.

Which transformation will map $\triangle A B C$ onto $\triangle D E C$?

1) a rotation
2) a line reflection
3) a translation followed by a dilation
4) a line reflection followed by a second line reflection

30 On the set of axes below, congruent quadrilaterals ROCK and $R^{\prime} O^{\prime} C^{\prime} K^{\prime}$ are graphed.

Describe a sequence of transformations that would map quadrilateral $R O C K$ onto quadrilateral $R^{\prime} O^{\prime} C^{\prime} K^{\prime}$.
\qquad

31 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point $C, 85$ meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°. Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

32 In right triangle $L M N$ shown below, $\mathrm{m} \angle M=90^{\circ}$, $M N=12$, and $L M=16$.

The ratio of $\cos N$ is

1) $\frac{12}{20}$
2) $\frac{16}{20}$
3) $\frac{12}{16}$
4) $\frac{16}{12}$

33 In circle P below, diameter $\overline{A C}$ and radius $\overline{B P}$ are drawn such that $\mathrm{m} \angle A P B=110^{\circ}$.

If $A C=12$, what is the area of shaded sector $B P C$?

1) $\frac{7}{6} \pi$
2) 7π
3) 11π
4) 28π

34 What are the coordinates of the center and length of the radius of the circle whose equation is
$x^{2}+y^{2}+2 x-16 y+49=0$?

1) center (1,-8) and radius 4
2) center $(-1,8)$ and radius 4
3) center $(1,-8)$ and radius 16
4) center $(-1,8)$ and radius 16
\qquad

35 In the diagram below of right triangle $M D L$, altitude $\overline{D G}$ is drawn to hypotenuse $\overline{M L}$.

If $M G=3$ and $G L=24$, what is the length of $\overline{D G}$?

1) 8
2) 9
3) $\sqrt{63}$
4) $\sqrt{72}$

36 In the diagram below of quadrilateral $F A C T, \overline{B R}$ intersects diagonal $\overline{A T}$ at $E, \overline{A F} \| \overline{C T}$, and $\overline{A F} \cong \overline{C T}$.

Prove: $(A B)(T E)=(A E)(T R)$

37 A small town is installing a water storage tank in the shape of a cylinder. The tank must be able to hold at least 100,000 gallons of water. The tank must have a height of exactly 30 feet. [1 cubic foot holds 7.48 gallons of water] What should the minimum diameter of the tank be, to the nearest foot?

1) 12
2) 24
3) 65
4) 75

38 In the diagram below of circle O, secants $\overline{C F D}$ and $\overline{C H E}$ are drawn from external point C.

If $\mathrm{m} \overparen{D E}=136^{\circ}$ and $\mathrm{m} \angle C=44^{\circ}$, then $\mathrm{m} \overparen{F H}$ is

1) 46°
2) 48°
3) 68°
4) 88°

39 In the diagram below, $\triangle C A R$ is mapped onto $\triangle B U S$ after a sequence of rigid motions.

If $A R=3 x+4, R C=5 x-10, C A=2 x+6$, and $S B=4 x-4$, what is the length of $\overline{S B}$?

1) 6
2) 16
3) 20
4) 28
\qquad

40 On the set of axes below, congruent triangles $A B C$ and $D E F$ are drawn.

Which sequence of transformations maps $\triangle A B C$ onto $\triangle D E F$?

1) A counterclockwise rotation of 90 degrees about the origin, followed by a translation 8 units to the right.
2) A counterclockwise rotation of 90 degrees about the origin, followed by a reflection over the y-axis.
3) A counterclockwise rotation of 90 degrees about the origin, followed by a translation 4 units down.
4) A clockwise rotation of 90 degrees about the origin, followed by a reflection over the x-axis.

41 Given: Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, diagonal $\overline{A C}$ intersects $\overline{E F}$ at G, and $\overline{D E} \cong \overline{B F}$

Prove: G is the midpoint of $\overline{E F}$

42 Given: $\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E} \| \overline{D F}$, $\overline{E B} \| \overline{F C}, \overline{A C} \cong \overline{D B}$

Prove: $\triangle E A B \cong \triangle F D C$

43 In the diagram below of $\triangle A C T, \overleftrightarrow{E S}$ is drawn parallel to $\overline{A T}$ such that E is on $\overline{C A}$ and S is on $\overline{C T}$.

Which statement is always true?

1) $\frac{C E}{C A}=\frac{C S}{S T}$
2) $\frac{C E}{E S}=\frac{E A}{A T}$
3) $\frac{C E}{E A}=\frac{C S}{S T}$
4) $\frac{C E}{S T}=\frac{E A}{C S}$

44 Which regular polygon would carry onto itself after a rotation of 300° about its center?

1) decagon
2) nonagon
3) octagon
4) hexagon
\qquad www.jmap.org

45 On the set of axes below, the coordinates of three vertices of trapezoid $A B C D$ are $A(2,1), B(5,4)$, and $D(-2,3)$.

Which point could be vertex C ?

1) $(1,5)$
2) $(4,10)$
3) $(-1,6)$
4) $(-3,8)$

46 In the diagram below, a cone has a diameter of 16 inches and a slant height of 17 inches.

What is the volume of the cone, in cubic inches?

1) 320π
2) 363π
3) 960π
4) 1280π

47 In the diagram of $\triangle A B C$ below, $\overline{A E}$ bisects angle $B A C$, and altitude $\overline{B D}$ is drawn.

If $\mathrm{m} \angle C=50^{\circ}$ and $\mathrm{m} \angle A B C=60^{\circ}, \mathrm{m} \angle F E B$ is

1) 35°
2) 40°
3) 55°
4) 85°

48 A rectangle is graphed on the set of axes below.

A reflection over which line would carry the rectangle onto itself?

1) $y=2$
2) $y=10$
3) $y=\frac{1}{2} x-3$
4) $y=-\frac{1}{2} x+7$
\qquad

49 Which polygon always has a minimum rotation of 180° about its center to carry it onto itself?
1)

Rectangle
2)

3)

Isosceles
3) trapezoid

50 In the diagram below of square CASH, diagonals $\overline{A H}$ and $\overline{C S}$ intersect at Z.

Which statement is true?

1) $\mathrm{m} \angle A C Z>\mathrm{m} \angle Z C H$
2) $\mathrm{m} \angle A C Z<\mathrm{m} \angle A S Z$
3) $\mathrm{m} \angle A Z C=\mathrm{m} \angle S H C$
4) $\mathrm{m} \angle A Z C=\mathrm{m} \angle Z C H$

51 A vertical mine shaft is modeled in the diagram below. At a point on the ground 50 feet from the top of the mine, a ventilation tunnel is dug at an angle of 47°.

What is the length of the tunnel, to the nearest foot?

1) 47
2) 54
3) 68
4) 73

52 The equation of a circle is $x^{2}+y^{2}+12 x=-27$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(6,0)$ and radius 3
2) center $(6,0)$ and radius 9
3) center $(-6,0)$ and radius 3
4) center $(-6,0)$ and radius 9

53 Which equation represents a line that is perpendicular to the line whose equation is $y-3 x=4$?

1) $y=-\frac{1}{3} x-4$
2) $y=\frac{1}{3} x+4$
3) $y=-3 x+4$
4) $y=3 x-4$
\qquad

54 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$. Prove that quadrilateral MATH is a trapezoid. State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$. Prove that quadrilateral $M Y T H$ is a rectangle. [The use of the set of axes below is optional.]

55 In $\triangle A B C, M$ is the midpoint of $\overline{A B}$ and N is the midpoint of $\overline{A C}$. If $M N=x+13$ and $B C=5 x-1$, what is the length of $\overline{M N}$?

1) 3.5
2) 9
3) 16.5
4) 22

56 In triangle $C E M, C E=3 x+10, M E=5 x-14$, and $C M=2 x-6$. Determine and state the value of x that would make CEM an isosceles triangle with the vertex angle at E.

57 Directed line segment $A B$ has endpoints whose coordinates are $A(-2,5)$ and $B(8,-1)$. Determine and state the coordinates of P, the point which divides the segment in the ratio $3: 2$. [The use of the set of axes below is optional.]

58 Trapezoid $A B C D$ is drawn such that $\overline{A B} \| \overline{D C}$. Trapezoid $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of trapezoid $A B C D$ after a rotation of 110° counterclockwise about point P.

Which statement is always true?

1) $\angle A \cong \angle D^{\prime}$
2) $\overline{A C} \cong B^{\prime} D^{\prime}$
3) $\overline{A^{\prime} B^{\prime}} \| \overline{D^{\prime} C^{\prime}}$
4) $\overline{B^{\prime} A^{\prime}} \cong \overline{C^{\prime} D^{\prime}}$
\qquad

59 In the diagram below, $\overleftrightarrow{A B C D} \| \overleftrightarrow{E H K}$, and $\overleftrightarrow{M B H P}$ and $\overleftrightarrow{N C H L}$ are drawn such that $\overline{B C} \cong \overline{B H}$.

If $\mathrm{m} \angle N C D=62^{\circ}$, what is $\mathrm{m} \angle P H K$?

1) 118°
2) 68°
3) 62°
4) 56°

60 Directed line segment $A J$ has endpoints whose coordinates are $A(5,7)$ and $J(-10,-8)$. Point E is on $\overline{A J}$ such that $A E: E J$ is $2: 3$. What are the coordinates of point E ?

1) $(1,-1)$
2) $(-5,-3)$
3) $(-4,-2)$
4) $(-1,1)$

62 The area of $\triangle T A P$ is $36 \mathrm{~cm}^{2}$. A second triangle, $J O E$, is formed by connecting the midpoints of each side of $\triangle T A P$. What is the area of JOE, in square centimeters?

1) 9
2) 12
3) 18
4) 27

63 Cape Canaveral, Florida is where NASA launches rockets into space. As modeled in the diagram below, a person views the launch of a rocket from observation area A, 3280 feet away from launch pad B. After launch, the rocket was sighted at C with an angle of elevation of 15°. The rocket was later sighted at D with an angle of elevation of 31°.

Determine and state, to the nearest foot, the distance the rocket traveled between the two sightings, C and D.

64 Parallelogram EATK has diagonals $\overline{E T}$ and $\overline{A K}$. Which information is always sufficient to prove EATK is a rhombus?

1) $\overline{E A} \perp \overline{A T}$
2) $\overline{E A} \cong \overline{A T}$
3) $\overline{E T} \cong \overline{A K}$
4) $\overline{E T} \cong \overline{A T}$
\qquad

65 In the diagram below, point E is located inside square $A B C D$ such that $\triangle A B E$ is equilateral, and $\overline{C E}$ is drawn.

What is $\mathrm{m} \angle B E C$?

1) 30°
2) 60°
3) 75°
4) 90°

66 An equation of circle M is $x^{2}+y^{2}+6 x-2 y+1=0$.
What are the coordinates of the center and the length of the radius of circle M ?

1) center $(3,-1)$ and radius 9
2) center ($3,-1$) and radius 3
3) center $(-3,1)$ and radius 9
4) center $(-3,1)$ and radius 3

67 The equation of line t is $3 x-y=6$. Line m is the image of line t after a dilation with a scale factor of $\frac{1}{2}$ centered at the origin. What is an equation of the line m ?

1) $y=\frac{3}{2} x-3$
2) $y=\frac{3}{2} x-6$
3) $y=3 x+3$
4) $y=3 x-3$

68 On the set of axes below, $\overleftrightarrow{A B}$ is drawn and passes through $A(-2,6)$ and $B(4,0)$.

If $\overleftrightarrow{C D}$ is the image of $\overleftrightarrow{A B}$ after a dilation with a scale factor of $\frac{1}{2}$ centered at the origin, which equation represents $\overleftrightarrow{C D}$?

1) $y=-x+4$
2) $y=-x+2$
3) $y=-\frac{1}{2} x+4$
4) $y=-\frac{1}{2} x+2$

69 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$. Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$
\qquad

70 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter. The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

71 Circle O is drawn below with secant $\overline{B C D}$. The length of tangent $\overline{A D}$ is 24 .

If the ratio of $D C: C B$ is $4: 5$, what is the length of $\overline{C B}$?

1) 36
2) 20
3) 16
4) 4

72 Barry wants to find the height of a tree that is modeled in the diagram below, where $\angle C$ is a right angle. The angle of elevation from point A on the ground to the top of the tree, H, is 40°. The angle of elevation from point B on the ground to the top of the tree, H, is 80°. The distance between points A and B is 85 feet.

Barry claims that $\triangle A B H$ is isosceles. Explain why Barry is correct. Determine and state, to the nearest foot, the height of the tree.

73 Zach placed the foot of an extension ladder 8 feet from the base of the house and extended the ladder 25 feet to reach the house. To the nearest degree, what is the measure of the angle the ladder makes with the ground?

1) 18
2) 19
3) 71
4) 72

74 Which polygon does not always have congruent diagonals?

1) square
2) rectangle
3) rhombus
4) isosceles trapezoid
\qquad

75 A regular pyramid with a square base is made of solid glass. It has a base area of $36 \mathrm{~cm}^{2}$ and a height of 10 cm . If the density of glass is 2.7 grams per cubic centimeter, the mass of the pyramid, in grams, is

1) 120
2) 324
3) 360
4) 972

76 A small can of soup is a right circular cylinder with a base diameter of 7 cm and a height of 9 cm . A large container is also a right circular cylinder with a base diameter of 9 cm and a height of 13 cm . Determine and state the volume of the small can and the volume of the large container to the nearest cubic centimeter. What is the minimum number of small cans that must be opened to fill the large container? Justify your answer.

77 Parallelogram MATH has vertices $M(-7,-2)$, $A(0,4), T(9,2)$, and $H(2,-4)$. Prove that parallelogram MATH is a rhombus. [The use of the set of axes below is optional.] Determine and state the area of MATH.

78 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

79 A tipping platform is a ramp used to unload trucks, as shown in the diagram below.

The truck is on a 75 -foot-long ramp. The ramp is tipped at an angle of 30°. What is the height of the upper end of the ramp, x, to the nearest tenth of a foot?

1) 68.7
2) 65.0
3) 43.3
4) 37.5

80 Right triangle $S T R$ is shown below, with $\mathrm{m} \angle T=90^{\circ}$. Altitude $\overline{T Q}$ is drawn to $\overline{S Q R}$, and $T Q=8$.

If the ratio $S Q: Q R$ is $1: 4$, determine and state the length of $\overline{S R}$.
\qquad

81 Which figure will not carry onto itself after a 120-degree rotation about its center?

1) equilateral triangle
2) regular hexagon
3) regular octagon
4) regular nonagon

82 Triangles YEG and $P O M$ are two distinct non-right triangles such that $\angle G \cong \angle M$. Which statement is sufficient to prove $\triangle Y E G$ is always congruent to $\triangle P O M$?

1) $\angle E \cong \angle O$ and $\angle Y \cong \angle P$
2) $\overline{Y G} \cong \overline{P M}$ and $\overline{Y E} \cong \overline{P O}$
3) There is a sequence of rigid motions that maps $\angle E$ onto $\angle O$ and $\overline{Y E}$ onto $\overline{P O}$.
4) There is a sequence of rigid motions that maps point Y onto point P and $\overline{Y G}$ onto $\overline{P M}$.

83 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

84 What is the volume of a right circular cone that has a height of 7.2 centimeters and a radius of 2.5 centimeters, to the nearest tenth of a cubic centimeter?

1) 37.7
2) 47.1
3) 113.1
4) 141.4

85 In $\triangle A B C, A B=5, A C=12$, and $\mathrm{m} \angle A=90^{\circ}$. In $\triangle D E F, \mathrm{~m} \angle D=90^{\circ}, D F=12$, and $E F=13$. Brett claims $\triangle A B C \cong \triangle D E F$ and $\triangle A B C \sim \triangle D E F$. Is Brett correct? Explain why.

86 A jewelry company makes copper heart pendants. Each heart uses $0.75 \mathrm{in}^{3}$ of copper and there is 0.323 pound of copper per cubic inch. If copper costs $\$ 3.68$ per pound, what is the total cost for 24 copper hearts?

1) $\$ 5.81$
2) $\$ 21.40$
3) $\$ 66.24$
4) $\$ 205.08$

87 In the diagram below, $\overline{A F K B} \| \overline{C H L M}, \overline{F H} \cong \overline{L H}$, $\overline{F L} \cong \overline{K L}$, and $\overline{L F}$ bisects $\angle H F K$.

Which statement is always true?

1) $2(\mathrm{~m} \angle H L F)=\mathrm{m} \angle C H E$
2) $2(\mathrm{~m} \angle F L K)=\mathrm{m} \angle L K B$
3) $\mathrm{m} \angle A F D=\mathrm{m} \angle B K L$
4) $\mathrm{m} \angle D F K=\mathrm{m} \angle K L F$

88 Which expression is equal to $\sin 30^{\circ}$?

1) $\tan 30^{\circ}$
2) $\sin 60^{\circ}$
3) $\cos 60^{\circ}$
4) $\cos 30^{\circ}$
\qquad

89 Sally and Mary both get ice cream from an ice cream truck. Sally's ice cream is served as a cylinder with a diameter of 4 cm and a total height of 8 cm . Mary's ice cream is served as a cone with a diameter of 7 cm and a total height of 12.5 cm . Assume that ice cream fills Sally's cylinder and Mary's cone.

Who was served more ice cream, Sally or Mary? Justify your answer. Determine and state how much more is served in the larger ice cream than the smaller ice cream, to the nearest cubic centimeter.

90 In the diagram below, $\triangle D O G \sim \triangle C A T$, where $\angle G$ and $\angle T$ are right angles.

Which expression is always equivalent to $\sin D$?

1) $\cos A$
2) $\sin A$
3) $\tan A$
4) $\cos C$

91 A cylindrical pool has a diameter of 16 feet and height of 4 feet. The pool is filled to $\frac{1}{2}$ foot below the top. How much water does the pool contain, to the nearest gallon? [$1 \mathrm{ft}^{3}=7.48$ gallons]

1) 704
2) 804
3) 5264
4) 6016

92 In triangle $A B C$ below, D is a point on $\overline{A B}$ and E is a point on $\overline{A C}$, such that $\overline{D E} \| \overline{B C}$.

If $A D=12, D B=8$, and $E C=10$, what is the length of $\overline{A C}$?

1) 15
2) 22
3) 24
4) 25

93 The measure of one of the base angles of an isosceles triangle is 42°. The measure of an exterior angle at the vertex of the triangle is

1) 42°
2) 84°
3) 96°
4) 138°
\qquad

94 On the set of axes below, the endpoints of $\overline{A B}$ have coordinates $A(-3,4)$ and $B(5,2)$.

If $\overline{A B}$ is dilated by a scale factor of 2 centered at $(3,5)$, what are the coordinates of the endpoints of its image, $\overline{A^{\prime} B^{\prime} \text { ? }}$

1) $A^{\prime}(-7,5)$ and $B^{\prime}(9,1)$
2) $\quad A^{\prime}(-1,6)$ and $B^{\prime}(7,4)$
3) $A^{\prime}(-6,8)$ and $B^{\prime}(10,4)$
4) $A^{\prime}(-9,3)$ and $B^{\prime}(7,-1)$

95 Using a compass and straightedge, construct a midsegment of $\triangle A H L$ below. [Leave all construction marks.]

96 In the diagram below of isosceles triangle $A H E$ with the vertex angle at $H, \overline{C B} \perp \overline{A E}$ and $\overline{F D} \perp \overline{A E}$.

Which statement is always true?

1) $\frac{A H}{A C}=\frac{E H}{E F}$
2) $\frac{A C}{E F}=\frac{A B}{E D}$
3) $\frac{A B}{E D}=\frac{C B}{F E}$
4) $\frac{A D}{A B}=\frac{B E}{D E}$

97 As shown in the diagram below, a symmetrical roof frame rises 4 feet above a house and has a width of 24 feet.

Determine and state, to the nearest degree, the angle of elevation of the roof frame.

98 The line whose equation is $6 x+3 y=3$ is dilated by a scale factor of 2 centered at the point $(0,0)$. An equation of its image is

1) $y=-2 x+1$
2) $y=-2 x+2$
3) $y=-4 x+1$
4) $y=-4 x+2$
\qquad

99 In the diagram of $\triangle C A T$ below, $\mathrm{m} \angle A=90^{\circ}$ and altitude $\overline{A E}$ is drawn from vertex A.

Which statement is always true?

1) $\frac{C E}{A E}=\frac{A E}{E T}$
2) $\frac{A E}{C E}=\frac{A E}{E T}$
3) $\frac{A C}{C E}=\frac{A T}{E T}$
4) $\frac{C E}{A C}=\frac{A C}{E T}$

100 Rectangle $A B C D$ has two vertices at coordinates $A(-1,-3)$ and $B(6,5)$. The slope of $\overline{B C}$ is

1) $-\frac{7}{8}$
2) $\frac{7}{8}$
3) $-\frac{8}{7}$
4) $\frac{8}{7}$

101 What is the image of $(4,3)$ after a reflection over the line $y=1$?

1) $(-2,3)$
2) $(-4,3)$
3) $(4,-1)$
4) $(4,-3)$

102 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

103 Triangle $A D F$ is drawn and $\overline{B C} \| \overline{D F}$.

Which statement must be true?

1) $\frac{A B}{B C}=\frac{B D}{D F}$
2) $B C=\frac{1}{2} D F$
3) $A B: A D=A C: C F$
4) $\angle A C B \cong \angle A F D$
\qquad

104 A right circular cylinder has a diameter of 8 inches and a height of 12 inches. Which two-dimensional figure shows a cross section that is perpendicular to the base and passes through the center of the base?
1)

2)

3)

105 In parallelogram $A B C D$ with $\overline{A C} \perp \overline{B D}, A C=12$ and $B D=16$. What is the perimeter of $A B C D$?

1) 10
2) 24
3) 40
4) 56

106 The volume of a triangular prism is $70 \mathrm{in}^{3}$. The base of the prism is a right triangle with one leg whose measure is 5 inches. If the height of the prism is 4 inches, determine and state the length, in inches, of the other leg of the triangle.

107 Quadrilateral BEST has diagonals that intersect at point D. Which statement would not be sufficient to prove quadrilateral $B E S T$ is a parallelogram?

1) $\overline{B D} \cong \overline{S D}$ and $\overline{E D} \cong \overline{T D}$
2) $\overline{B E} \cong \overline{S T}$ and $\overline{E S} \cong \overline{T B}$
3) $\overline{E S} \cong \overline{T B}$ and $\overline{B E} \| \overline{T S}$
4) $\overline{E S} \| \overline{B T}$ and $\overline{B E} \| \overline{T S}$

108 In the diagram below of $\triangle A B C, D$ and E are the midpoints of $\overline{A B}$ and $\overline{A C}$, respectively, and $\overline{D E}$ is drawn.

I. AA similarity
II. SSS similarity
III. SAS similarity

Which methods could be used to prove $\triangle A B C \sim \triangle A D E$?

1) I and II, only
2) II and III, only
3) I and III, only
4) I, II, and III

109 The equation of a line is $3 x-5 y=8$. All lines perpendicular to this line must have a slope of

1) $\frac{3}{5}$
2) $\frac{5}{3}$
3) $-\frac{3}{5}$
4) $-\frac{5}{3}$
\qquad

110 In $\triangle A B C$ below, $\overline{D E}$ is drawn such that D and E are on $\overline{A B}$ and $\overline{A C}$, respectively.

If $\overline{D E} \| \overline{B C}$, which equation will always be true?

1) $\frac{A D}{D E}=\frac{D B}{B C}$
2) $\frac{A D}{D E}=\frac{A B}{B C}$
3) $\frac{A D}{B C}=\frac{D E}{D B}$
4) $\frac{A D}{B C}=\frac{D E}{A B}$

111 Josh is making a square-based fire pit out of concrete for his backyard, as modeled by the right prism below. He plans to make the outside walls of the fire pit 3.5 feet on each side with a height of 1.5 feet. The concrete walls of the fire pit are going to be 9 inches thick.

If a bag of concrete mix will fill $0.6 \mathrm{ft}^{3}$, determine and state the minimum number of bags needed to build the fire pit.

112 Right triangle $A C T$ has $\mathrm{m} \angle A=90^{\circ}$. Which expression is always equivalent to $\cos T$?

1) $\cos C$
2) $\sin C$
3) $\tan T$
4) $\sin T$

113 In the diagram below of circle $O, \overline{A C}$ and $\overline{B C}$ are chords, and $\mathrm{m} \angle A C B=70^{\circ}$.

If $O A=9$, the area of the shaded sector $A O B$ is

1) 3.5π
2) 7π
3) 15.75π
4) 31.5π

114 In the diagram below of right triangle SUN, where $\angle N$ is a right angle, $S U=13.6$ and $S N=12.3$.

What is $\angle S$, to the nearest degree?

1) 25°
2) 42°
3) 48°
4) 65°
\qquad

115 Darnell models a cup with the cylinder below. He measured the diameter of the cup to be 10 cm and the height to be 9 cm .

If Darnell fills the cup with water to a height of 8 cm , what is the volume of the water in the cup, to the nearest cubic centimeter?

1) 628
2) 707
3) 2513
4) 2827

116 In the diagram below, a line reflection followed by a rotation maps $\triangle A B C$ onto $\triangle D E F$.

Which statement is always true?

1) $\overline{B C} \cong \overline{E F}$
2) $\overline{A C} \cong \overline{D E}$
3) $\angle A \cong \angle F$
4) $\angle B \cong \angle D$

117 A circle is continuously rotated about its diameter. Which three-dimensional object will be formed?

1) cone
2) prism
3) sphere
4) cylinder

118 On the set of axes below, $\triangle B L U$ has vertices with coordinates $B(-3,-2), L(-2,5)$, and $U(1,1)$.

What is the area of $\triangle B L U$?

1) 11
2) 12.5
3) 14
4) 17.1

119 Triangle $A B C$ with coordinates $A(-2,5), B(4,2)$, and $C(-8,-1)$ is graphed on the set of axes below.

Determine and state the area of $\triangle A B C$.
\qquad

120 In the diagram of triangles $A B D$ and $C B E$ below, sides $\overline{A D}$ and $\overline{C E}$ intersect at F, and $\angle A D B \cong \angle C E B$.

Which statement can not be proven?

1) $\triangle A D B \cong \triangle C E B$
2) $\angle E A F \cong \angle D C F$
3) $\triangle A D B \sim \triangle C E B$
4) $\triangle E A F \sim \triangle D C F$

121 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle CAT where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$. [Leave all construction marks.]

122 In the diagram below, lines ℓ and m intersect lines n and p to create the shaded quadrilateral as shown.

Which congruence statement would be sufficient to prove the quadrilateral is a parallelogram?

1) $\angle 1 \cong \angle 6$ and $\angle 9 \cong \angle 14$
2) $\angle 5 \cong \angle 10$ and $\angle 6 \cong \angle 9$
3) $\angle 5 \cong \angle 7$ and $\angle 10 \cong \angle 15$
4) $\angle 6 \cong \angle 9$ and $\angle 9 \cong \angle 11$

123 The coordinates of the vertices of quadrilateral $A B C D$ are $A(0,4), B(3,8), C(8,3)$, and $D(5,-1)$. Prove that $A B C D$ is a parallelogram, but not a rectangle. [The use of the set of axes below is optional.]

\qquad

124 A man is spray-painting the tops of 10 patio tables. Five tables have round tops, with diameters of 4 feet, and five tables have rectangular tops, with dimensions of 4 feet by 6 feet. A can of spray paint covers 25 square feet. How many cans of spray paint must be purchased to paint all of the tabletops?

125 In right triangle $A B C, \mathrm{~m} \angle A=90^{\circ}, \mathrm{m} \angle B=18^{\circ}$, and $A C=8$. To the nearest tenth, the length of $\overline{B C}$ is

1) 2.5
2) 8.4
3) 24.6
4) 25.9

126 In the diagram of $\triangle S R A$ below, $\overline{K P}$ is drawn such that $\angle S K P \cong \angle S R A$.

If $S K=10, S P=8$, and $P A=6$, what is the length of $\overline{K R}$, to the nearest tenth?

1) 4.8
2) 7.5
3) 8.0
4) 13.3

127 Which quadrilateral has diagonals that are always perpendicular?

1) rectangle
2) rhombus
3) trapezoid
4) parallelogram

128 In the diagram below of Circle O, diameter $\overline{A O B}$ and chord $\overline{C B}$ are drawn, and $\mathrm{m} \angle B=28^{\circ}$.

What is $\mathrm{m} \overparen{B C}$?

1) 56°
2) 124°
3) 152°
4) 166°

129 Triangles $A B C$ and $D E F$ are graphed on the set of axes below.

Describe a sequence of transformations that maps $\triangle A B C$ onto $\triangle D E F$.
\qquad

130 An equation of the line perpendicular to the line whose equation is $4 x-5 y=6$ and passes through the point $(-2,3)$ is

1) $y+3=-\frac{5}{4}(x-2)$
2) $y-3=-\frac{5}{4}(x+2)$
3) $y+3=\frac{4}{5}(x-2)$
4) $y-3=\frac{4}{5}(x+2)$

131 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

132 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}, A D=2$ and $A C=6$.

Determine and state the length of $\overline{A B}$.

133 In the diagram below of right triangle MET, altitude $\overline{E S}$ is drawn to hypotenuse $\overline{M T}$.

If $M E=6$ and $S M=4$, what is $M T$?

1) 9
2) 8
3) 5
4) 4

134 The rectangle drawn below is continuously rotated about side S.

Which three-dimensional figure is formed by this rotation?

1) rectangular prism
2) square pyramid
3) cylinder
4) cone
\qquad

135 A telephone pole 11 meters tall needs to be stabilized with a support beam, as modeled below.

Two conditions for proper support are:

- The beam reaches the telephone pole at 70% of the telephone pole's height above the ground.
- The beam forms a 65° angle with the ground.
Determine and state, to the nearest tenth of a meter, the length of the support beam that meets these conditions for this telephone pole. Determine and state, to the nearest tenth of a meter, how far the support beam must be placed from the base of the pole to meet the conditions.

136

Right triangle $A B C$ is shown below.

Which trigonometric equation is always true for triangle $A B C$?

1) $\sin A=\cos C$
2) $\cos A=\sin A$
3) $\cos A=\cos C$
4) $\tan A=\tan C$

137 On the set of axes below, $\triangle A B C$ and $\triangle D E F$ are graphed.

Describe a sequence of rigid motions that would map $\triangle A B C$ onto $\triangle D E F$.

138 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm . Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.
\qquad

Geometry Regents at Random Worksheets

139 Given $\overline{M T}$ below, use a compass and straightedge to construct a 45° angle whose vertex is at point M. [Leave all construction marks.]

140 What is an equation of the image of the line $y=\frac{3}{2} x-4$ after a dilation of a scale factor of $\frac{3}{4}$ centered at the origin?

1) $y=\frac{9}{8} x-4$
2) $y=\frac{9}{8} x-3$
3) $y=\frac{3}{2} x-4$
4) $y=\frac{3}{2} x-3$

141 Square MATH has a side length of 7 inches. Which three-dimensional object will be formed by continuously rotating square MATH around side

$$
\overline{A T} ?
$$

1) a right cone with a base diameter of 7 inches
2) a right cylinder with a diameter of 7 inches
3) a right cone with a base radius of 7 inches
4) a right cylinder with a radius of 7 inches

142 On the set of axes below, $\triangle A B C$ is graphed with coordinates $A(-2,-1), B(3,-1)$, and $C(-2,-4)$. Triangle $Q R S$, the image of $\triangle A B C$, is graphed with coordinates $Q(-5,2), R(-5,7)$, and $S(-8,2)$.

Describe a sequence of transformations that would map $\triangle A B C$ onto $\triangle Q R S$.

143 Which information is not sufficient to prove that a parallelogram is a square?

1) The diagonals are both congruent and perpendicular.
2) The diagonals are congruent and one pair of adjacent sides are congruent.
3) The diagonals are perpendicular and one pair of adjacent sides are congruent.
4) The diagonals are perpendicular and one pair of adjacent sides are perpendicular.
\qquad

144 In the diagram below, $\overline{B C}$ connects points B and C on the congruent sides of isosceles triangle $A D E$, such that $\triangle A B C$ is isosceles with vertex angle A.

If $A B=10, B D=5$, and $D E=12$, what is the length of $\overline{B C}$?

1) 6
2) 7
3) 8
4) 9

145 In the diagram below, $\overline{A C}$ and $\overline{B D}$ intersect at E.

Which information is always sufficient to prove $\triangle A B E \cong \triangle C D E$?

1) $\overline{A B} \| \overline{C D}$
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B E} \cong \overline{D E}$
3) E is the midpoint of $\overline{A C}$.
4) $\overline{B D}$ and $\overline{A C}$ bisect each other.

146 In the diagram below of circle O, chords $\overline{J T}$ and $\overline{E R}$ intersect at M.

If $E M=8$ and $R M=15$, the lengths of $\overline{J M}$ and TM could be

1) 12 and 9.5
2) 14 and 8.5
3) 16 and 7.5
4) 18 and 6.5

147 The coordinates of the vertices of $\triangle A B C$ are $A(-2,4), B(-7,-1)$, and $C(-3,-3)$. Prove that $\triangle A B C$ is isosceles. State the coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, after a translation 5 units to the right and 5 units down. Prove that quadrilateral $A A^{\prime} C^{\prime} C$ is a rhombus. [The use of the set of axes below is optional.]

\qquad

148 On the set of axes below, $\triangle D O G \cong \triangle C A T$.

Describe a sequence of transformations that maps $\triangle D O G$ onto $\triangle C A T$.

149 Circle O with a radius of 9 is drawn below. The measure of central angle $A O C$ is 120°.

What is the area of the shaded sector of circle O ?

1) 6π
2) 12π
3) 27π
4) 54π

150 Which transformation carries the parallelogram below onto itself?

1) a reflection over $y=x$
2) a reflection over $y=-x$
3) a rotation of 90° counterclockwise about the origin
4) a rotation of 180° counterclockwise about the origin

151 Using the construction below, state the degree measure of $\angle C A D$. Explain why.

\qquad

152 A square is graphed on the set of axes below, with vertices at $(-1,2),(-1,-2),(3,-2)$, and $(3,2)$.

Which transformation would not carry the square onto itself?

1) reflection over the y-axis
2) reflection over the x-axis
3) rotation of 180 degrees around point $(1,0)$
4) reflection over the line $y=x-1$

153 In parallelogram $A B C D$ shown below, $\mathrm{m} \angle D A C=98^{\circ}$ and $\mathrm{m} \angle A C D=36^{\circ}$.

What is the measure of angle B ? Explain why.

154 A support wire reaches from the top of a pole to a clamp on the ground. The pole is perpendicular to the level ground and the clamp is 10 feet from the base of the pole. The support wire makes a 68° angle with the ground. Find the length of the support wire to the nearest foot.

155 Which three-dimensional figure will result when a rectangle 6 inches long and 5 inches wide is continuously rotated about the longer side?

1) a rectangular prism with a length of 6 inches, width of 6 inches, and height of 5 inches
2) a rectangular prism with a length of 6 inches, width of 5 inches, and height of 5 inches
3) a cylinder with a radius of 5 inches and a height of 6 inches
4) a cylinder with a radius of 6 inches and a height of 5 inches

156 If the line represented by $y=-\frac{1}{4} x-2$ is dilated by a scale factor of 4 centered at the origin, which statement about the image is true?

1) The slope is $-\frac{1}{4}$ and the y-intercept is -8 .
2) The slope is $-\frac{1}{4}$ and the y-intercept is -2 .
3) The slope is -1 and the y-intercept is -8 .
4) The slope is -1 and the y-intercept is -2 .

157 Rhombus $A B C D$ can be mapped onto rhombus KLMN by a rotation about point P, as shown below.

What is the measure of $\angle K N M$ if the measure of $\angle C A D=35$?

1) 35°
2) 55°
3) 70°
4) 110°
\qquad

As modeled in the diagram below, an access ramp starts on flat ground and ends at the beginning of the top step. Each step is 6 inches tall and 8 inches deep.

If the angle of elevation of the ramp is 4.76°, determine and state the length of the ramp, to the nearest tenth of a foot. Determine and state, to the nearest tenth of a foot, the horizontal distance, d, from the bottom of the stairs to the bottom of the ramp.

159 On the set of axes below, rhombus $A B C D$ has vertices whose coordinates are $A(1,2), B(4,6)$, $C(7,2)$, and $D(4,-2)$.

What is the area of rhombus $A B C D$?

1) 20
2) 24
3) 25
4) 48

160 In parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. Which statement proves $A B C D$ is a rectangle?

1) $\overline{A C} \cong \overline{B D}$
2) $\overline{A B} \perp \overline{B D}$
3) $\overline{A C} \perp \overline{B D}$
4) $\overline{A C}$ bisects $\angle B C D$

161 A 12-foot ladder leans against a building and reaches a window 10 feet above ground. What is the measure of the angle, to the nearest degree, that the ladder forms with the ground?

1) 34
2) 40
3) 50
4) 56

162 The equation of a circle is $x^{2}+8 x+y^{2}-12 y=144$. What are the coordinates of the center and the length of the radius of the circle?

1) center (4,-6) and radius 12
2) center $(-4,6)$ and radius 12
3) center (4,-6) and radius 14
4) center $(-4,6)$ and radius 14
\qquad

163 In right triangle $P R T, \mathrm{~m} \angle P=90^{\circ}$, altitude $\overline{P Q}$ is drawn to hypotenuse $\overline{R T}, R T=17$, and $P R=15$.

Determine and state, to the nearest tenth, the length of $\overline{R Q}$.

164 In the diagram below of circle O, secant $\overline{A B C}$ and tangent $\overline{A D}$ are drawn.

If $C A=12.5$ and $C B=4.5$, determine and state the length of $\overline{D A}$.

165 In quadrilateral $A B C D, E$ and F are points on $\overline{B C}$ and $\overline{A D}$, respectively, and $\overline{B G D}$ and $\overline{E G F}$ are drawn such that $\angle A B G \cong \angle C D G, \overline{A B} \cong \overline{C D}$, and $\overline{C E} \cong \overline{A F}$.

Prove: $\overline{F G} \cong \overline{E G}$

166 A cone has a volume of 108π and a base diameter of 12 . What is the height of the cone?

1) 27
2) 9
3) 3
4) 4

167 What are the coordinates of point C on the directed segment from $A(-8,4)$ to $B(10,-2)$ that partitions the segment such that $A C: C B$ is $2: 1$?

1) $(1,1)$
2) $(-2,2)$
3) $(2,-2)$
4) $(4,0)$

168 In the diagram below, $\triangle A B E \cong \triangle C B D$.

Prove: $\triangle A F D \cong \triangle C F E$

169 The endpoints of directed line segment $P Q$ have coordinates of $P(-7,-5)$ and $Q(5,3)$. What are the coordinates of point A, on $\overline{P Q}$, that divide $\overline{P Q}$ into a ratio of $1: 3$?

1) $A(-1,-1)$
2) $A(2,1)$
3) $A(3,2)$
4) $A(-4,-3)$
\qquad

170 In rhombus TIGE, diagonals $\overline{T G}$ and $\overline{I E}$ intersect at R. The perimeter of TIGE is 68 , and $T G=16$.

What is the length of diagonal $\overline{I E}$?

1) 15
2) 30
3) 34
4) 52

171 A circle centered at the origin passes through $A(-3,4)$.

What is the equation of the line tangent to the circle at A ?

1) $y-4=\frac{4}{3}(x+3)$
2) $y-4=\frac{3}{4}(x+3)$
3) $y+4=\frac{4}{3}(x-3)$
4) $y+4=\frac{3}{4}(x-3)$

172 In the diagram below of $\triangle A B C, D$ is a point on $\overline{B A}, E$ is a point on $\overline{B C}$, and $\overline{D E}$ is drawn.

If $B D=5, D A=12$, and $B E=7$, what is the length of $\overline{B C}$ so that $\overline{A C} \| \overline{D E}$?

1) 23.8
2) 16.8
3) 15.6
4) 8.6

173 On the set of axes below, $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.

Triangle $A B C$ maps onto $\triangle A^{\prime} B^{\prime} C^{\prime}$ after a

1) reflection over the line $y=-x$
2) reflection over the line $y=-x+2$
3) rotation of 180° centered at $(1,1)$
4) rotation of 180° centered at the origin
\qquad

174 A walking path at a local park is modeled on the grid below, where the length of each grid square is 10 feet. The town needs to submit paperwork to pave the walking path. Determine and state, to the nearest square foot, the area of the walking path.

175 In circle B below, diameter $\overline{R T}$, radius $\overline{B E}$, and chord $\overline{R E}$ are drawn.

If $\mathrm{m} \angle T R E=15^{\circ}$ and $B E=9$, then the area of sector $E B R$ is

1) 3.375π
2) 6.75π
3) 33.75π
4) 37.125π

176 What are the coordinates of the center and the length of the radius of the circle whose equation is $x^{2}+y^{2}-12 y-20.25=0$?

1) center $(0,6)$ and radius 7.5
2) center ($0,-6$) and radius 7.5
3) center $(0,12)$ and radius 4.5
4) center $(0,-12)$ and radius 4.5

177 Chelsea is sitting 8 feet from the foot of a tree.
From where she is sitting, the angle of elevation of her line of sight to the top of the tree is 36°. If her line of sight starts 1.5 feet above ground, how tall is the tree, to the nearest foot?

1) 8
2) 7
3) 6
4) 4
\qquad

178 In right triangle $A B C$ shown below, point D is on $\overline{A B}$ and point E is on $\overline{C B}$ such that $\overline{A C} \| \overline{D E}$.

If $A B=15, B C=12$, and $E C=7$, what is the length of $\overline{B D}$?

1) 8.75
2) 6.25
3) 5
4) 4

179 The figure below shows a rhombus with noncongruent diagonals.

Which transformation would not carry this rhombus onto itself?

1) a reflection over the shorter diagonal
2) a reflection over the longer diagonal
3) a clockwise rotation of 90° about the intersection of the diagonals
4) a counterclockwise rotation of 180° about the intersection of the diagonals In trapezoid $A B C D$ below, $\overline{A B} \| \overline{C D}$.

If $A E=5.2, A C=11.7$, and $C D=10.5$, what is the length of $\overline{A B}$, to the nearest tenth?

1) 4.7
2) 6.5
3) 8.4
4) 13.1

181 In right triangle $R S T$, altitude $\overline{T V}$ is drawn to hypotenuse $\overline{R S}$. If $R V=12$ and $R T=18$, what is the length of $\overline{S V}$?

1) $6 \sqrt{5}$
2) 15
3) $6 \sqrt{6}$
4) 27

182 Which equation represents a line parallel to the line whose equation is $-2 x+3 y=-4$ and passes through the point $(1,3)$?

1) $y-3=-\frac{3}{2}(x-1)$
2) $y-3=\frac{2}{3}(x-1)$
3) $y+3=-\frac{3}{2}(x+1)$
4) $y+3=\frac{2}{3}(x+1)$
\qquad

183 Parallelogram $A B C D$ is adjacent to rhombus
$D E F G$, as shown below, and $\overline{F C}$ intersects $\overline{A G D}$ at H.

If $\mathrm{m} \angle B=118^{\circ}$ and $\mathrm{m} \angle A H C=138^{\circ}$, determine and state $\mathrm{m} \angle G F H$.

184 As shown in the diagram below, the radius of a cone is 2.5 cm and its slant height is 6.5 cm .

How many cubic centimeters are in the volume of the cone?

1) 12.5π
2) 13.5π
3) 30.0π
4) 37.5π

185 Diego needs to install a support beam to hold up his new birdhouse, as modeled below. The base of the birdhouse is $24 \frac{1}{2}$ inches long. The support beam will form an angle of 38° with the vertical post. Determine and state the approximate length of the support beam, x, to the nearest inch.

186 In the diagram below, $\triangle A B C$ with sides 13,15 , and 16 , is mapped onto $\triangle D E F$ after a clockwise rotation of 90° about point P.

If $D E=2 x-1$, what is the value of x ?

1) 7
2) 7.5
3) 8
4) 8.5
\qquad www.jmap.org

187 The table below shows the population and land area, in square miles, of four counties in New York State at the turn of the century.

County	2000 Census Population	$\mathbf{2 0 0 0}$ Land Area $\left(\mathrm{mi}^{2}\right)$
Broome	200,536	706.82
Dutchess	280,150	801.59
Niagara	219,846	522.95
Saratoga	200,635	811.84

Which county had the greatest population density?

1) Broome
2) Niagara
3) Dutchess
4) Saratoga

188 The Pyramid of Memphis, in Tennessee, stands 107 yards tall and has a square base whose side is 197 yards long.

What is the volume of the Pyramid of Memphis, to the nearest cubic yard?

1) 751,818
2) $1,384,188$
3) $2,076,212$
4) $4,152,563$

189 A triangle has vertices $A(-2,4), B(6,2)$, and $C(1,-1)$. Prove that $\triangle A B C$ is an isosceles right triangle. [The use of the set of axes below is optional.]

\qquad

190 A cargo trailer, pictured below, can be modeled by a rectangular prism and a triangular prism. Inside the trailer, the rectangular prism measures 6 feet wide and 10 feet long. The walls that form the triangular prism each measure 4 feet wide inside the trailer. The diagram below is of the floor, showing the inside measurements of the trailer.

If the inside height of the trailer is 6.5 feet, what is the total volume of the inside of the trailer, to the nearest cubic foot?

191 Point P divides the directed line segment from point $A(-4,-1)$ to point $B(6,4)$ in the ratio 2:3. The coordinates of point P are

1) $(-1,1)$
2) $(0,1)$
3) $(1,0)$
4) $(2,2)$

192 In the diagram below, $\triangle A B C$ is reflected over line ℓ to create $\triangle D E F$.

If $\mathrm{m} \angle A=40^{\circ}$ and $\mathrm{m} \angle B=95^{\circ}$, what is $\mathrm{m} \angle F$?

1) 40°
2) 45°
3) 85°
4) 95°

193 Kayla was cutting right triangles from wood to use for an art project. Two of the right triangles she cut are shown below.

If $\triangle A B C \sim \triangle D E F$, with right angles B and E, $B C=15 \mathrm{~cm}$, and $A C=17 \mathrm{~cm}$, what is the measure of $\angle F$, to the nearest degree?

1) 28°
2) 41°
3) 62°
4) 88°
\qquad

194 A countertop for a kitchen is modeled with the dimensions shown below. An 18 -inch by 21 -inch rectangle will be removed for the installation of the sink.

What is the area of the top of the installed countertop, to the nearest square foot?

1) 26
2) 23
3) 22
4) 19

195 In the diagram below, $\triangle C D E$ is the image of $\triangle C A B$ after a dilation of $\frac{D E}{A B}$ centered at C.

Which statement is always true?

1) $\sin A=\frac{C E}{C D}$
2) $\cos A=\frac{C D}{C E}$
3) $\sin A=\frac{D E}{C D}$
4) $\cos A=\frac{D E}{C E}$

196 In the diagram below of circle O, points K, A, T, I, and E are on the circle, $\triangle K A E$ and $\triangle I T E$ are drawn, $\overparen{K E} \cong \overparen{E I}$, and $\angle E K A \cong \angle E I T$.

Which statement about $\triangle K A E$ and $\triangle I T E$ is always true?

1) They are neither congruent nor similar.
2) They are similar but not congruent.
3) They are right triangles.
4) They are congruent.

197 In the diagram below of $\triangle R S T, L$ is a point on $\overline{R S}$, and M is a point on $\overline{R T}$, such that $L M \| S T$.

If $R L=2, L S=6, L M=4$, and $S T=x+2$, what is the length of $\overline{S T}$?

1) 10
2) 12
3) 14
4) 16
\qquad

David has just finished building his treehouse and still needs to buy a ladder to be attached to the ledge of the treehouse and anchored at a point on the ground, as modeled below. David is standing 1.3 meters from the stilt supporting the treehouse. This is the point on the ground where he has decided to anchor the ladder. The angle of elevation from his eye level to the bottom of the treehouse is 56 degrees. David's eye level is 1.5 meters above the ground.

Determine and state the minimum length of a ladder, to the nearest tenth of a meter, that David will need to buy for his treehouse.

199 In the diagram below of right triangle $A B C$, altitude $\overline{C D}$ intersects hypotenuse $\overline{A B}$ at D.

Which equation is always true?
200 In the diagram below of parallelogram $A B C D$, $\overline{A F G B}, \overline{C F}$ bisects $\angle D C B, \overline{D G}$ bisects $\angle A D C$, and $\overline{C F}$ and $\overline{D G}$ intersect at E.

If $\mathrm{m} \angle B=75^{\circ}$, then the measure of $\angle E F A$ is

1) 142.5°
2) 127.5°
3) 52.5°
4) 37.5°
5) $\frac{A D}{A C}=\frac{A C}{B D}$
\qquad

201 On the set of axes below, $\overline{A B}$ is dilated by a scale factor of $\frac{5}{2}$ centered at point P.

Which statement is always true?

1) $\overline{P A} \cong \overline{A A^{\prime}}$
2) $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$
3) $A B=A^{\prime} B^{\prime}$
4) $\frac{5}{2}\left(A^{\prime} B^{\prime}\right)=A B$

202 In the diagram below of isosceles trapezoid $S T A R$, diagonals $\overline{A S}$ and $\overline{R T}$ intersect at O and $\overline{S T} \| \overline{R A}$, with nonparallel sides $\overline{S R}$ and $\overline{T A}$.

Which pair of triangles are not always similar?

1) $\triangle S T O$ and $\triangle A R O$
2) $\triangle S O R$ and $\triangle T O A$
3) $\triangle S R A$ and $\triangle A T S$
4) $\triangle S R T$ and $\triangle T A S$

203 Triangle $P Q R$ is shown on the set of axes below.

Which quadrant will contain point $R^{\prime \prime}$, the image of point R, after a 90° clockwise rotation centered at $(0,0)$ followed by a reflection over the x-axis?

1) I
2) II
3) III
4) IV

204 In right triangle $R S T$ below, altitude $\overline{S V}$ is drawn to hypotenuse $\overline{R T}$.

If $R V=4.1$ and $T V=10.2$, what is the length of $\overline{S T}$, to the nearest tenth?

1) 6.5
2) 7.7
3) 11.0
4) 12.1
\qquad

205 Triangle $A B C$ is shown below. Using a compass and straightedge, construct the dilation of $\triangle A B C$ centered at B with a scale factor of 2. [Leave all construction marks.]

Is the image of $\triangle A B C$ similar to the original triangle? Explain why.

206 In the diagram below, parallelogram EFGH is mapped onto parallelogram $I J K H$ after a reflection over line ℓ.

Use the properties of rigid motions to explain why parallelogram $E F G H$ is congruent to parallelogram IJKH.

207 Triangles $A B C$ and $R S T$ are graphed on the set of axes below.

Which sequence of rigid motions will prove $\triangle A B C \cong \triangle R S T$?

1) a line reflection over $y=x$
2) a rotation of 180° centered at $(1,0)$
3) a line reflection over the x-axis followed by a translation of 6 units right
4) a line reflection over the x-axis followed by a line reflection over $y=1$

208 In $\triangle X Y Z$, shown below, medians $\overline{X E}, \overline{Y F}$, and $\overline{Z D}$ intersect at C.

If $C E=5, Y F=21$, and $X Z=15$, determine and state the perimeter of triangle CFX.
\qquad

209 On the set of axes below, pentagon $A B C D E$ is congruent to $A " B " C " D " E "$.

Which describes a sequence of rigid motions that maps $A B C D E$ onto $A " B " C " D " E "$?

1) a rotation of 90° counterclockwise about the origin followed by a reflection over the x-axis
2) a rotation of 90° counterclockwise about the origin followed by a translation down 7 units
3) a reflection over the y-axis followed by a reflection over the x-axis
4) a reflection over the x-axis followed by a rotation of 90° counterclockwise about the origin

210 From a point on the ground one-half mile from the base of a historic monument, the angle of elevation to its top is 11.87°. To the nearest foot, what is the height of the monument?

1) 543
2) 555
3) 1086
4) 1110

211 In the diagram below of circle O, the measure of inscribed angle $A B C$ is 36° and the length of $\overline{O A}$ is 4 inches.

Determine and state, to the nearest tenth of a square inch, the area of the shaded sector.

212 The vertices of $\triangle A B C$ have coordinates $A(-2,-1)$, $B(10,-1)$, and $C(4,4)$. Determine and state the area of $\triangle A B C$. [The use of the set of axes below is optional.]

\qquad

213 In right triangles $A B C$ and $R S T$, hypotenuse $A B=4$ and hypotenuse $R S=16$. If $\triangle A B C \sim \triangle R S T$, then $1: 16$ is the ratio of the corresponding

1) legs
2) areas
3) volumes
4) perimeters

214 A vendor is using an 8 -ft by 8 -ft tent for a craft fair. The legs of the tent are 9 ft tall and the top forms a square pyramid with a height of 3 ft .

What is the volume, in cubic feet, of space the tent occupies?

1) 256
2) 640
3) 672
4) 768

215 What is an equation of a circle whose center is
$(1,4)$ and diameter is 10 ?

1) $x^{2}-2 x+y^{2}-8 y=8$
2) $x^{2}+2 x+y^{2}+8 y=8$
3) $x^{2}-2 x+y^{2}-8 y=83$
4) $x^{2}+2 x+y^{2}+8 y=83$

216 A manufacturer is designing a new container for their chocolate-covered almonds. Their original container was a cylinder with a height of 18 cm and a diameter of 14 cm . The new container can be modeled by a rectangular prism with a square base and will contain the same amount of chocolate-covered almonds.

If the new container's height is 16 cm , determine and state, to the nearest tenth of a centimeter, the side length of the new container if both containers contain the same amount of almonds. A store owner who sells the chocolate-covered almonds displays them on a shelf whose dimensions are 80 cm long and 60 cm wide. The shelf can only hold one layer of new containers when each new container sits on its square base. Determine and state the maximum number of new containers the store owner can fit on the shelf.

217 In right triangle $A B C, \mathrm{~m} \angle C=90^{\circ}$ and $A C \neq B C$. Which trigonometric ratio is equivalent to $\sin B$?

1) $\cos A$
2) $\cos B$
3) $\tan A$
4) $\tan B$

218 A rectangular tabletop will be made of maple wood that weighs 43 pounds per cubic foot. The tabletop will have a length of eight feet, a width of three feet, and a thickness of one inch. Determine and state the weight of the tabletop, in pounds.
\qquad www.jmap.org

219 A concrete footing is a cylinder that is placed in the ground to support a building structure. The cylinder is 4 feet tall and 12 inches in diameter. A contractor is installing 10 footings.

If a bag of concrete mix makes $\frac{2}{3}$ of a cubic foot of concrete, determine and state the minimum number of bags of concrete mix needed to make all 10 footings.

220 On the set of axes below, $\triangle A B C \cong \triangle D E F$.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

221 In the diagram below, lines k and ℓ intersect lines m and n at points A, B, C, and D.

Which statement is sufficient to prove $A B C D$ is a parallelogram?

1) $\angle 1 \cong \angle 3$
2) $\angle 4 \cong \angle 7$
3) $\angle 2 \cong \angle 5$ and $\angle 5 \cong \angle 7$
4) $\angle 1 \cong \angle 3$ and $\angle 3 \cong \angle 4$
\qquad

222 A rock-climbing wall at a local park has a right triangular section that slants toward the climber, as shown in the picture below. The height of the wall is 5 meters and the slanted section begins 1.2 meters up the wall at an angle of 14 degrees.

Determine and state, to the nearest hundredth, the number of meters in the length of the section of the wall that is slanted (hypotenuse).

223 Given: Quadrilateral $A B C D, \overline{A C}$ and $\overline{E F}$ intersect at $H, \overline{E F}\|\overline{A D}, \overline{E F}\| \overline{B C}$, and $\overline{A D} \cong \overline{B C}$.

Prove: $(E H)(C H)=(F H)(A H)$

224 A quadrilateral must be a parallelogram if

1) one pair of sides is parallel and one pair of angles is congruent
2) one pair of sides is congruent and one pair of angles is congruent
3) one pair of sides is both parallel and congruent
4) the diagonals are congruent

225 What are the coordinates of the center and the length of the radius of the circle whose equation is $x^{2}+y^{2}=8 x-6 y+39$?

1) center $(-4,3)$ and radius 64
2) center $(4,-3)$ and radius 64
3) center $(-4,3)$ and radius 8
4) center $(4,-3)$ and radius 8

226 As shown in the diagram below, secants $\overrightarrow{P W R}$ and $\overrightarrow{P T S}$ are drawn to circle O from external point P.

If $\mathrm{m} \angle R P S=35^{\circ}$ and $\mathrm{m} \overparen{R S}=121^{\circ}$, determine and state mWT .
\qquad

227 In the diagram below of circle K, secant $\overline{P L K E}$ and tangent $\overline{P Z}$ are drawn from external point P.

If $m \overparen{m Z}=56^{\circ}$, determine and state the degree measure of angle P.

228 In circle O two secants, $\overline{A B P}$ and $\overline{C D P}$, are drawn to external point P. If $\mathrm{m} \overparen{A C}=72^{\circ}$, and $\mathrm{m} \overparen{B D}=34^{\circ}$, what is the measure of $\angle P$?

1) 19°
2) 38°
3) 53°
4) 106°

229 Triangles JOE and SAM are drawn such that $\angle E \cong \angle M$ and $\overline{E J} \cong \overline{M S}$. Which mapping would not always lead to $\triangle J O E \cong \triangle S A M$?

1) $\angle J$ maps onto $\angle S$
2) $\angle O$ maps onto $\angle A$
3) $\overline{E O}$ maps onto $\overline{M A}$
4) $\overline{J O}$ maps onto $\overline{S A}$

230 Write an equation of the line that is parallel to the line whose equation is $3 y+7=2 x$ and passes through the point $(2,6)$.

231 Given the information marked on the diagrams below, which pair of triangles can not always be proven congruent?

1)

2)

3)
$\triangle K L J$ and $\triangle M J L$

4)
$\triangle N O P$ and $\triangle R S P$

232 The area of a sector of a circle with a radius measuring 15 cm is $75 \pi \mathrm{~cm}^{2}$. What is the measure of the central angle that forms the sector?

1) 72°
2) 120°
3) 144°
4) 180°
\qquad

233 In the diagram below of right triangle $B A L$, altitude $\overline{A D}$ is drawn to hypotenuse $\overline{B D L}$. The length of $\overline{A D}$ is 6 .

If the length of $\overline{D L}$ is four times the length of $\overline{B D}$, determine and state the length of $\overline{B D}$.

234 Lou has a solid clay brick in the shape of a rectangular prism with a length of 8 inches, a width of 3.5 inches, and a height of 2.25 inches. If the clay weighs $1.055 \mathrm{oz} / \mathrm{in}^{3}$, how much does Lou's brick weigh, to the nearest ounce?

1) 66
2) 64
3) 63
4) 60

235 The coordinates of the endpoints of $\overline{S C}$ are $S(-7,3)$ and $C(2,-6)$. If point M is on $\overline{S C}$, what are the coordinates of M such that $S M: M C$ is 1:2?

1) $(-4,0)$
2) $(0,-4)$
3) $(-1,-3)$
4) $\left(-\frac{5}{2},-\frac{3}{2}\right)$

236 Determine and state the coordinates of the center and the length of the radius of the circle whose equation is $x^{2}+y^{2}+6 x=6 y+63$.

237 In the diagram below, $\overline{F A D} \| \overline{E H C}$, and $\overline{A B H}$ and $\overline{B C}$ are drawn.

If $\mathrm{m} \angle F A B=48^{\circ}$ and $\mathrm{m} \angle E C B=18^{\circ}$, what is $\mathrm{m} \angle A B C$?

1) 18°
2) 48°
3) 66°
4) 114°

238 In the diagram below of $\triangle A C D, \overline{D B}$ is a median to $\overline{A C}$, and $\overline{A B} \cong \overline{D B}$.

If $\mathrm{m} \angle D A B=32^{\circ}$, what is $\mathrm{m} \angle B D C$?

1) 32°
2) 52°
3) 58°
4) 64°

239 After a dilation with center (0,0), the image of $\overline{D B}$ is $\overline{D^{\prime} B^{\prime}}$. If $D B=4.5$ and $D^{\prime} B^{\prime}=18$, the scale factor of this dilation is

1) $\frac{1}{5}$
2) 5
3) $\frac{1}{4}$
4) 4
\qquad

240 In the diagram below of right triangle $K M I$, altitude $\overline{I G}$ is drawn to hypotenuse $\overline{K M}$.

If $K G=9$ and $I G=12$, the length of $\overline{I M}$ is

1) 15
2) 16
3) 20
4) 25

241 Given right triangle $A B C$ with a right angle at C, $\mathrm{m} \angle B=61^{\circ}$. Given right triangle $R S T$ with a right angle at $T, \mathrm{~m} \angle R=29^{\circ}$.

Which proportion in relation to $\triangle A B C$ and $\triangle R S T$ is not correct?

1) $\frac{A B}{R S}=\frac{R T}{A C}$
2) $\frac{B C}{S T}=\frac{A B}{R S}$
3) $\frac{B C}{S T}=\frac{A C}{R T}$
4) $\frac{A B}{A C}=\frac{R S}{R T}$

242 Using a compass and straightedge, construct the angle bisector of $\angle A B C$. [Leave all construction marks.]

243 If one exterior angle of a triangle is acute, then the triangle must be

1) right
2) acute
3) obtuse
4) equiangular

244 In the diagram of quadrilateral $A B C D$ with diagonal $\overline{A C}$ shown below, segments $G H$ and $E F$ are drawn, $\overline{A E} \cong \overline{C G}, \overline{B E} \cong \overline{D G}, \overline{A H} \cong \overline{C F}$, and $\overline{A D} \cong \overline{C B}$.

Prove: $\overline{E F} \cong \overline{G H}$
\qquad

245 In the diagram below of triangle $A B C, \overline{A C}$ is extended through point C to point D, and $\overline{B E}$ is drawn to $\overline{A C}$.

Which equation is always true?

1) $\mathrm{m} \angle 1=\mathrm{m} \angle 3+\mathrm{m} \angle 2$
2) $\mathrm{m} \angle 5=\mathrm{m} \angle 3-\mathrm{m} \angle 2$
3) $\mathrm{m} \angle 6=\mathrm{m} \angle 3-\mathrm{m} \angle 2$
4) $\mathrm{m} \angle 7=\mathrm{m} \angle 3+\mathrm{m} \angle 2$

246 A line is dilated by a scale factor of $\frac{1}{3}$ centered at a point on the line. Which statement is correct about the image of the line?

1) Its slope is changed by a scale factor of $\frac{1}{3}$.
2) Its y-intercept is changed by a scale factor of $\frac{1}{3}$.
3) Its slope and y-intercept are changed by a scale factor of $\frac{1}{3}$.
4) The image of the line and the pre-image are the same line.

247 Right triangle $T M R$ is a scalene triangle with the right angle at M. Which equation is true?

1) $\sin M=\cos T$
2) $\sin R=\cos R$
3) $\sin T=\cos R$
4) $\sin T=\cos M$

248 Parallelogram $A B C D$ with diagonal $\overline{D B}$ is drawn below. Line segment $E F$ is drawn such that it bisects $\overline{D B}$ at M.

Which triangle congruence method would prove that $\triangle E M B \sim \triangle F M D$?

1) ASA, only
2) AAS, only
3) both ASA and AAS
4) neither ASA nor AAS

249 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of triangle $A B C$ after a dilation with a scale factor of $\frac{1}{2}$ and centered at point A. Is triangle $A B C$ congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$? Explain your answer.

250 An airplane took off at a constant angle of elevation. After the plane traveled for 25 miles, it reached an altitude of 5 miles, as modeled below.

To the nearest tenth of a degree, what was the angle of elevation?
\qquad

251 On the set of axes below, $\triangle L E T$ and $\triangle L$ " E " T " are graphed in the coordinate plane where $\triangle L E T \cong \triangle L " E " T$ ".

Which sequence of rigid motions maps $\triangle L E T$ onto $\triangle L " E " T$ "?

1) a reflection over the y-axis followed by a reflection over the x-axis
2) a rotation of 180° about the origin
3) a rotation of 90° counterclockwise about the origin followed by a reflection over the y-axis
4) a reflection over the x-axis followed by a rotation of 90° clockwise about the origin

252 In quadrilateral $Q R S T$, diagonals $\overline{Q S}$ and $\overline{R T}$ intersect at M. Which statement would always prove quadrilateral QRST is a parallelogram?

1) $\angle T Q R$ and $\angle Q R S$ are supplementary.
2) $\overline{Q M} \cong \overline{S M}$ and $\overline{Q T} \cong \overline{R S}$
3) $\overline{Q R} \cong \overline{T S}$ and $\overline{Q T} \cong \overline{R S}$
4) $\overline{Q R} \cong \overline{T S}$ and $\overline{Q T} \| \overline{R S}$

253 In the diagram below, chords $\overline{P Q}$ and $\overline{R S}$ of circle O intersect at T.

Which relationship must always be true?

1) $R T=T Q$
2) $R T=T S$
3) $R T+T S=P T+T Q$
4) $R T \times T S=P T \times T Q$

254 A packing box for baseballs is the shape of a rectangular prism with dimensions of $2 \mathrm{ft} \times 1 \mathrm{ft} \times 18 \mathrm{in}$. Each baseball has a diameter of 2.94 inches.

Determine and state the maximum number of baseballs that can be packed in the box if they are stacked in layers and each layer contains an equal number of baseballs. The weight of a baseball is approximately 0.025 pound per cubic inch. Determine and state, to the nearest pound, the total weight of all the baseballs in the fully packed box.
\qquad www.jmap.org

255 On the set of axes below, $\triangle A B C \cong \triangle S T U$.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle S T U$.

256 In triangle $\overline{M A H}$ below, $\overline{M T}$ is the perpendicular bisector of $\overline{A H}$.

Which statement is not always true?

1) $\triangle M A H$ is isosceles.
2) $\triangle M A T$ is isosceles.
3) $\overline{M T}$ bisects $\angle A M H$.
4) $\angle A$ and $\angle T M H$ are complementary.

257 Which transformation does not always preserve distance?

1) $(x, y) \rightarrow(x+2, y)$
2) $(x, y) \rightarrow(-y,-x)$
3) $(x, y) \rightarrow(2 x, y-1)$
4) $(x, y) \rightarrow(3-x, 2-y)$

258 Given points A, B, and C, use a compass and straightedge to construct point D so that $A B C D$ is a parallelogram. [Leave all construction marks.]

${ }^{\bullet} \mathrm{A}$

B

259 Using a compass and straightedge, dilate triangle $A B C$ by a scale factor of 2 centered at C. [Leave all construction marks.]

260 Which statement about parallelograms is always true?

1) The diagonals are congruent.
2) The diagonals bisect each other.
3) The diagonals are perpendicular.
4) The diagonals bisect their respective angles.
\qquad

261 In the diagram below of $\triangle A B C, \overline{T V}$ intersects $\overline{A B}$ and $\overline{A C}$ at points T and V respectively, and $\mathrm{m} \angle A T V=\mathrm{m} \angle A B C$.

If $A T=4, B C=18, T B=5$, and $A V=6$, what is the perimeter of quadrilateral $T B C V$?

1) 38.5
2) 39.5
3) 40.5
4) 44.9

262 The diagram below shows a tree growing vertically on a hillside. The angle formed by the tree trunk and the hillside is 100°. The distance from the base of the tree to the bottom of the hill is 140 feet.

What is the vertical drop, x, to the base of the hill, to the nearest foot?

1) 24
2) 25
3) 70
4) 138

263 In triangle $A B C$ below, D is a point on $\overline{A B}$ and E is a point on $\overline{A C}$, such that $\overline{D E} \| \overline{B C}$.

Which statement is always true?

1) $\angle A D E$ and $\angle A B C$ are right angles.
2) $\triangle A D E \sim \triangle A B C$
3) $D E=\frac{1}{2} B C$
4) $\overline{A D} \cong \overline{D B}$

264 Determine and state the area of triangle $P Q R$, whose vertices have coordinates $P(-2,-5), Q(3,5)$, and $R(6,1)$. [The use of the set of axes below is optional.]

\qquad

265 In the diagram below of $\triangle A E D$ and $\overline{A B C D}$, $\overline{A E} \cong \overline{D E}$.

Which statement is always true?

1) $\overline{E B} \cong \overline{E C}$
2) $\overline{A C} \cong \overline{D B}$
3) $\angle E B A \cong \angle E C D$
4) $\angle E A C \cong \angle E D B$

266 After a dilation centered at the origin, the image of $\overline{C D}$ is $\overline{C^{\prime} D^{\prime}}$. If the coordinates of the endpoints of these segments are $C(6,-4), D(2,-8), C^{\prime}(9,-6)$, and $D^{\prime}(3,-12)$, the scale factor of the dilation is

1) $\frac{3}{2}$
2) $\frac{2}{3}$
3) 3
4) $\frac{1}{3}$

267 Jaden is comparing two cones. The radius of the base of cone A is twice as large as the radius of the base of cone B. The height of cone B is twice the height of cone A. The volume of cone A is

1) twice the volume of cone B
2) four times the volume of cone B
3) equal to the volume of cone B
4) equal to half the volume of cone B

268 In the diagram below of right triangle $A B C$, $A C=8$, and $A B=17$.

Which equation would determine the value of angle A?

1) $\sin A=\frac{8}{17}$
2) $\tan A=\frac{8}{15}$
3) $\cos A=\frac{15}{17}$
4) $\tan A=\frac{15}{8}$

269 A plane intersects a cylinder perpendicular to its bases.

This cross section can be described as a

1) rectangle
2) parabola
3) triangle
4) circle
\qquad

270 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a dilation centered at the origin. The coordinates of the vertices of $\triangle A B C$ are $A(-2,1), B(2,4)$, and $C(2,-3)$.

If the coordinates of A^{\prime} are $(-4,2)$, the coordinates of B^{\prime} are

1) $(8,4)$
2) $(4,8)$
3) $(4,-6)$
4) $(1,2)$

271 Which regular polygon has a minimum rotation of 36° about its center that carries the polygon onto itself?

1) pentagon
2) octagon
3) nonagon
4) decagon

272 If the altitudes of a triangle meet at one of the triangle's vertices, then the triangle is

1) a right triangle
2) an acute triangle
3) an obtuse triangle
4) an equilateral triangle

273 Quadrilateral $E B C F$ and $\overline{A D}$ are drawn below, such that $A B C D$ is a parallelogram, $\overline{E B} \cong \overline{F B}$, and $\overline{E F} \perp \overline{F H}$.

If $\mathrm{m} \angle E=62^{\circ}$ and $\mathrm{m} \angle C=51^{\circ}$, what is $\mathrm{m} \angle F H B$?

1) 79°
2) 76°
3) 73°
4) 62°

274 For the acute angles in a right triangle, $\sin (4 x)^{\circ}=\cos (3 x+13)^{\circ}$. What is the number of degrees in the measure of the smaller angle?

1) 11°
2) 13°
3) 44°
4) 52°
\qquad

275 A standard-size golf ball has a diameter of 1.680 inches. The material used to make the golf ball weighs 0.6523 ounce per cubic inch. What is the weight, to the nearest hundredth of an ounce, of one golf ball?

1) 1.10
2) 1.62
3) 2.48
4) 3.81

276 The coordinates of the vertices of $\triangle A B C$ are $A(1,2), B(-5,3)$, and $C(-6,-3)$. Prove that $\triangle A B C$ is isosceles. State the coordinates of point D such that quadrilateral $A B C D$ is a square. Prove that your quadrilateral $A B C D$ is a square. [The use of the set of axes below is optional.]

277 Determine and state an equation of the line perpendicular to the line $5 x-4 y=10$ and passing through the point $(5,12)$.

278 In the diagram below, $A B C D$ is a rectangle, and diagonal $\overline{B D}$ is drawn. Line ℓ, a vertical line of symmetry, and line m, a horizontal line of symmetry, intersect at point E.

Which sequence of transformations will map $\triangle A B D$ onto $\triangle C D B$?

1) a reflection over line ℓ followed by a 180° rotation about point E
2) a reflection over line ℓ followed by a reflection over line m
3) a 180° rotation about point B
4) a reflection over $\overline{D B}$

279 In quadrilateral $A B C D$ below, $\overline{A B} \| \overline{C D}$, and E, H, and F are the midpoints of $\overline{A D}, \overline{A C}$, and $\overline{B C}$, respectively.

If $A B=24, C D=18$, and $A H=10$, then $F H$ is

1) 9
2) 10
3) 12
4) 21
\qquad

280 A regular pentagon is rotated about its center.
What is the minimum number of degrees needed to carry the pentagon onto itself?

1) 72°
2) 108°
3) 144°
4) 360°

281 On the set of axes below, $\triangle D E F$ has vertices at the coordinates $D(1,-1), E(3,4)$, and $F(4,2)$, and point G has coordinates $(3,1)$. Owen claims the median from point E must pass through point G. Is Owen correct? Explain why.

282 Which figure(s) below can have a triangle as a two-dimensional cross section?
I. cone
II. cylinder
III. cube
IV. square pyramid

1) I, only
2) IV, only
3) I, II, and IV, only
4) I, III, and IV, only

283 In $\triangle A B C$ shown below, $\angle A C B$ is a right angle, E is a point on $\overline{A C}$, and $\overline{E D}$ is drawn perpendicular to hypotenuse $\overline{A B}$.

If $\overline{A B}=9, B C=6$, and $D E=4$, what is the length of $\overline{A E}$?

1) 5
2) 6
3) 7
4) 8

284 As shown in the diagram below, right triangle $A B C$ has side lengths of 8 and 15 .

If the triangle is continuously rotated about $\overline{A C}$, the resulting figure will be

1) a right cone with a radius of 15 and a height of 8
2) a right cone with a radius of 8 and a height of 15
3) a right cylinder with a radius of 15 and a height of 8
4) a right cylinder with a radius of 8 and a height of 15
\qquad www.jmap.org

285 On the set of axes below, $\triangle R S T$ is the image of $\triangle A B C$ after a dilation centered at point P.

The scale factor of the dilation that maps $\triangle A B C$ onto $\triangle R S T$ is

1) $\frac{1}{3}$
2) 2
3) 3
4) $\frac{2}{3}$

286 Given: Parallelogram $P Q R S, \overline{Q T} \perp \overline{P S}, \overline{S U} \perp \overline{Q R}$

Prove: $\overline{P T} \cong \overline{R U}$

287 In the diagram below of right triangle $E F G$, altitude $\overline{F H}$ intersects hypotenuse $\overline{E G}$ at H.

If $F H=9$ and $E F=15$, what is $E G$?

1) 6.75
2) 12
3) 18.75
4) 25

288 Given circle O with radius $\overline{O A}$, use a compass and straightedge to construct an equilateral triangle inscribed in circle O. [Leave all construction marks.]

\qquad www.jmap.org

289 Francisco needs the three pieces of glass shown below to complete a stained glass window. The shapes, two triangles and a trapezoid, are measured in inches.

Glass can be purchased in rectangular sheets that are 12 inches wide. What is the minimum length of a sheet of glass, in inches, that Francisco must purchase in order to have enough to complete the window?

1) 20
2) 25
3) 29
4) 34

290
In the diagram of quadrilateral $N A V Y$ below, $\mathrm{m} \angle Y N A=30^{\circ}, \mathrm{m} \angle Y A N=38^{\circ}, \mathrm{m} \angle A V Y=94^{\circ}$, and $\mathrm{m} \angle V A Y=46^{\circ}$.

Which segment has the shortest length?

1) $\overline{A Y}$
2) $\overline{N Y}$
3) $\overline{V A}$
4) $\overline{V Y}$

291 The coordinates of the endpoints of $\overline{Q S}$ are $Q(-9,8)$ and $S(9,-4)$. Point R is on $\overline{Q S}$ such that $Q R: R S$ is in the ratio of $1: 2$. What are the coordinates of point R ?

1) $(0,2)$
2) $(3,0)$
3) $(-3,4)$
4) $(-6,6)$

292 A large water basin is in the shape of a right cylinder. The inside of the basin has a diameter of $8 \frac{1}{4}$ feet and a height of 3 feet. Determine and state, to the nearest cubic foot, the number of cubic feet of water that it will take to fill the basin to a level of $\frac{1}{2}$ foot from the top.
\qquad www.jmap.org

293 Use a compass and straightedge to construct a line parallel to $\overleftrightarrow{A B}$ through point C, shown below. [Leave all construction marks.]

294 Quadrilateral NATS has coordinates $N(-4,-3)$, $A(1,2), T(8,1)$, and $S(3,-4)$. Prove quadrilateral NATS is a rhombus. [The use of the set of axes below is optional.]

295 A rhombus is graphed on the set of axes below.

Which transformation would carry the rhombus onto itself?

1) 180° rotation counterclockwise about the origin
2) reflection over the line $y=\frac{1}{2} x+1$
3) reflection over the line $y=0$
4) reflection over the line $x=0$
\qquad

Riley plotted $A(-1,6), B(3,8), C(6,-1)$, and $D(1,0)$ to form a quadrilateral. Prove that Riley's quadrilateral $A B C D$ is a trapezoid. [The use of the set of axes below is optional.] Riley defines an isosceles trapezoid as a trapezoid with congruent diagonals. Use Riley's definition to prove that $A B C D$ is not an isosceles trapezoid.

297 An equation of line p is $y=\frac{1}{3} x+4$. An equation of line q is $y=\frac{2}{3} x+8$. Which statement about lines p and q is true?

1) A dilation of $\frac{1}{2}$ centered at the origin will map line q onto line p.
2) A dilation of 2 centered at the origin will map line p onto line q.
3) Line q is not the image of line p after a dilation because the lines are not parallel.
4) Line q is not the image of line p after a dilation because the lines do not pass through the origin.

298 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn.

Which ratio is always equivalent to $\cos A$?

1) $\frac{A B}{B C}$
2) $\frac{B D}{B C}$
3) $\frac{B D}{A B}$
4) $\frac{B C}{A C}$

299 Triangle $J G R$ is similar to triangle MST. Which statement is not always true?

1) $\angle J \cong \angle M$
2) $\angle G \cong \angle T$
3) $\angle R \cong \angle T$
4) $\angle G \cong \angle S$

300 In rhombus VENU, diagonals $\overline{V N}$ and $\overline{E U}$ intersect at S. If $V N=12$ and $E U=16$, what is the perimeter of the rhombus?

1) 80
2) 40
3) 20
4) 10

301 A quadrilateral has diagonals that are perpendicular but not congruent. This quadrilateral could be

1) a square
2) a rhombus
3) a rectangle
4) an isosceles trapezoid
\qquad

302 On the set of axes below, $\triangle A B C$ has vertices at $A(-2,0), B(2,-4), C(4,2)$, and $\triangle D E F$ has vertices at $D(4,0), E(-4,8), F(-8,-4)$.

Which sequence of transformations will map $\triangle A B C$ onto $\triangle D E F$?

1) a dilation of $\triangle A B C$ by a scale factor of 2 centered at point A
2) a dilation of $\triangle A B C$ by a scale factor of $\frac{1}{2}$ centered at point A
3) a dilation of $\triangle A B C$ by a scale factor of 2 centered at the origin, followed by a rotation of 180° about the origin
4) a dilation of $\triangle A B C$ by a scale factor of $\frac{1}{2}$ centered at the origin, followed by a rotation of 180° about the origin

303 What is an equation of a line that is perpendicular to the line whose equation is $2 y+3 x=1$?

1) $y=\frac{2}{3} x+\frac{5}{2}$
2) $y=\frac{3}{2} x+2$
3) $y=-\frac{2}{3} x+1$
4) $y=-\frac{3}{2} x+\frac{1}{2}$

304 Trapezoid $A B C D$, where $\overline{A B} \| \overline{C D}$, is shown below. Diagonals $\overline{A C}$ and $\overline{D B}$ intersect $\overline{M N}$ at E, and $\overline{A D} \cong \overline{A E}$.

If $\mathrm{m} \angle D A E=35^{\circ}, \mathrm{m} \angle D C E=25^{\circ}$, and $\mathrm{m} \angle N E C=30^{\circ}$, determine and state $\mathrm{m} \angle A B D$.

305 Quadrilateral MATH is congruent to quadrilateral WXYZ. Which statement is always true?

1) $M A=X Y$
2) $\mathrm{m} \angle H=\mathrm{m} \angle W$
3) Quadrilateral $W X Y Z$ can be mapped onto quadrilateral MATH using a sequence of rigid motions.
4) Quadrilateral MATH and quadrilateral $W X Y Z$ are the same shape, but not necessarily the same size.

306 A child-sized swimming pool can be modeled by a cylinder. The pool has a diameter of $6 \frac{1}{2}$ feet and a height of 12 inches. The pool is filled with water to $\frac{2}{3}$ of its height. Determine and state the volume of the water in the pool, to the nearest cubic foot. One cubic foot equals 7.48 gallons of water. Determine and state, to the nearest gallon, the number of gallons of water in the pool.
\qquad www.jmap.org

307 In the diagram below, a right circular cone has a diameter of 10 and a slant height of 13 .

Determine and state the volume of the cone, in terms of π.

The coordinates of the vertices of quadrilateral HYPE are $H(-3,6), Y(2,9), P(8,-1)$, and $E(3,-4)$. Prove HYPE is a rectangle. [The use of the set of axes below is optional.]

309 In the diagram of $\triangle A B C$ below, $\mathrm{m} \angle C=90^{\circ}$, $C B=13$, and $A B=16$.

What is the measure of $\angle A$, to the nearest degree?

1) 36°
2) 39°
3) 51°
4) 54°

310 In the diagram below, circle O has a radius of 10 .

If $\mathrm{m} \overparen{A B}=72^{\circ}$, find the area of shaded sector $A O B$, in terms of π.

311 The expression $\sin 57^{\circ}$ is equal to

1) $\tan 33^{\circ}$
2) $\cos 33^{\circ}$
3) $\tan 57^{\circ}$
4) $\cos 57^{\circ}$
\qquad

312 As modeled in the diagram below, a building has a height of 50 meters. The angle of depression from the top of the building to the top of the tree, T, is 13.3°. The angle of depression from the top of the building to the bottom of the tree, B, is 22.2°.

Determine and state, to the nearest meter, the height of the tree.

313 In the diagram below, a plane intersects a square pyramid parallel to its base.

Which two-dimensional shape describes this cross section?

1) circle
2) square
3) triangle
4) pentagon

314 If a rectangle is continuously rotated around one of its sides, what is the three-dimensional figure formed?

1) rectangular prism
2) cylinder
3) sphere
4) cone

315 In parallelogram $P Q R S, \overline{Q P}$ is extended to point T and $\overline{S T}$ is drawn.

If $\overline{S T} \cong \overline{S P}$ and $\mathrm{m} \angle R=130^{\circ}$, what is $\mathrm{m} \angle P S T$?

1) 130°
2) 80°
3) 65°
4) 50°

316 The coordinates of the vertices of parallelogram $C D E H$ are $C(-5,5), D(2,5), E(-1,-1)$, and $H(-8,-1)$. What are the coordinates of P, the point of intersection of diagonals $\overline{C E}$ and $\overline{D H}$?

1) $(-2,3)$
2) $(-2,2)$
3) $(-3,2)$
4) $(-3,-2)$
\qquad

317 In parallelogram $A B C D$ shown below, $\overline{E B}$ bisects $\angle A B C$.

If $\mathrm{m} \angle A=40^{\circ}$, then $\mathrm{m} \angle B E D$ is

1) 40°
2) 70°
3) 110°
4) 140°

318 On the set of axes below, rectangle WIND has vertices with coordinates $W(-4,2), I(4,0), N(3,-4)$, and $D(-5,-2)$.

What is the area of rectangle WIND?

1) 17
2) 31
3) 32
4) 34

319 In $\triangle A B C$ below, angle C is a right angle.

Which statement must be true?

1) $\sin A=\cos B$
2) $\sin A=\tan B$
3) $\sin B=\tan A$
4) $\sin B=\cos B$

320 The line $-3 x+4 y=8$ is transformed by a dilation centered at the origin. Which linear equation could represent its image?

1) $y=\frac{4}{3} x+8$
2) $y=\frac{3}{4} x+8$
3) $y=-\frac{3}{4} x-8$
4) $y=-\frac{4}{3} x-8$

321 The line represented by $2 y=x+8$ is dilated by a scale factor of k centered at the origin, such that the image of the line has an equation of $y-\frac{1}{2} x=2$.
What is the scale factor?

1) $k=\frac{1}{2}$
2) $k=2$
3) $k=\frac{1}{4}$
4) $k=4$
\qquad

322 The diagram below models a countertop designed for a kitchen. The countertop is made of solid oak and is 3 inches thick.

If oak weighs approximately 44 pounds per cubic foot, the approximate weight, in pounds, of the countertop is

1) 630
2) 730
3) 750
4) 870

323 The Leaning Tower of Pisa in Italy is known for its slant, which occurred after its construction began. The angle of the slant is 86.03° from the ground. The low side of the tower reaches a height of 183.27 feet from the ground.

Determine and state the slant height, x, of the low side of the tower, to the nearest hundredth of a foot.

324 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at E, and chords $\overline{A B}$ and $\overline{C D}$ are drawn.

Which statement must always be true?

1) $\overline{A B} \cong \overline{C D}$
2) $\overline{A D} \cong \overline{B C}$
3) $\angle B \cong \angle C$
4) $\angle A \cong \angle C$

325 If scalene triangle $X Y Z$ is similar to triangle $Q R S$ and $\mathrm{m} \angle X=90^{\circ}$, which equation is always true?

1) $\sin Y=\sin S$
2) $\cos R=\cos Z$
3) $\cos Y=\sin Q$
4) $\sin R=\cos Z$

326 Theresa has a rectangular pool 30 ft long, 15 ft wide, and 4 ft deep. Theresa fills her pool using city water at a rate of $\$ 3.95$ per 100 gallons of water. Nancy has a circular pool with a diameter of 24 ft and a depth of 4 ft . Nancy fills her pool with a water delivery service at a rate of $\$ 200$ per 6000 gallons. If Theresa and Nancy both fill their pools 6 inches from the top of the pool, determine and state who paid more to fill her pool.
[$1 \mathrm{ft}^{3}$ water $=7.48$ gallons]
\qquad

327 In the diagram of equilateral triangle $A B C$ shown below, E and F are the midpoints of $\overline{A C}$ and $\overline{B C}$, respectively.

If $E F=2 x+8$ and $A B=7 x-2$, what is the perimeter of trapezoid $A B F E$?

1) 36
2) 60
3) 100
4) 120

328 As modeled below, a projector mounted on a ceiling is 3.74 m from a wall, where a whiteboard is displayed. The vertical distance from the ceiling to the top of the whiteboard is 0.41 m , and the height of the whiteboard is 1.17 m .

Determine and state the projection angle, θ, to the nearest tenth of a degree.

329 A regular hexagon is rotated about its center. Which degree measure will carry the regular hexagon onto itself?

1) 45°
2) 90°
3) 120°
4) 135°

330 In right triangle $M T H$ shown below, $\mathrm{m} \angle H=90^{\circ}$, $H T=8$, and $H M=5$.

Determine and state, to the nearest tenth, the volume of the three-dimensional solid formed by rotating $\triangle M T H$ continuously around $\overline{M H}$.

331 Given: Quadrilateral MATH, $\overline{H M} \cong \overline{A T}$, $\overline{H T} \cong \overline{A M}, \overline{H E} \perp \overline{M E A}$, and $\overline{H A} \perp \overline{A T}$

Prove: $T A \bullet H A=H E \bullet T H$

332 Point M divides $\overline{A B}$ so that $A M: M B=1: 2$. If A has coordinates $(-1,-3)$ and B has coordinates $(8,9)$, the coordinates of M are

1) $(2,1)$
2) $\left(\frac{5}{3}, 0\right)$
3) $(5,5)$
4) $\left(\frac{23}{3}, 8\right)$
\qquad

333 A 15-foot ladder leans against a wall and makes an angle of 65° with the ground. What is the horizontal distance from the wall to the base of the ladder, to the nearest tenth of a foot?

1) 6.3
2) 7.0
3) 12.9
4) 13.6

334 The square pyramid below models a toy block made of maple wood.

Each side of the base measures 4.5 cm and the height of the pyramid is 10 cm . If the density of maple is $0.676 \mathrm{~g} / \mathrm{cm}^{3}$, what is the mass of the block, to the nearest tenth of a gram?

1) 45.6
2) 67.5
3) 136.9
4) 202.5

335 A tent is in the shape of a right pyramid with a square floor. The square floor has side lengths of 8 feet. If the height of the tent at its center is 6 feet, what is the volume of the tent, in cubic feet?

1) 48
2) 128
3) 192
4) 384

336 In the diagram below, right triangle $P Q R$ is transformed by a sequence of rigid motions that maps it onto right triangle $N M L$.

Write a set of three congruency statements that would show ASA congruency for these triangles.

337 On the set of axes below, triangle $A B C$ is graphed.
Triangles $A^{\prime} B^{\prime} C^{\prime}$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the images of triangle $A B C$, are graphed after a sequence of rigid motions.

Identify which sequence of rigid motions maps $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$ and then maps $\triangle A^{\prime} B^{\prime} C^{\prime}$ onto $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

1) a rotation followed by another rotation
2) a translation followed by a reflection
3) a reflection followed by a translation
4) a reflection followed by a rotation
\qquad

338 The diagram below shows triangle $A B C$ with point X on side $\overline{A B}$ and point Y on side $\overline{C B}$.

Which information is sufficient to prove that $\triangle B X Y \sim \triangle B A C$?

1) $\angle B$ is a right angle.
2) $\overline{X Y}$ is parallel to $\overline{A C}$.
3) $\triangle A B C$ is isosceles.
4) $\overline{A X} \cong \overline{C Y}$

339 In the diagram below of circle O, tangent $\overline{A B}$ is drawn from external point B, and secant $\overline{B C O E}$ and diameter $\overline{A O D}$ are drawn.

If $\mathrm{m} \angle O B A=36^{\circ}$ and $O C=10$, what is the area of shaded sector $D O E$?

1) $\frac{3 \pi}{10}$
2) 3π
3) 10π
4) 15π

340 In the diagram below, quadrilateral $A B C D$ is inscribed in circle O, and $\mathrm{m} \overparen{C D}: \mathrm{m} \overparen{D A}: \mathrm{m} \overparen{A B}: \mathrm{m} \overparen{B C}=2: 3: 5: 5$.

Determine and state $\mathrm{m} \angle B$.

341 In the diagram below, quadrilateral $A B C D$ is inscribed in circle $O, \mathrm{~m} \angle A=(2 x)^{\circ}$, $\mathrm{m} \angle B=(x-10)^{\circ}$, and $\mathrm{m} \angle C=(x+15)^{\circ}$.

What is $\mathrm{m} \angle D$?

1) 55°
2) 70°
3) 110°
4) 135°
\qquad

342 What is the volume, in cubic centimeters, of a right square pyramid with base edges that are 64 cm long and a slant height of 40 cm ?

1) 8192.0
2) $13,653 . \overline{3}$
3) $32,768.0$
4) $54,613 . \overline{3}$

343 What is an equation of a circle whose center is at $(2,-4)$ and is tangent to the line $x=-2$?

1) $(x-2)^{2}+(y+4)^{2}=4$
2) $(x-2)^{2}+(y+4)^{2}=16$
3) $(x+2)^{2}+(y-4)^{2}=4$
4) $(x+2)^{2}+(y-4)^{2}=16$

344 In the diagram below, $\overline{E F} \| \overline{H G}, E F=5, H G=12$, $F I=1.4 x+3$, and $H I=6.1 x-6.5$.

What is the length of $\overline{H I}$?

1) 1
2) 5
3) 10
4) 24

345 Segment $J M$ has endpoints $J(-5,1)$ and $M(7,-9)$.
An equation of the perpendicular bisector of $\overline{J M}$ is

1) $y-4=\frac{5}{6}(x+1)$
2) $y+4=\frac{5}{6}(x-1)$
3) $y-4=\frac{6}{5}(x+1)$
4) $y+4=\frac{6}{5}(x-1)$

346 Nick wanted to determine the length of one blade of the windmill pictured below. He stood at a point on the ground 440 feet from the windmill's base. Using surveyor's tools, Nick measured the angle between the ground and the highest point reached by the top blade and found it was 38.8°. He also measured the angle between the ground and the lowest point of the top blade, and found it was 30°.

Determine and state a blade's length, x, to the nearest foot.

347 Diameter $\overline{R O Q}$ of circle O is extended through Q to point P, and tangent $\overline{P A}$ is drawn. If $\mathrm{m} \overparen{R A}=100^{\circ}$, what is $\mathrm{m} \angle P$?

1) 10°
2) 20°
3) 40°
4) 50°
\qquad

Geometry Regents at Random Worksheets

348 The 2010 U.S. Census populations and population densities are shown in the table below.

State	Population Density $\left(\frac{\text { people }}{\mathrm{mi}^{2}}\right)$	Population in $\mathbf{2 0 1 0}$
Florida	350.6	$18,801,310$
Illinois	231.1	$12,830,632$
New York	411.2	$19,378,102$
Pennsylvania	283.9	$12,702,379$

Based on the table above, which list has the states' areas, in square miles, in order from largest to smallest?

1) Illinois, Florida, New York, Pennsylvania

2) New York, Florida, Illinois, Pennsylvania
3) New York, Florida, Pennsylvania, Illinois
4) Pennsylvania, New York, Florida, Illinois

349 As shown in the diagram below, an island (I) is due north of a marina (M). A boat house (H) is 4.5 miles due west of the marina. From the boat house, the island is located at an angle of 54° from the marina.

Determine and state, to the nearest tenth of a mile, the distance from the boat house (H) to the island (I). Determine and state, to the nearest tenth of a mile, the distance from the island (I) to the marina (M).

350 Quadrilaterals BIKE and GOLF are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral BIKE onto quadrilateral GOLF.
\qquad

351 In the diagram below of triangle $M N O, \angle M$ and $\angle O$ are bisected by $\overline{M S}$ and $\overline{O R}$, respectively. Segments $M S$ and $O R$ intersect at T, and $\mathrm{m} \angle N=40^{\circ}$.

If $\mathrm{m} \angle T M R=28^{\circ}$, the measure of angle $O T S$ is

1) 40°
2) 50°
3) 60°
4) 70°

352 Triangle $A B C$ has vertices with coordinates $A(-1,-1), B(4,0)$, and $C(0,4)$. Prove that $\triangle A B C$ is an isosceles triangle but not an equilateral triangle. [The use of the set of axes below is optional.]

353 A plane intersects a hexagonal prism. The plane is perpendicular to the base of the prism. Which two-dimensional figure is the cross section of the plane intersecting the prism?

1) triangle
2) trapezoid
3) hexagon
4) rectangle

354 Line segment $C D$ is the altitude drawn to hypotenuse $\overline{E F}$ in right triangle $E C F$. If $E C=10$ and $E F=24$, then, to the nearest tenth, $E D$ is

1) 4.2
2) 5.4
3) 15.5
4) 21.8

355 In the diagram below of circle O, chord $\overline{D F}$ bisects chord $\overline{B C}$ at E.

If $B C=12$ and $F E$ is 5 more than $D E$, then $F E$ is

1) 13
2) 9
3) 6
4) 4

356 In a right triangle, $\sin (40-x)^{\circ}=\cos (3 x)^{\circ}$. What is the value of x ?

1) 10
2) 15
3) 20
4) 25
\qquad

357 Yolanda is making a springboard to use for gymnastics. She has 8 -inch-tall springs and wants to form a 16.5° angle with the base, as modeled in the diagram below.

To the nearest tenth of an inch, what will be the length of the springboard, x ?

1) 2.3
2) 8.3
3) 27.0
4) 28.2

358 In the diagram below, $\overline{G I}$ is parallel to $\overline{N T}$, and $\overline{I N}$ intersects $\overline{G T}$ at A.

Prove: $\triangle G I A \sim \triangle T N A$

An ice cream waffle cone can be modeled by a right circular cone with a base diameter of 6.6 centimeters and a volume of 54.45π cubic centimeters. What is the number of centimeters in the height of the waffle cone?

1) $3 \frac{3}{4}$
2) 5
3) 15
4) $24 \frac{3}{4}$

360 Skye says that the two triangles below are congruent. Margaret says that the two triangles are similar.

Are Skye and Margaret both correct? Explain why.

361 Aliyah says that when the line $4 x+3 y=24$ is dilated by a scale factor of 2 centered at the point $(3,4)$, the equation of the dilated line is $y=-\frac{4}{3} x+16$. Is Aliyah correct? Explain why. [The use of the set of axes below is optional.]

\qquad

362 Kirstie is testing values that would make triangle $K L M$ a right triangle when $\overline{L N}$ is an altitude, and $K M=16$, as shown below.

Which lengths would make triangle KLM a right triangle?

1) $L M=13$ and $K N=6$
2) $L M=12$ and $N M=9$
3) $K L=11$ and $K N=7$
4) $L N=8$ and $N M=10$

363 On the graph below, point $A(3,4)$ and $\overline{B C}$ with coordinates $B(4,3)$ and $C(2,1)$ are graphed.

What are the coordinates of B^{\prime} and C^{\prime} after $\overline{B C}$ undergoes a dilation centered at point A with a scale factor of 2 ?

1) $B^{\prime}(5,2)$ and $C^{\prime}(1,-2)$
2) $B^{\prime}(6,1)$ and $C^{\prime}(0,-1)$
3) $B^{\prime}(5,0)$ and $C^{\prime}(1,-2)$
4) $B^{\prime}(5,2)$ and $C^{\prime}(3,0)$

364 In the diagram of rhombus $P Q R S$ below, the diagonals $\overline{P R}$ and $\overline{Q S}$ intersect at point $T, P R=16$, and $Q S=30$. Determine and state the perimeter of PQRS.

365 The image of $\triangle D E F$ is $\triangle D^{\prime} E^{\prime} F^{\prime}$. Under which transformation will he triangles not be congruent?

1) a reflection through the origin
2) a reflection over the line $y=x$
3) a dilation with a scale factor of 1 centered at $(2,3)$
4) a dilation with a scale factor of $\frac{3}{2}$ centered at the origin

366 Keira has a square poster that she is framing and placing on her wall. The poster has a diagonal 58 cm long and fits exactly inside the frame. The width of the frame around the picture is 4 cm .

Determine and state the total area of the poster and frame to the nearest tenth of a square centimeter.
\qquad

367 Using a compass and straightedge, construct the line of reflection over which triangle $R S T$ reflects onto triangle $R^{\prime} S^{\prime} T^{\prime}$. [Leave all construction marks.]

368 If $A B C D$ is a parallelogram, which statement would prove that $A B C D$ is a rhombus?

1) $\angle A B C \cong \angle C D A$
2) $\overline{A C} \cong \overline{B D}$
3) $\overline{A C} \perp \overline{B D}$
4) $\overline{A B} \perp \overline{C D}$

Given the right triangle in the diagram below, what is the value of x, to the nearest foot?

1) 11
2) 17
3) 18
4) 22

370 Trapezoids $A B C D$ and A " B " C " D " are graphed on the set of axes below.

Describe a sequence of transformations that maps trapezoid $A B C D$ onto trapezoid $A " B " C " D$ ".

371 What is an equation of circle O shown in the graph below?

1) $x^{2}+10 x+y^{2}+4 y=-13$
2) $x^{2}-10 x+y^{2}-4 y=-13$
3) $x^{2}+10 x+y^{2}+4 y=-25$
4) $x^{2}-10 x+y^{2}-4 y=-25$
\qquad

372 The diagram below shows circle O with radii $\overline{O A}$ and $\overline{O B}$. The measure of angle $A O B$ is 120°, and the length of a radius is 6 inches.

Which expression represents the length of arc $A B$, in inches?

1) $\frac{120}{360}(6 \pi)$
2) $120(6)$
3) $\frac{1}{3}(36 \pi)$
4) $\frac{1}{3}(12 \pi)$

373 An equation of circle O is $x^{2}+y^{2}+4 x-8 y=-16$. The statement that best describes circle O is the

1) center is $(2,-4)$ and is tangent to the x-axis
$2)$ center is $(2,-4)$ and is tangent to the y-axis
$3)$ center is $(-2,4)$ and is tangent to the x-axis
2) center is $(-2,4)$ and is tangent to the y-axis

374 When volleyballs are purchased, they are not fully inflated. A partially inflated volleyball can be modeled by a sphere whose volume is approximately $180 \mathrm{in}^{3}$. After being fully inflated, its volume is approximately $294 \mathrm{in}^{3}$. To the nearest tenth of an inch, how much does the radius increase when the volleyball is fully inflated?

375 In right triangle $A B C$ shown below, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$. Explain why $\triangle A B C \sim \triangle A C D$.

376 In the figure shown below, quadrilateral TAEO is circumscribed around circle D. The midpoint of $\overline{T A}$ is R, and $\overline{H O} \cong \overline{P E}$.

If $A P=10$ and $E O=12$, what is the perimeter of quadrilateral $T A E O$?

1) 56
2) 64
3) 72
4) 76

377 Randy's basketball is in the shape of a sphere with a maximum circumference of 29.5 inches.
Determine and state the volume of the basketball, to the nearest cubic inch.
\qquad

Quadrilateral $A B C D$ is inscribed in circle O, as shown below.

If $\mathrm{m} \angle A=80^{\circ}, \mathrm{m} \angle B=75^{\circ}, \mathrm{m} \angle C=(y+30)^{\circ}$, and $\mathrm{m} \angle D=(x-10)^{\circ}$, which statement is true?

1) $x=85$ and $y=50$
2) $x=90$ and $y=45$
3) $x=110$ and $y=75$
4) $x=115$ and $y=70$

379 The diagram shows rectangle $A B C D$, with diagonal $\overline{B D}$.

What is the perimeter of rectangle $A B C D$, to the nearest tenth?

1) 28.4
2) 32.8
3) 48.0
4) 62.4

380 In the diagram below, $\overline{A C}$ has endpoints with coordinates $A(-5,2)$ and $C(4,-10)$.

If B is a point on $\overline{A C}$ and $A B: B C=1: 2$, what are the coordinates of B ?

1) $(-2,-2)$
2) $\left(-\frac{1}{2},-4\right)$
3) $\left(0,-\frac{14}{3}\right)$
4) $(1,-6)$

381 In parallelogram $A B C D$ shown below, the bisectors of $\angle A B C$ and $\angle D C B$ meet at E, a point on $\overline{A D}$.

If $\mathrm{m} \angle A=68^{\circ}$, determine and state $\mathrm{m} \angle B E C$.
\qquad

382 In the diagram below of circle O, chord $\overline{C D}$ is parallel to diameter $\widehat{A O B}$ and $\mathrm{mCD}=130$.

What is $\mathrm{m} \overparen{A C}$?

1) 25
2) 50
3) 65
4) 115

383 In the accompanying diagram of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}$.

Which statement must always be true?

1) $\frac{A D}{A B}=\frac{B C}{A C}$
2) $\frac{A D}{A B}=\frac{A B}{A C}$
3) $\frac{B D}{B C}=\frac{A B}{A D}$
4) $\frac{A B}{B C}=\frac{B D}{A C}$

384 The pyramid shown below has a square base, a height of 7 , and a volume of 84 .

What is the length of the side of the base?

1) 6
2) 12
3) 18
4) 36

385 In the diagram below, the circle has a radius of 25 inches. The area of the unshaded sector is 500π in 2.

Determine and state the degree measure of angle Q, the central angle of the shaded sector.

386 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of triangle $A B C$ after a translation of 2 units to the right and 3 units up. Is triangle $A B C$ congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$? Explain why.
\qquad

Circle O is centered at the origin. In the diagram below, a quarter of circle O is graphed.

Which three-dimensional figure is generated when the quarter circle is continuously rotated about the y-axis?

1) cone
2) sphere
3) cylinder
4) hemisphere

Izzy is making homemade clay pendants in the shape of a solid hemisphere, as modeled below. Each pendant has a radius of 2.8 cm .

How much clay, to the nearest cubic centimeter, does Izzy need to make 100 pendants?

389 In right triangle $A B C, \mathrm{~m} \angle C=90^{\circ}$. If $\cos B=\frac{5}{13}$, which function also equals $\frac{5}{13}$?

1) $\tan A$
2) $\tan B$
3) $\sin A$
4) $\sin B$

New streetlights will be installed along a section of the highway. The posts for the streetlights will be 7.5 m tall and made of aluminum. The city can choose to buy the posts shaped like cylinders or the posts shaped like rectangular prisms. The cylindrical posts have a hollow core, with aluminum 2.5 cm thick, and an outer diameter of 53.4 cm . The rectangular-prism posts have a hollow core, with aluminum 2.5 cm thick, and a square base that measures 40 cm on each side. The density of aluminum is $2.7 \mathrm{~g} / \mathrm{cm} 3$, and the cost of aluminum is $\$ 0.38$ per kilogram. If all posts must be the same shape, which post design will cost the town less? How much money will be saved per streetlight post with the less expensive design?

391 Triangle $A B C$ and point $D(1,2)$ are graphed on the set of axes below.

Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, after a dilation of scale factor 2 centered at point D.
\qquad

392 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\mathrm{m} \overparen{A C}=72^{\circ}$ and $\mathrm{m} \angle A E C=58^{\circ}$, how many degrees are in $\mathrm{m} \overparen{D B}$?

1) 108°
2) 65°
3) 44°
4) 14°

393 In the diagram shown below, $\overline{P A}$ is tangent to circle T at A, and secant $\overline{P B C}$ is drawn where point B is on circle T.

If $P B=3$ and $B C=15$, what is the length of $\overline{P A}$?

1) $3 \sqrt{5}$
2) $3 \sqrt{6}$
3) 3
4) 9

394 Ian needs to replace two concrete sections in his sidewalk, as modeled below. Each section is 36 inches by 36 inches and 4 inches deep. He can mix his own concrete for $\$ 3.25$ per cubic foot.

How much money will it cost Ian to replace the two concrete sections?

395 Triangle $D A N$ is graphed on the set of axes below. The vertices of $\triangle D A N$ have coordinates $D(-6,-1)$, $A(6,3)$, and $N(-3,10)$.

What is the area of $\triangle D A N$?

1) 60
2) 120
3) $20 \sqrt{13}$
4) $40 \sqrt{13}$
\qquad www.jmap.org

396 In the diagram of right triangle $A D E$ below, $\overline{B C} \| \overline{D E}$.

Which ratio is always equivalent to the sine of $\angle A$?

1) $\frac{A D}{D E}$
2) $\frac{A E}{A D}$
3) $\frac{B C}{A B}$
4) $\frac{A B}{A C}$

Given: Trapezoid $J K L M$ with $\overline{J K} \| \overline{M L}$
Using a compass and straightedge, construct the altitude from vertex J to $\overline{M L}$. [Leave all construction marks.]

In the diagram below of $\triangle P Q R, \overline{S T}$ is drawn parallel to $\overline{P R}, P S=2, S Q=5$, and $T R=5$.

What is the length of $\overline{Q R}$?

1) 7
2) 2
3) $12 \frac{1}{2}$
4) $17 \frac{1}{2}$

400 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a dilation followed by a translation. Which statement(s) would always be true with respect to this sequence of transformations?
I. $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$
II. $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$
III. $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$
IV. $A A^{\prime}=B B^{\prime}$

1) II, only
2) I and II
3) II and III
4) II, III, and IV

401 Given: Parallelogram $A B C D$ with diagonal $\overline{A C}$ drawn

Prove: $\triangle A B C \cong \triangle C D A$
\qquad

402 The regular polygon below is rotated about its center.

Which angle of rotation will carry the figure onto itself?

1) 60°
2) 108°
3) 216°
4) 540°

403 A rectangle whose length and width are 10 and 6, respectively, is shown below. The rectangle is continuously rotated around a straight line to form an object whose volume is 150π.

Which line could the rectangle be rotated around?

1) a long side
2) a short side
3) the vertical line of symmetry
4) the horizontal line of symmetry

404 Triangle RJM has an area of 6 and a perimeter of 12. If the triangle is dilated by a scale factor of 3 centered at the origin, what are the area and perimeter of its image, triangle $R^{\prime} J^{\prime} M^{\prime}$?

1) area of 9 and perimeter of 15
2) area of 18 and perimeter of 36
3) area of 54 and perimeter of 36
4) area of 54 and perimeter of 108

405 In the diagram below, tangent $\overline{D A}$ and secant $\overline{D B C}$ are drawn to circle O from external point D, such that $\overparen{A C} \cong \overparen{B C}$.

If $\mathrm{m} \overparen{B C}=152^{\circ}$, determine and state $\mathrm{m} \angle D$.

406 In the diagram of $\triangle A B C$ below, $\overline{D E}$ is parallel to $A B, C D=15, A D=9$, and $A B=40$.

The length of $\overline{D E}$ is

1) 15
2) 24
3) 25
4) 30

407 Given: Right triangle $A B C$ with right angle at C. If $\sin A$ increases, does $\cos B$ increase or decrease? Explain why.
\qquad

408 Identify which sequence of transformations could map pentagon $A B C D E$ onto pentagon $A " B " C " D " E$ ", as shown below.

1) dilation followed by a rotation
2) translation followed by a rotation
3) line reflection followed by a translation
4) line reflection followed by a line reflection

409 The coordinates of the endpoints of $\overline{A B}$ are $A(2,3)$ and $B(5,-1)$. Determine the length of $\overline{A^{\prime} B^{\prime}}$, the image of $\overline{A B}$, after a dilation of $\frac{1}{2}$ centered at the origin. [The use of the set of axes below is optional.]

410 Using a compass and straightedge, construct a regular hexagon inscribed in circle O below. Label it $A B C D E F$. [Leave all construction marks.]

If chords $\overline{F B}$ and $\overline{F C}$ are drawn, which type of triangle, according to its angles, would $\triangle F B C$ be? Explain your answer.

411 What is an equation of a line that is perpendicular to the line whose equation is $2 y=3 x-10$ and passes through $(-6,1)$?

1) $y=-\frac{2}{3} x-5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{2}{3} x+1$
4) $y=\frac{2}{3} x+10$

412 A parallelogram must be a rhombus if its diagonals

1) are congruent
2) bisect each other
3) do not bisect its angles
4) are perpendicular to each other
\qquad

413 The equation of a circle is $x^{2}+y^{2}-6 x+2 y=6$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(-3,1)$ and radius 4
2) center $(3,-1)$ and radius 4
3) center $(-3,1)$ and radius 16
4) center $(3,-1)$ and radius 16

414 In the graph below, $\triangle A B C$ has coordinates $A(-9,2), B(-6,-6)$, and $C(-3,-2)$, and $\triangle R S T$ has coordinates $R(-2,9), S(5,6)$, and $T(2,3)$.

Is $\triangle A B C$ congruent to $\triangle R S T$? Use the properties of rigid motions to explain your reasoning.

415 A bakery sells hollow chocolate spheres. The larger diameter of each sphere is 4 cm . The thickness of the chocolate of each sphere is 0.5 cm . Determine and state, to the nearest tenth of a cubic centimeter, the amount of chocolate in each hollow sphere. The bakery packages 8 of them into a box. If the density of the chocolate is $1.308 \mathrm{~g} / \mathrm{cm}^{3}$, determine and state, to the nearest gram, the total mass of the chocolate in the box.

416 In the diagram below, a sequence of rigid motions maps $A B C D$ onto $J K L M$.

If $\mathrm{m} \angle A=82^{\circ}, \mathrm{m} \angle B=104^{\circ}$, and $\mathrm{m} \angle L=121^{\circ}$, the measure of $\angle M$ is

1) 53°
2) 82°
3) 104°
4) 121°

417 In right triangle $A B C$, hypotenuse $\overline{A B}$ has a length of 26 cm , and side $\overline{B C}$ has a length of 17.6 cm . What is the measure of angle B, to the nearest degree?

1) 48°
2) 47°
3) 43°
4) 34°

418 Given square $R S T V$, where $R S=9 \mathrm{~cm}$. If square $R S T V$ is dilated by a scale factor of 3 about a given center, what is the perimeter, in centimeters, of the image of RSTV after the dilation?

1) 12
2) 27
3) 36
4) 108
\qquad

419 A storage tank is in the shape of a cylinder with a hemisphere on the top. The highest point on the inside of the storage tank is 13 meters above the floor of the storage tank, and the diameter inside the cylinder is 8 meters. Determine and state, to the nearest cubic meter, the total volume inside the storage tank.

420 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot? Determine and state the speed of the airplane, to the nearest mile per hour.

421 Bob places an 18 -foot ladder 6 feet from the base of his house and leans it up against the side of his house. Find, to the nearest degree, the measure of the angle the bottom of the ladder makes with the ground.

422 In the circle below, $\overline{A B}$ is a chord. Using a compass and straightedge, construct a diameter of the circle. [Leave all construction marks.]

423 Given $\triangle A B C$ with $\mathrm{m} \angle B=62^{\circ}$ and side $\overline{A C}$ extended to D, as shown below.

Which value of x makes $\overline{A B} \cong \overline{C B}$?

1) 59°
2) 62°
3) 118°
4) 121°
\qquad

424 In the diagram of $\triangle A B C$ below, points D and E are on sides $\overline{A B}$ and $\overline{C B}$ respectively, such that $\overline{D E} \| \overline{A C}$.

If $E B$ is 3 more than $D B, A B=14$, and $C B=21$, what is the length of $\overline{A D}$?

1) 6
2) 8
3) 9
4) 12

425 When instructed to find the length of $\overline{H J}$ in right triangle $H J G$, Alex wrote the equation $\sin 28^{\circ}=\frac{H J}{20}$ while Marlene wrote $\cos 62^{\circ}=\frac{H J}{20}$. Are both students' equations correct? Explain why.

426 A farmer has 64 feet of fence to enclose a rectangular vegetable garden. Which dimensions would result in the biggest area for this garden?

1) the length and the width are equal
2) the length is 2 more than the width
3) the length is 4 more than the width
4) the length is 6 more than the width

427 In right triangle $A B C, \mathrm{~m} \angle A=32^{\circ}, \mathrm{m} \angle B=90^{\circ}$, and $A C=6.2 \mathrm{~cm}$. What is the length of $\overline{B C}$, to the nearest tenth of a centimeter?

1) 3.3
2) 3.9
3) 5.3
4) 11.7

428 The diagram below shows parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E.

What additional information is sufficient to prove that parallelogram $A B C D$ is also a rhombus?

1) $\overline{B D}$ bisects $\overline{A C}$.
2) $\overline{A B}$ is parallel to $\overline{C D}$.
3) $\overline{A C}$ is congruent to $\overline{B D}$.
4) $\overline{A C}$ is perpendicular to $\overline{B D}$.

429 In a right triangle, the acute angles have the relationship $\sin (2 x+4)=\cos (46)$. What is the value of x ?

1) 20
2) 21
3) 24
4) 25
\qquad

430 The line represented by the equation $4 y=3 x+7$ is transformed by a dilation centered at the origin. Which linear equation could represent its image?

1) $3 x-4 y=9$
2) $3 x+4 y=9$
3) $4 x-3 y=9$
4) $4 x+3 y=9$

431 The line whose equation is $3 x-5 y=4$ is dilated by a scale factor of $\frac{5}{3}$ centered at the origin. Which statement is correct?

1) The image of the line has the same slope as the pre-image but a different y-intercept.
2) The image of the line has the same y-intercept as the pre-image but a different slope.
3) The image of the line has the same slope and the same y-intercept as the pre-image.
4) The image of the line has a different slope and a different y-intercept from the pre-image.

432 The coordinates of the endpoints of $\overline{A B}$ are $A(-8,-2)$ and $B(16,6)$. Point P is on $\overline{A B}$. What are the coordinates of point P, such that $A P: P B$ is $3: 5$?

1) $(1,1)$
2) $(7,3)$
3) $(9.6,3.6)$
4) $(6.4,2.8)$

433 A ladder 20 feet long leans against a building, forming an angle of 71° with the level ground. To the nearest foot, how high up the wall of the building does the ladder touch the building?

1) 15
2) 16
3) 18
4) 19

434 In the diagram below, right triangle $A B C$ has legs whose lengths are 4 and 6.

What is the volume of the three-dimensional object formed by continuously rotating the right triangle around $\overline{A B}$?

1) 32π
2) 48π
3) 96π
4) 144π

435 In the diagram below of circle $O, G O=8$ and $\mathrm{m} \angle G O J=60^{\circ}$.

What is the area, in terms of π, of the shaded region?

1) $\frac{4 \pi}{3}$
2) $\frac{20 \pi}{3}$
3) $\frac{32 \pi}{3}$
4) $\frac{160 \pi}{3}$
\qquad

436 The vertices of quadrilateral MATH have coordinates $M(-4,2), A(-1,-3), T(9,3)$, and $H(6,8)$. Prove that quadrilateral MATH is a parallelogram. Prove that quadrilateral $M A T H$ is a rectangle. [The use of the set of axes below is optional.]

437 Triangle $Q R S$ is graphed on the set of axes below.

On the same set of axes, graph and label $\triangle Q^{\prime} R^{\prime} S^{\prime}$, the image of $\triangle Q R S$ after a dilation with a scale factor of $\frac{3}{2}$ centered at the origin. Use slopes to explain why $Q^{\prime} R^{\prime} \| Q R$.

438 The greenhouse pictured below can be modeled as a rectangular prism with a half-cylinder on top. The rectangular prism is 20 feet wide, 12 feet high, and 45 feet long. The half-cylinder has a diameter of 20 feet.

To the nearest cubic foot, what is the volume of the greenhouse?

1) 17,869
2) 24,937
3) 39,074
4) 67,349

439 The vertices of square RSTV have coordinates $R(-1,5), S(-3,1), T(-7,3)$, and $V(-5,7)$. What is the perimeter of RSTV?

1) $\sqrt{20}$
2) $\sqrt{40}$
3) $4 \sqrt{20}$
4) $4 \sqrt{40}$

440 A regular decagon is rotated n degrees about its center, carrying the decagon onto itself. The value of n could be

1) 10°
2) 150°
3) 225°
4) 252°
\qquad

441 Given: $\overline{R S}$ and $\overline{T V}$ bisect each other at point X $\overline{T R}$ and $\overline{S V}$ are drawn

Prove: $\overline{T R} \| \overline{S V}$

442 What is an equation of the perpendicular bisector of the line segment shown in the diagram below?

1) $y+2 x=0$
2) $y-2 x=0$
3) $2 y+x=0$
4) $2 y-x=0$

443 Which rotation about its center will carry a regular decagon onto itself?

1) 54°
2) 162°
3) 198°
4) 252°

444 Given: Parallelogram $A B C D, \overline{B F} \perp \overline{A F D}$, and $\overline{D E} \perp \overline{B E C}$

Prove: $B E D F$ is a rectangle

445 A gas station has a cylindrical fueling tank that holds the gasoline for its pumps, as modeled below. The tank holds a maximum of 20,000 gallons of gasoline and has a length of 34.5 feet.

A metal pole is used to measure how much gas is in the tank. To the nearest tenth of a foot, how long does the pole need to be in order to reach the bottom of the tank and still extend one foot outside the tank? Justify your answer. [$1 \mathrm{ft}^{3}=7.48$ gallons]

446 Quadrilateral MATH has both pairs of opposite sides congruent and parallel. Which statement about quadrilateral MATH is always true?

1) $\overline{M T} \cong \overline{A H}$
2) $\overline{M T} \perp \overline{A H}$
3) $\angle M H T \cong \angle A T H$
4) $\angle M A T \cong \angle M H T$
\qquad

447 A line segment is dilated by a scale factor of 2 centered at a point not on the line segment. Which statement regarding the relationship between the given line segment and its image is true?

1) The line segments are perpendicular, and the image is one-half of the length of the given line segment.
2) The line segments are perpendicular, and the image is twice the length of the given line segment.
3) The line segments are parallel, and the image is twice the length of the given line segment.
4) The line segments are parallel, and the image is one-half of the length of the given line segment.

448 Quadrilateral $P Q R S$ has vertices $P(-2,3), Q(3,8)$, $R(4,1)$, and $S(-1,-4)$. Prove that $P Q R S$ is a rhombus. Prove that $P Q R S$ is not a square. [The use of the set of axes below is optional.]

449 Using a compass and straightedge, construct the median to side $\overline{A C}$ in $\triangle A B C$ below. [Leave all construction marks.]

The diagram below shows two figures. Figure A is a right triangular prism and figure B is an oblique triangular prism. The base of figure A has a height of 5 and a length of 8 and the height of prism A is 14. The base of figure B has a height of 8 and a length of 5 and the height of prism B is 14 .

Figure A

Figure B

Use Cavalieri's Principle to explain why the volumes of these two triangular prisms are equal.
\qquad

451 In the diagram below, $\overline{A B}\|\overline{D F C}, \overline{E D A}\| \overline{C B G}$, and $\overline{E F B}$ and $\overline{A G}$ are drawn.

Which statement is always true?

1) $\triangle D E F \cong \triangle C B F$
2) $\triangle B A G \cong \triangle B A E$
3) $\triangle B A G \sim \triangle A E B$
4) $\triangle D E F \sim \triangle A E B$

452 A child's tent can be modeled as a pyramid with a square base whose sides measure 60 inches and whose height measures 84 inches. What is the volume of the tent, to the nearest cubic foot?

1) 35
2) 58
3) 82
4) 175

453 What is an equation of a line which passes through $(6,9)$ and is perpendicular to the line whose equation is $4 x-6 y=15$?

1) $y-9=-\frac{3}{2}(x-6)$
2) $y-9=\frac{2}{3}(x-6)$
3) $y+9=-\frac{3}{2}(x+6)$
4) $y+9=\frac{2}{3}(x+6)$

454 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}$.

If $B D=4, A D=x-6$, and $C D=x$, what is the length of $\overline{C D}$?

1) 5
2) 2
3) 8
4) 11

455 Line n is represented by the equation $3 x+4 y=20$. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point $(4,2)$. [The use of the set of axes below is optional.] Explain your answer.

\qquad

Given $\triangle M R O$ shown below, with trapezoid PTRO, $M R=9, M P=2$, and $P O=4$.

What is the length of $\overline{T R}$?

1) 4.5
2) 5
3) 3
4) 6

457 Isosceles trapezoid $A B C D$ has bases $\overline{D C}$ and $\overline{A B}$ with nonparallel legs $\overline{A D}$ and $\overline{B C}$. Segments $A E$, $B E, C E$, and $D E$ are drawn in trapezoid $A B C D$ such that $\angle C D E \cong \angle D C E, \overline{A E} \perp \overline{D E}$, and $\overline{B E} \perp \overline{C E}$.

Prove $\triangle A D E \cong \triangle B C E$ and prove $\triangle A E B$ is an isosceles triangle.

458 Point Q is on $\overline{M N}$ such that $M Q: Q N=2: 3$. If M has coordinates $(3,5)$ and N has coordinates $(8,-5)$, the coordinates of Q are

1) $(5,1)$
2) $(5,0)$
3) $(6,-1)$
4) $(6,0)$

459 The diagram below shows two similar triangles.

If $\tan \theta=\frac{3}{7}$, what is the value of x, to the nearest tenth?

1) 1.2
2) 5.6
3) 7.6
4) 8.8

460 After a counterclockwise rotation about point X, scalene triangle $A B C$ maps onto $\triangle R S T$, as shown in the diagram below.

Which statement must be true?

1) $\angle A \cong \angle R$
2) $\angle A \cong \angle S$
3) $\overline{C B} \cong \overline{T R}$
4) $\overline{C A} \cong \overline{T S}$

461 Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5.
\qquad

462 Shae has recently begun kickboxing and purchased training equipment as modeled in the diagram below. The total weight of the bag, pole, and unfilled base is 270 pounds. The cylindrical base is 18 inches tall with a diameter of 20 inches. The dry sand used to fill the base weighs 95.46 lbs per cubic foot.

To the nearest pound, determine and state the total weight of the training equipment if the base is filled to 85% of its capacity.

463 A water cup in the shape of a cone has a height of 4 inches and a maximum diameter of 3 inches. What is the volume of the water in the cup, to the nearest tenth of a cubic inch, when the cup is filled to half its height?

1) 1.2
2) 3.5
3) 4.7
4) 14.1

464 Kelly is completing a proof based on the figure below.

She was given that $\angle A \cong \angle E D F$, and has already proven $\overline{A B} \cong \overline{D E}$. Which pair of corresponding parts and triangle congruency method would not prove $\triangle A B C \cong \triangle D E F$?

1) $\overline{A C} \cong \overline{D F}$ and SAS
2) $\overline{B C} \cong \overline{E F}$ and SAS
3) $\angle C \cong \angle F$ and AAS
4) $\angle C B A \cong \angle F E D$ and ASA

465 Under which transformation would $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, not be congruent to $\triangle A B C$?

1) reflection over the y-axis
2) rotation of 90° clockwise about the origin
3) translation of 3 units right and 2 units down
4) dilation with a scale factor of 2 centered at the origin

466 In the diagram of $\triangle R S T$ below, $\mathrm{m} \angle T=90^{\circ}$, $R S=65$, and $S T=60$.

What is the measure of $\angle \mathrm{S}$, to the nearest degree?

1) 23°
2) 43°
3) 47°
4) 67°
\qquad

467 In a circle with a diameter of 32 , the area of a sector is $\frac{512 \pi}{3}$. The measure of the angle of the sector, in radians, is

1) $\frac{\pi}{3}$
2) $\frac{4 \pi}{3}$
3) $\frac{16 \pi}{3}$
4) $\frac{64 \pi}{3}$

468 In quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, and $\overline{B F}$ and $\overline{D E}$ are perpendicular to diagonal $\overline{A C}$ at points F and E.

Prove: $\overline{A E} \cong \overline{C F}$

469
In the diagram below of $\triangle A B C$ and $\triangle X Y Z$, a sequence of rigid motions maps $\angle A$ onto $\angle X$, $\angle C$ onto $\angle Z$, and $\overline{A C}$ onto $\overline{X Z}$.

470 In the diagram below of $\triangle A B C, \angle A B C$ is a right angle, $A C=12, A D=8$, and altitude $\overline{B D}$ is drawn.

What is the length of $\overline{B C}$?

1) $4 \sqrt{2}$
2) $4 \sqrt{3}$
3) $4 \sqrt{5}$
4) $4 \sqrt{6}$

471 In circle M below, diameter $\overline{A C}$, chords $\overline{A B}$ and $\overline{B C}$, and radius $\overline{M B}$ are drawn.

Which statement is not true?

1) $\triangle A B C$ is a right triangle.
2) $\triangle A B M$ is isosceles.
3) $\mathrm{m} \overparen{B C}=\mathrm{m} \angle B M C$
4) $\mathrm{m} \overparen{A B}=\frac{1}{2} \mathrm{~m} \angle A C B$

Determine and state whether $\overline{B C} \cong \overline{Y Z}$. Explain why.
\qquad

472 A homeowner is building three steps leading to a deck, as modeled by the diagram below. All three step rises, $\overline{H A}, \overline{F G}$, and $\overline{D E}$, are congruent, and all three step runs, $\overline{H G}, \overline{F E}$, and $\overline{D C}$, are congruent. Each step rise is perpendicular to the step run it joins. The measure of $\angle C A B=36^{\circ}$ and $\angle C B A=90^{\circ}$.

If each step run is parallel to $\overline{A B}$ and has a length of 10 inches, determine and state the length of each step rise, to the nearest tenth of an inch. Determine and state the length of $\overline{A C}$, to the nearest inch.

473 In the diagram below, $\overline{D E}$ divides $\overline{A B}$ and $\overline{A C}$ proportionally, $\mathrm{m} \angle C=26^{\circ}, \mathrm{m} \angle A=82^{\circ}$, and $\overline{D F}$ bisects $\angle B D E$.

The measure of angle $D F B$ is

1) 36°
2) 54°
3) 72°
4) 82°

474 As shown in the graph below, the quadrilateral is a rectangle.

Which transformation would not map the rectangle onto itself?

1) a reflection over the x-axis
2) a reflection over the line $x=4$
3) a rotation of 180° about the origin
4) a rotation of 180° about the point $(4,0)$

475 In the diagram below of parallelogram ROCK, $\mathrm{m} \angle C$ is 70° and $\mathrm{m} \angle R O S$ is 65°.

What is $\mathrm{m} \angle K S O$?

1) 45°
2) 110°
3) 115°
4) 135°
\qquad

476 Triangle $A B C$ has vertices at $A(-5,2), B(-4,7)$, and $C(-2,7)$, and triangle $D E F$ has vertices at $D(3,2)$, $E(2,7)$, and $F(0,7)$. Graph and label $\triangle A B C$ and $\triangle D E F$ on the set of axes below. Determine and state the single transformation where $\triangle D E F$ is the image of $\triangle A B C$. Use your transformation to explain why $\triangle A B C \cong \triangle D E F$.

477 Which equation represents the line that passes through the point $(-2,2)$ and is parallel to
$y=\frac{1}{2} x+8$?

1) $y=\frac{1}{2} x$
2) $y=-2 x-3$
3) $y=\frac{1}{2} x+3$
4) $y=-2 x+3$

478 A circle whose center is the origin passes through the point $(-5,12)$. Which point also lies on this circle?

1) $(10,3)$
2) $(-12,13)$
3) $(11,2 \sqrt{12})$
4) $(-8,5 \sqrt{21})$

479 In square $G E O M$, the coordinates of G are (2,-2) and the coordinates of O are $(-4,2)$. Determine and state the coordinates of vertices E and M. [The use of the set of axes below is optional.]

480 Rhombus $S T A R$ has vertices $S(-1,2), T(2,3)$, $A(3,0)$, and $R(0,-1)$. What is the perimeter of rhombus STAR?

1) $\sqrt{34}$
2) $4 \sqrt{34}$
3) $\sqrt{10}$
4) $4 \sqrt{10}$
\qquad

481 In the diagram below, $\overline{A F}$, and $\overline{D B}$ intersect at C, and $\overline{A D}$ and $\overline{F B E}$ are drawn such that $\mathrm{m} \angle D=65^{\circ}$, $\mathrm{m} \angle C B E=115^{\circ}, D C=7.2, A C=9.6$, and $F C=21.6$.

What is the length of $\overline{C B}$?

1) 3.2
2) 4.8
3) 16.2
4) 19.2

482 In regular hexagon $A B C D E F$ shown below, $\overline{A D}$, $\overline{B E}$, and $\overline{C F}$ all intersect at G.

When $\triangle A B G$ is reflected over $\overline{B G}$ and then rotated 180° about point $G, \triangle A B G$ is mapped onto

1) $\triangle F E G$
2) $\triangle A F G$
3) $\triangle C B G$
4) $\triangle D E G$

483 A regular pyramid has a square base. The perimeter of the base is 36 inches and the height of the pyramid is 15 inches. What is the volume of the pyramid in cubic inches?

1) 180
2) 405
3) 540
4) 1215

484 In the diagram below, line m is parallel to line n. Figure 2 is the image of Figure 1 after a reflection over line m. Figure 3 is the image of Figure 2 after a reflection over line n.

Which single transformation would carry Figure 1 onto Figure 3 ?

1) a dilation
2) a rotation
3) a reflection
4) a translation

485 In the two distinct acute triangles $A B C$ and $D E F$, $\angle B \cong \angle E$. Triangles $A B C$ and $D E F$ are congruent when there is a sequence of rigid motions that maps

1) $\angle A$ onto $\angle D$, and $\angle C$ onto $\angle F$
2) $\overline{A C}$ onto $\overline{D F}$, and $\overline{B C}$ onto $\overline{E F}$
3) $\angle C$ onto $\angle F$, and $\overline{B C}$ onto $\overline{E F}$
4) point A onto point D, and $\overline{A B}$ onto $\overline{D E}$
\qquad

486 In the diagram below, $\overline{A E F B} \| \overline{C G D}$, and $\overline{G E}$ and $\overline{G F}$ are drawn.

If $\mathrm{m} \angle E F G=32^{\circ}$ and $\mathrm{m} \angle A E G=137^{\circ}$, what is $\mathrm{m} \angle E G F$?

1) 11°
2) 43°
3) 75°
4) 105°

487 A fabricator is hired to make a 27 -foot-long solid metal railing for the stairs at the local library. The railing is modeled by the diagram below. The railing is 2.5 inches high and 2.5 inches wide and is comprised of a rectangular prism and a half-cylinder.

How much metal, to the nearest cubic inch, will the railing contain?

1) 151
2) 795
3) 1808
4) 2025

488 The base of a pyramid is a rectangle with a width of 4.6 cm and a length of 9 cm . What is the height, in centimeters, of the pyramid if its volume is 82.8 cm^{3} ?

1) 6
2) 2
3) 9
4) 18

489 The map of a campground is shown below. Campsite C, first aid station F, and supply station S lie along a straight path. The path from the supply station to the tower, T, is perpendicular to the path from the supply station to the campsite. The length of path $\overline{F S}$ is 400 feet. The angle formed by path $\overline{T F}$ and path $\overline{F S}$ is 72°. The angle formed by path $\overline{T C}$ and path $\overline{C S}$ is 55°.

Determine and state, to the nearest foot, the distance from the campsite to the tower.
\qquad

490 What is an equation of the line that passes through the point $(6,8)$ and is perpendicular to a line with equation $y=\frac{3}{2} x+5$?

1) $y-8=\frac{3}{2}(x-6)$
2) $y-8=-\frac{2}{3}(x-6)$
3) $y+8=\frac{3}{2}(x+6)$
4) $y+8=-\frac{2}{3}(x+6)$

491 In the diagram below of right triangle $A E D$, $\overline{B C} \| \overline{D E}$.

Which statement is always true?

1) $\frac{A C}{B C}=\frac{D E}{A E}$
2) $\frac{A B}{A D}=\frac{B C}{D E}$
3) $\frac{A C}{C E}=\frac{B C}{D E}$
4) $\frac{D E}{B C}=\frac{D B}{A B}$

492 Directed line segment $D E$ has endpoints $D(-4,-2)$ and $E(1,8)$. Point F divides $\overline{D E}$ such that $D F: F E$ is $2: 3$. What are the coordinates of F ?

1) (-3.0)
2) $(-2,2)$
3) $(-1,4)$
4) $(2,4)$

493 The graph below shows two congruent triangles, $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$.

Which rigid motion would map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) a rotation of 90 degrees counterclockwise about the origin
2) a translation of three units to the left and three units up
3) a rotation of 180 degrees about the origin
4) a reflection over the line $y=x$

494 In quadrilateral $B L U E$ shown below, $\overline{B E} \cong \overline{U L}$.

Which information would be sufficient to prove quadrilateral BLUE is a parallelogram?

1) $\overline{B L} \| \overline{E U}$
2) $\overline{L U} \| \overline{B E}$
3) $\overline{B E} \cong \overline{B L}$
4) $\overline{L U} \cong \overline{E U}$
\qquad

495 In the coordinate plane, the vertices of triangle PAT are $P(-1,-6), A(-4,5)$, and $T(5,-2)$. Prove that $\triangle P A T$ is an isosceles triangle. State the coordinates of R so that quadrilateral $P A R T$ is a parallelogram. Prove that quadrilateral $P A R T$ is a parallelogram. [The use of the set of axes below is optional.]

496 In the diagram below, $\mathrm{m} \widehat{A B C}=268^{\circ}$.

What is the number of degrees in the measure of $\angle A B C$?

1) 134°
2) 92°
3) 68°
4) 46°

497 In the diagram below, $\overline{X S}$ and $\overline{Y R}$ intersect at Z. Segments $X Y$ and $R S$ are drawn perpendicular to $\overline{Y R}$ to form triangles $X Y Z$ and $S R Z$.

Which statement is always true?

1) $(X Y)(S R)=(X Z)(R Z)$
2) $\triangle X Y Z \cong \triangle S R Z$
3) $\overline{X S} \cong \overline{Y R}$
4) $\frac{X Y}{S R}=\frac{Y Z}{R Z}$

498 Parallelogram $H A N D$ is drawn below with diagonals $\overline{H N}$ and $\overline{A D}$ intersecting at S.

Which statement is always true?

1) $A N=\frac{1}{2} A D$
2) $A S=\frac{1}{2} A D$
3) $\angle A H S \cong \angle A N S$
4) $\angle H D S \cong \angle N D S$
\qquad

499 Triangle $A B C$, with vertices at $A(0,0), B(3,5)$, and $C(0,5)$, is graphed on the set of axes shown below.

Which figure is formed when $\triangle A B C$ is rotated continuously about $\overline{B C}$?
1)

2)

4)

500 Which figure always has exactly four lines of reflection that map the figure onto itself?

1) square
2) rectangle
3) regular octagon
4) equilateral triangle

501 A two-dimensional cross section is taken of a three-dimensional object. If this cross section is a triangle, what can not be the three-dimensional object?

1) cone
2) cylinder
3) pyramid
4) rectangular prism

502 In the diagram below, $\overline{D E}, \overline{D F}$, and $\overline{E F}$ are midsegments of $\triangle A B C$.

The perimeter of quadrilateral $A D E F$ is equivalent to

1) $A B+B C+A C$
2) $\frac{1}{2} A B+\frac{1}{2} A C$
3) $2 A B+2 A C$
4) $A B+A C$

503 Determine and state the coordinates of the center and the length of the radius of a circle whose equation is $x^{2}+y^{2}-6 x=56-8 y$.
\qquad

504 Parallelogram $A B C D$ has coordinates $A(0,7)$ and $C(2,1)$. Which statement would prove that $A B C D$ is a rhombus?

1) The midpoint of $\overline{A C}$ is $(1,4)$.
2) The length of $\overline{B D}$ is $\sqrt{40}$.
3) The slope of $\overline{B D}$ is $\frac{1}{3}$.
4) The slope of $\overline{A B}$ is $\frac{1}{3}$.

505 In the diagram below, two concentric circles with center O, and radii $\overline{O C}, \overline{O D}, \overline{O G E}$, and $\overline{O D F}$ are drawn.

If $O C=4$ and $O E=6$, which relationship between the length of arc $E F$ and the length of arc $C D$ is always true?

1) The length of arc $E F$ is 2 units longer than the length of arc $C D$.
2) The length of arc $E F$ is 4 units longer than the length of arc $C D$.
3) The length of arc $E F$ is 1.5 times the length of $\operatorname{arc} C D$.
4) The length of arc $E F$ is 2.0 times the length of arc $C D$.

506 A machinist creates a solid steel part for a wind turbine engine. The part has a volume of 1015 cubic centimeters. Steel can be purchased for $\$ 0.29$ per kilogram, and has a density of 7.95 $\mathrm{g} / \mathrm{cm}^{3}$. If the machinist makes 500 of these parts, what is the cost of the steel, to the nearest dollar?

507 Triangle $A B C$ and triangle $A D E$ are graphed on the set of axes below.

Describe a transformation that maps triangle $A B C$ onto triangle $A D E$. Explain why this transformation makes triangle $A D E$ similar to triangle $A B C$.

508 The equation of a circle is $x^{2}+y^{2}-6 y+1=0$. What are the coordinates of the center and the length of the radius of this circle?

1) center $(0,3)$ and radius $=2 \sqrt{2}$
2) center $(0,-3)$ and radius $=2 \sqrt{2}$
3) center $(0,6)$ and radius $=\sqrt{35}$
4) center $(0,-6)$ and radius $=\sqrt{35}$
\qquad

509 In the model below, a support wire for a telephone pole is attached to the pole and anchored to a stake in the ground 15 feet from the base of the telephone pole. Jamal places a 6 -foot wooden pole under the support wire parallel to the telephone pole, such that one end of the pole is on the ground and the top of the pole is touching the support wire. He measures the distance between the bottom of the pole and the stake in the ground.

Jamal says he can approximate how high the support wire attaches to the telephone pole by using similar triangles. Explain why the triangles are similar.

510 In $\triangle A B C, \overline{B D}$ is the perpendicular bisector of $\overline{A D C}$. Based upon this information, which statements below can be proven?
I. $\overline{B D}$ is a median.
II. $\overline{B D}$ bisects $\angle A B C$.
III. $\triangle A B C$ is isosceles.

1) I and II, only
2) I and III, only
3) II and III, only
4) I, II, and III

511 In the diagram below of $\triangle A B C, D, E$, and F are the midpoints of $\overline{A B}, \overline{B C}$, and $\overline{C A}$, respectively.

What is the ratio of the area of $\triangle C F E$ to the area of $\triangle C A B$?

1) $1: 1$
2) $1: 2$
3) $1: 3$
4) $1: 4$

512 In the diagram below, if $\triangle A B E \cong \triangle C D F$ and $\overline{A E F C}$ is drawn, then it could be proven that quadrilateral $A B C D$ is a

1) square
2) rhombus
3) rectangle
4) parallelogram

513 The vertices of $\triangle P Q R$ have coordinates $P(2,3)$, $Q(3,8)$, and $R(7,3)$. Under which transformation of $\triangle P Q R$ are distance and angle measure preserved?

1) $(x, y) \rightarrow(2 x, 3 y)$
2) $(x, y) \rightarrow(x+2,3 y)$
3) $(x, y) \rightarrow(2 x, y+3)$
4) $(x, y) \rightarrow(x+2, y+3)$
\qquad www.jmap.org

514 A rectangular in-ground pool is modeled by the prism below. The inside of the pool is 16 feet wide and 35 feet long. The pool has a shallow end and a deep end, with a sloped floor connecting the two ends. Without water, the shallow end is 9 feet long and 4.5 feet deep, and the deep end of the pool is 12.5 feet long.

If the sloped floor has an angle of depression of 16.5 degrees, what is the depth of the pool at the deep end, to the nearest tenth of a foot? Find the volume of the inside of the pool to the nearest cubic foot. A garden hose is used to fill the pool. Water comes out of the hose at a rate of 10.5 gallons per minute. How much time, to the nearest hour, will it take to fill the pool 6 inches from the top? [1 $\mathrm{ft}^{3}=7.48$ gallons]

515 Quadrilateral MATH and its image $M^{\prime \prime} A " T$ " H " are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral $M A T H$ onto quadrilateral $M " A " T " H "$.

516 A circle with a diameter of 10 cm and a central angle of 30° is drawn below.

What is the area, to the nearest tenth of a square centimeter, of the sector formed by the 30° angle?

1) 5.2
2) 6.5
3) 13.1
4) 26.2
\qquad

In the diagram below, rectangle $A B C D$ has vertices whose coordinates are $A(7,1), B(9,3), C(3,9)$, and $D(1,7)$.

Which transformation will not carry the rectangle onto itself?

1) a reflection over the line $y=x$
2) a reflection over the line $y=-x+10$
3) a rotation of 180° about the point $(6,6)$
4) a rotation of 180° about the point $(5,5)$

518 Triangle $A B C$ and triangle $D E F$ are drawn below.

If $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $\angle A \cong \angle D$, write a sequence of transformations that maps triangle $A B C$ onto triangle $D E F$.

519 In the diagram below, $\angle G R S \cong \angle A R T, G R=36$, $S R=45, A R=15$, and $R T=18$.

Which triangle similarity statement is correct?

1) $\triangle G R S \sim \triangle A R T$ by AA.
2) $\triangle G R S \sim \triangle A R T$ by SAS.
3) $\triangle G R S \sim \triangle A R T$ by $S S S$.
4) $\triangle G R S$ is not similar to $\triangle A R T$.

520 Which set of statements would describe a parallelogram that can always be classified as a rhombus?
I. Diagonals are perpendicular bisectors of each other.
II. Diagonals bisect the angles from which they are drawn.
III. Diagonals form four congruent isosceles right triangles.

1) I and II
2) I and III
3) II and III
4) I, II, and III

521 What is the volume of a hemisphere that has a diameter of 12.6 cm , to the nearest tenth of a cubic centimeter?

1) 523.7
2) 1047.4
3) 4189.6
4) 8379.2
\qquad www.jmap.org

522 To build a handicapped-access ramp, the building code states that for every 1 inch of vertical rise in height, the ramp must extend out 12 inches horizontally, as shown in the diagram below.

What is the angle of inclination, x, of this ramp, to the nearest hundredth of a degree?

1) 4.76
2) 4.78
3) 85.22
4) 85.24

523 The diagram below shows circle O with diameter $\overline{A B}$. Using a compass and straightedge, construct a square that is inscribed in circle O. [Leave all construction marks.]

524 If $\triangle A B C$ is mapped onto $\triangle D E F$ after a line reflection and $\triangle D E F$ is mapped onto $\triangle X Y Z$ after a translation, the relationship between $\triangle A B C$ and $\triangle X Y Z$ is that they are always

1) congruent and similar
2) congruent but not similar
3) similar but not congruent
4) neither similar nor congruent

525 Given: $\triangle A B C, \overline{A E C}, \overline{B D E}$ with $\angle A B E \cong \angle C B E$, and $\angle A D E \cong \angle C D E$
Prove: $\overline{B D E}$ is the perpendicular bisector of $\overline{A C}$

Fill in the missing statement and reasons below.

Statements	Reasons
$1 \triangle A B C, \overline{A E C}, \overline{B D E}$ with $\angle A B E \cong \angle C B E$, and $\angle A D E \cong \angle C D E$	1 Given
$2 \overline{B D} \cong \overline{B D}$	2
$3 \angle B D A$ and $\angle A D E$ are supplementary. $\angle B D C$ and $\angle C D E$ are supplementary.	3 Linear pairs of angles are supplementary.
4	4 Supplements of congruent angles are congruent.
$5 \triangle \overline{\triangle A D \cong \triangle C B D}$	5 ASA
$6 \overline{A D} \cong \overline{C D}, \overline{A B} \cong \overline{C B}$	6
$7 \overline{B D E}$ is the perpendicular bisector of $\overline{A C}$.	7

\qquad

526 A man was parasailing above a lake at an angle of elevation of 32° from a boat, as modeled in the diagram below.

If 129.5 meters of cable connected the boat to the parasail, approximately how many meters above the lake was the man?

1) 68.6
2) 80.9
3) 109.8
4) 244.4

527 As shown in the diagram below, $\overleftrightarrow{A B C} \| \overleftrightarrow{E F G}$ and $\overline{B F} \cong \overline{E F}$.

If $\mathrm{m} \angle C B F=42.5^{\circ}$, then $\mathrm{m} \angle E B F$ is

1) 42.5°
2) 68.75°
3) 95°
4) 137.5°

528 The coordinates of the endpoints of directed line segment $A B C$ are $A(-8,7)$ and $C(7,-13)$. If $A B: B C=3: 2$, the coordinates of B are

1) $(1,-5)$
2) $(-2,-1)$
3) $(-3,0)$
4) $(3,-6)$

529 In the diagram below, $\overline{A B} \| \overrightarrow{D E F}, \overline{A E}$ and $\overline{B D}$ intersect at $C, \mathrm{~m} \angle B=43^{\circ}$, and $\mathrm{m} \angle C E F=152^{\circ}$.

Which statement is true?

1) $\mathrm{m} \angle D=28^{\circ}$
2) $\mathrm{m} \angle A=43^{\circ}$
3) $\mathrm{m} \angle A C D=71^{\circ}$
4) $\mathrm{m} \angle B C E=109^{\circ}$

530 In circle A below, chord $\overline{B C}$ and diameter $\overline{D A E}$ intersect at F.

If $\mathrm{m} \overparen{C D}=46^{\circ}$ and $\mathrm{m} \overparen{D B}=102^{\circ}$, what is $\mathrm{m} \angle C F E$?
\qquad

531 Line segment $R W$ has endpoints $R(-4,5)$ and $W(6,20)$. Point P is on $\overline{R W}$ such that $R P: P W$ is 2:3. What are the coordinates of point P ?

1) $(2,9)$
2) $(0,11)$
3) $(2,14)$
4) $(10,2)$

532 On the set of axes below, $\triangle A B C$, altitude $\overline{C G}$, and median $\overline{C M}$ are drawn.

Which expression represents the area of $\triangle A B C$?

1) $\frac{(B C)(A C)}{2}$
2) $\frac{(G C)(B C)}{2}$
3) $\frac{(C M)(A B)}{2}$
4) $\frac{(G C)(A B)}{2}$

533 Which transformation would not carry a square onto itself?

1) a reflection over one of its diagonals
2) a 90° rotation clockwise about its center
3) a 180° rotation about one of its vertices
4) a reflection over the perpendicular bisector of one side

534 Sue believes that the two cylinders shown in the diagram below have equal volumes.

Is Sue correct? Explain why.

535 Using a compass and straightedge, construct a regular hexagon inscribed in circle O. [Leave all construction marks.]

536 An isosceles right triangle whose legs measure 6 is continuously rotated about one of its legs to form a three-dimensional object. The three-dimensional object is a

1) cylinder with a diameter of 6
2) cylinder with a diameter of 12
3) cone with a diameter of 6
4) cone with a diameter of 12
\qquad

537 In the diagram below of isosceles triangle $A B C$,
$\overline{A B} \cong \overline{C B}$ and angle bisectors $\overline{A D}, \overline{B F}$, and $\overline{C E}$ are drawn and intersect at X.

If $\mathrm{m} \angle B A C=50^{\circ}$, find $\mathrm{m} \angle A X C$.

538 On the set of axes below, the vertices of $\triangle P Q R$ have coordinates $P(-6,7), Q(2,1)$, and $R(-1,-3)$.

What is the area of $\triangle P Q R$?

1) 10
2) 20
3) 25
4) 50

539 A parallelogram is always a rectangle if

1) the diagonals are congruent
2) the diagonals bisect each other
3) the diagonals intersect at right angles
4) the opposite angles are congruent

540 A solid metal prism has a rectangular base with sides of 4 inches and 6 inches, and a height of 4 inches. A hole in the shape of a cylinder, with a radius of 1 inch, is drilled through the entire length of the rectangular prism.

What is the approximate volume of the remaining solid, in cubic inches?

1) 19
2) 77
3) 93
4) 96

541 In triangle $A B C$, points D and E are on sides $\overline{A B}$ and $\overline{B C}$, respectively, such that $\overline{D E} \| \overline{A C}$, and $A D: D B=3: 5$.

If $D B=6.3$ and $A C=9.4$, what is the length of $D E$, to the nearest tenth?

1) 3.8
2) 5.6
3) 5.9
4) 15.7
\qquad www.jmap.org

542 Triangle $P Q R$ has vertices $P(-3,-1), Q(-1,7)$, and $R(3,3)$, and points A and B are midpoints of $\overline{P Q}$ and $\overline{R Q}$, respectively. Use coordinate geometry to prove that $\overline{A B}$ is parallel to $\overline{P R}$ and is half the length of $\overline{P R}$. [The use of the set of axes below is optional.]

543 If $\sin (2 x+7)^{\circ}=\cos (4 x-7)^{\circ}$, what is the value of x ?

1) 7
2) 15
3) 21
4) 30

544 The equation of a circle is $x^{2}+y^{2}-12 y+20=0$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(0,6)$ and radius 4
2) center ($0,-6$) and radius 4
3) center $(0,6)$ and radius 16
4) center ($0,-6$) and radius 16

545 In the diagram below, $\triangle A B C \cong \triangle D E F$.

Which sequence of transformations maps $\triangle A B C$ onto $\triangle D E F$?

1) a reflection over the x-axis followed by a translation
2) a reflection over the y-axis followed by a translation
3) a rotation of 180° about the origin followed by a translation
4) a counterclockwise rotation of 90° about the origin followed by a translation

546 The graph below shows $\triangle A B C$ and its image, $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

Describe a sequence of rigid motions which would map $\triangle A B C$ onto $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
\qquad

547 Given $\triangle A B C \cong \triangle D E F$, which statement is not always true?

1) $\overline{B C} \cong \overline{D F}$
2) $\mathrm{m} \angle A=\mathrm{m} \angle D$
3) area of $\triangle A B C=$ area of $\triangle D E F$
4) perimeter of $\triangle A B C=$ perimeter of $\triangle D E F$

548 In the diagram below, $\overline{A K S}, \overline{N K C}, \overline{A N}$, and $\overline{S C}$ are drawn such that $\overline{A N} \cong \overline{S C}$.

Which additional statement is sufficient to prove $\triangle K A N \cong \triangle K S C$ by AAS?

1) $\overline{A S}$ and $\overline{N C}$ bisect each other.
2) K is the midpoint of $\overline{N C}$.
3) $\overline{A S} \perp \overline{C N}$
4) $\overline{A N} \| \overline{S C}$

549 Which equation represents a line that is perpendicular to the line represented by $y=\frac{2}{3} x+1$?

1) $3 x+2 y=12$
2) $3 x-2 y=12$
3) $y=\frac{3}{2} x+2$
4) $y=-\frac{2}{3} x+4$

550 In the diagram below of circle O, tangent $\overleftrightarrow{E C}$ is drawn to diameter $\overline{A C}$. Chord $\overline{B C}$ is parallel to secant $\overline{A D E}$, and chord $\overline{A B}$ is drawn.

Prove: $\frac{B C}{C A}=\frac{A B}{E C}$

551 In the diagram below, secants $\overline{R S T}$ and $\overline{R Q P}$, drawn from point R, intersect circle O at S, T, Q, and P.

If $R S=6, S T=4$, and $R P=15$, what is the length of $\overline{R Q}$?
\qquad www.jmap.org

552 A candle maker uses a mold to make candles like the one shown below.

The height of the candle is 13 cm and the circumference of the candle at its widest measure is 31.416 cm . Use modeling to approximate how much wax, to the nearest cubic centimeter, is needed to make this candle. Justify your answer.

553 In $\triangle A B C$ shown below, side $\overline{A C}$ is extended to point D with $\mathrm{m} \angle D A B=(180-3 x)^{\circ}$, $\mathrm{m} \angle B=(6 x-40)^{\circ}$, and $\mathrm{m} \angle C=(x+20)^{\circ}$.

What is $\mathrm{m} \angle B A C$?

1) 20°
2) 40°
3) 60°
4) 80°

554 A right cylinder is cut perpendicular to its base. The shape of the cross section is a

1) circle
2) cylinder
3) rectangle
4) triangular prism

555 In the diagram below, $\overline{A D}$ intersects $\overline{B E}$ at C, and $\overline{A B} \| \overline{D E}$.

If $C D=6.6 \mathrm{~cm}, D E=3.4 \mathrm{~cm}, C E=4.2 \mathrm{~cm}$, and $B C=5.25 \mathrm{~cm}$, what is the length of $\overline{A C}$, to the nearest hundredth of a centimeter?

1) 2.70
2) 3.34
3) 5.28
4) 8.25

556 A right hexagonal prism is shown below. A two-dimensional cross section that is perpendicular to the base is taken from the prism.

Which figure describes the two-dimensional cross section?

1) triangle
2) rectangle
3) pentagon
4) hexagon
\qquad

557 In the diagram below of $\triangle H A R$ and $\triangle N T Y$, angles H and N are right angles, and $\triangle H A R \sim \triangle N T Y$.

If $A R=13$ and $H R=12$, what is the measure of angle Y, to the nearest degree?

1) 23°
2) 25°
3) 65°
4) 67°

558 In triangle $S R K$ below, medians $\overline{S C}, \overline{K E}$, and $\overline{R L}$ intersect at M.

Which statement must always be true?

1) $3(M C)=S C$
2) $M C=\frac{1}{3}(S M)$
3) $R M=2 M C$
4) $S M=K M$

559 In the diagram below, $\triangle A D E$ is the image of $\triangle A B C$ after a reflection over the line $A C$ followed by a dilation of scale factor $\frac{A E}{A C}$ centered at point A.

Which statement must be true?

1) $\mathrm{m} \angle B A C \cong \mathrm{~m} \angle A E D$
2) $\mathrm{m} \angle A B C \cong \mathrm{~m} \angle A D E$
3) $\mathrm{m} \angle D A E \cong \frac{1}{2} \mathrm{~m} \angle B A C$
4) $\mathrm{m} \angle A C B \cong \frac{1}{2} \mathrm{~m} \angle D A B$

560 In the diagram below, triangle $A C D$ has points B and E on sides $\overline{A C}$ and $\overline{A D}$, respectively, such that $\overline{B E} \| \overline{C D}, A B=1, B C=3.5$, and $A D=18$.

What is the length of $\overline{A E}$, to the nearest tenth?

1) 14.0
2) 5.1
3) 3.3
4) 4.0

561 Explain why $\cos (x)=\sin (90-x)$ for x such that $0<x<90$.
\qquad

562 Line $M N$ is dilated by a scale factor of 2 centered at the point $(0,6)$. If $\overleftrightarrow{M N}$ is represented by
$y=-3 x+6$, which equation can represent $\overleftrightarrow{M^{\prime} N^{\prime}}$, the image of $\overleftrightarrow{M N}$?

1) $y=-3 x+12$
2) $y=-3 x+6$
3) $y=-6 x+12$
4) $y=-6 x+6$

563 Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of rectangle $A B C D$ after a dilation centered at point A by a scale factor of $\frac{2}{3}$. Which statement is correct?

1) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has a perimeter that is $\frac{2}{3}$ the perimeter of rectangle $A B C D$.
2) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has a perimeter that is $\frac{3}{2}$ the perimeter of rectangle $A B C D$.
3) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has an area that is $\frac{2}{3}$ the area of rectangle $A B C D$.
4) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has an area that is $\frac{3}{2}$ the area of rectangle $A B C D$.

564 Given right triangles $A B C$ and $D E F$ where $\angle C$ and $\angle F$ are right angles, $\overline{A C} \cong \overline{D F}$ and $\overline{C B} \cong \overline{F E}$. Describe a precise sequence of rigid motions which would show $\triangle A B C \cong \triangle D E F$.

565 In the diagram below, $A C=7.2$ and $C E=2.4$.

Which statement is not sufficient to prove $\triangle A B C \sim \triangle E D C$?

1) $\overline{A B} \| \overline{E D}$
2) $D E=2.7$ and $A B=8.1$
3) $C D=3.6$ and $B C=10.8$
4) $D E=3.0, A B=9.0, C D=2.9$, and $B C=8.7$

566 In rhombus MATH, the coordinates of the endpoints of the diagonal $\overline{M T}$ are $M(0,-1)$ and $T(4,6)$. Write an equation of the line that contains diagonal $\overline{A H}$. [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal $\overline{A H}$.

\qquad

Geometry Regents at Random Worksheets

567 Given: Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E, respectively

Prove that $\triangle A N W \cong \triangle D R E$. Prove that quadrilateral $A W D E$ is a parallelogram.

568 The vertices of $\triangle J K L$ have coordinates $J(5,1)$, $K(-2,-3)$, and $L(-4,1)$. Under which transformation is the image $\triangle J^{\prime} K^{\prime} L^{\prime}$ not congruent to $\triangle J K L$?

1) a translation of two units to the right and two units down
2) a counterclockwise rotation of 180 degrees around the origin
3) a reflection over the x-axis
4) a dilation with a scale factor of 2 and centered at the origin

569 To find the distance across a pond from point B to point C, a surveyor drew the diagram below. The measurements he made are indicated on his diagram.

Use the surveyor's information to determine and state the distance from point B to point C, to the nearest yard.

570 In the diagram below, Circle 1 has radius 4, while Circle 2 has radius 6.5. Angle A intercepts an arc of length π, and angle B intercepts an arc of length $\frac{13 \pi}{8}$.

Dominic thinks that angles A and B have the same radian measure. State whether Dominic is correct or not. Explain why.

571 The density of the American white oak tree is 752 kilograms per cubic meter. If the trunk of an American white oak tree has a circumference of 4.5 meters and the height of the trunk is 8 meters, what is the approximate number of kilograms of the trunk?

1) 13
2) 9694
3) 13,536
4) 30,456

572 A quadrilateral has vertices with coordinates $(-3,1),(0,3),(5,2)$, and $(-1,-2)$. Which type of quadrilateral is this?

1) rhombus
2) rectangle
3) square
4) trapezoid
\qquad

573 A barrel of fuel oil is a right circular cylinder where the inside measurements of the barrel are a diameter of 22.5 inches and a height of 33.5 inches. There are 231 cubic inches in a liquid gallon. Determine and state, to the nearest tenth, the gallons of fuel that are in a barrel of fuel oil.

574 An equilateral triangle has sides of length 20. To the nearest tenth, what is the height of the equilateral triangle?

1) 10.0
2) 11.5
3) 17.3
4) 23.1

575 Which point shown in the graph below is the image of point P after a counterclockwise rotation of 90° about the origin?

1) A
2) B
3) C
4) D

576 If $\triangle A B C$ is dilated by a scale factor of 3 , which statement is true of the image $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) $3 A^{\prime} B^{\prime}=A B$
2) $B^{\prime} C^{\prime}=3 B C$
3) $\mathrm{m} \angle A^{\prime}=3(\mathrm{~m} \angle A)$
4) $3\left(\mathrm{~m} \angle C^{\prime}\right)=\mathrm{m} \angle C$

577 In the diagram below, $\triangle A B C$ has coordinates $A(1,1), B(4,1)$, and $C(4,5)$. Graph and label $\triangle A " B C^{\prime \prime}$, the image of $\triangle A B C$ after the translation five units to the right and two units up followed by the reflection over the line $y=0$.

578 Trees that are cut down and stripped of their branches for timber are approximately cylindrical. A timber company specializes in a certain type of tree that has a typical diameter of 50 cm and a typical height of about 10 meters. The density of the wood is 380 kilograms per cubic meter, and the wood can be sold by mass at a rate of $\$ 4.75$ per kilogram. Determine and state the minimum number of whole trees that must be sold to raise at least $\$ 50,000$.
\qquad

Given: D is the image of A after a reflection over $\overleftrightarrow{C H}$.
$\overleftrightarrow{C H}$ is the perpendicular bisector of $\overline{B C E}$ $\triangle A B C$ and $\triangle D E C$ are drawn
Prove: $\triangle A B C \cong \triangle D E C$

In the diagram below, congruent figures 1, 2, and 3 are drawn.

Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3 ?

1) a reflection followed by a translation
2) a rotation followed by a translation
3) a translation followed by a reflection
4) a translation followed by a rotation

581 Which object is formed when right triangle RST shown below is rotated around leg $\overline{R S}$?

1) a pyramid with a square base
2) an isosceles triangle
3) a right triangle
4) a cone

582 Walter wants to make 100 candles in the shape of a cone for his new candle business. The mold shown below will be used to make the candles. Each mold will have a height of 8 inches and a diameter of 3 inches. To the nearest cubic inch, what will be the total volume of 100 candles?

Walter goes to a hobby store to buy the wax for his candles. The wax costs $\$ 0.10$ per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles? If Walter spent a total of $\$ 37.83$ for the molds and charges $\$ 1.95$ for each candle, what is Walter's profit after selling 100 candles?
\qquad

583 In the diagram below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a transformation.

Describe the transformation that was performed. Explain why $\triangle A^{\prime} B^{\prime} C^{\prime} \sim \triangle A B C$.

584
As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is

1) 72
2) 144
3) 288
4) 432

585 The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?

1) 3591
2) 65
3) 55
4) 4

586 In the diagram below, $\overline{E F}$ intersects $\overline{A B}$ and $\overline{C D}$ at \underline{G} and H, respectively, and $\overline{G I}$ is drawn such that $\overline{G H} \cong \overline{I H}$.

If $\mathrm{m} \angle E G B=50^{\circ}$ and $\mathrm{m} \angle D I G=115^{\circ}$, explain why $\overline{A B} \| \overrightarrow{C D}$.

587 If the rectangle below is continuously rotated about side w, which solid figure is formed?

1) pyramid
2) rectangular prism
3) cone
4) cylinder
\qquad

588 Triangle $F G H$ is inscribed in circle O, the length of radius $\overline{O H}$ is 6 , and $\overline{F H} \cong \overline{O G}$.

What is the area of the sector formed by angle FOH?

1) 2π
2) $\frac{3}{2} \pi$
3) 6π
4) 24π

589 A regular pentagon is shown in the diagram below.

If the pentagon is rotated clockwise around its center, the minimum number of degrees it must be rotated to carry the pentagon onto itself is

1) 54°
2) 72°
3) 108°
4) 360°

590 A parallelogram must be a rectangle when its

1) diagonals are perpendicular
2) diagonals are congruent
3) opposite sides are parallel
4) opposite sides are congruent

591 In the diagram below, which single transformation was used to map triangle A onto triangle B ?

1) line reflection
2) rotation
3) dilation
4) translation

592 A three-inch line segment is dilated by a scale factor of 6 and centered at its midpoint. What is the length of its image?

1) 9 inches
2) 2 inches
3) 15 inches
4) 18 inches

593 Triangles RST and $X Y Z$ are drawn below. If $R S=6, S T=14, X Y=9, Y Z=21$, and $\angle S \cong \angle Y$, is $\triangle R S T$ similar to $\triangle X Y Z$? Justify your answer.

\qquad

594 Using the information given below, which set of triangles can not be proven similar?
1)

2)

3)

4)

595 The Great Pyramid of Giza was constructed as a regular pyramid with a square base. It was built with an approximate volume of $2,592,276$ cubic meters and a height of 146.5 meters. What was the length of one side of its base, to the nearest meter?

1) 73
2) 77
3) 133
4) 230

596 A circle has a center at $(1,-2)$ and radius of 4 . Does the point $(3.4,1.2)$ lie on the circle? Justify your answer.

597 In the diagram below, the line of sight from the park ranger station, P, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, C, and the first aid station, F. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.

598 In $\triangle A B C$, the complement of $\angle B$ is $\angle A$. Which statement is always true?

1) $\tan \angle A=\tan \angle B$
2) $\sin \angle A=\sin \angle B$
3) $\cos \angle A=\tan \angle B$
4) $\sin \angle A=\cos \angle B$
\qquad

599 A circle with a radius of 5 was divided into 24 congruent sectors. The sectors were then rearranged, as shown in the diagram below.

To the nearest integer, the value of x is

1) 31
2) 16
3) 12
4) 10

600 As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?

1) 29.7
2) 16.6
3) 13.5
4) 11.2

601 A gallon of paint will cover approximately 450 square feet. An artist wants to paint all the outside surfaces of a cube measuring 12 feet on each edge. What is the least number of gallons of paint he must buy to paint the cube?

1) 1
2) 2
3) 3
4) 4

602 In the diagram of $\triangle A B C$, points D and E are on $\overline{A B}$ and $\overline{C B}$, respectively, such that $\overline{A C} \| \overline{D E}$.

If $A D=24, D B=12$, and $D E=4$, what is the length of $\overline{A C}$?

1) 8
2) 12
3) 16
4) 72

603 Using a compass and straightedge, construct an altitude of triangle $A B C$ below. [Leave all construction marks.]

604 Tennis balls are sold in cylindrical cans with the balls stacked one on top of the other. A tennis ball has a diameter of 6.7 cm . To the nearest cubic centimeter, what is the minimum volume of the can that holds a stack of 4 tennis balls?

1) 236
2) 282
3) 564
4) 945
\qquad

605 Given: Parallelogram $A B C D, \overline{E F G}$, and diagonal $\overline{D F B}$

Prove: $\triangle D E F \sim \triangle B G F$

606 Construct an equilateral triangle inscribed in circle T shown below. [Leave all construction marks.]

607 Which equation represents a line that is perpendicular to the line represented by $2 x-y=7$?

1) $y=-\frac{1}{2} x+6$
2) $y=\frac{1}{2} x+6$
3) $y=-2 x+6$
4) $y=2 x+6$

608 In the diagram of parallelogram $A B C D$ below, $\overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$.

Prove $A B C D$ is a rhombus.

609 In the diagram below, $\overline{C D}$ is the altitude drawn to the hypotenuse $\overline{A B}$ of right triangle $A B C$.

Which lengths would not produce an altitude that measures $6 \sqrt{2}$?

1) $A D=2$ and $D B=36$
2) $A D=3$ and $A B=24$
3) $A D=6$ and $D B=12$
4) $A D=8$ and $A B=17$

610 Quadrilateral $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. Which information is not sufficient to prove $A B C D$ is a parallelogram?

1) $\overline{A C}$ and $\overline{B D}$ bisect each other.
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{A D}$
3) $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$
4) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$
\qquad

611 The map below shows the three tallest mountain peaks in New York State: Mount Marcy, Algonquin Peak, and Mount Haystack. Mount Haystack, the shortest peak, is 4960 feet tall. Surveyors have determined the horizontal distance between Mount Haystack and Mount Marcy is 6336 feet and the horizontal distance between Mount Marcy and Algonquin Peak is 20,493 feet.

The angle of depression from the peak of Mount Marcy to the peak of Mount Haystack is 3.47 degrees. The angle of elevation from the peak of Algonquin Peak to the peak of Mount Marcy is 0.64 degrees. What are the heights, to the nearest foot, of Mount Marcy and Algonquin Peak? Justify your answer.

612 A designer needs to create perfectly circular necklaces. The necklaces each need to have a radius of 10 cm . What is the largest number of necklaces that can be made from 1000 cm of wire?

1) 15
2) 16
3) 31
4) 32

613 Given: $\triangle A E C, \triangle D E F$, and $\overline{F E} \perp \overline{C E}$

What is a correct sequence of similarity transformations that shows $\triangle A E C \sim \triangle D E F$?

1) a rotation of 180 degrees about point E followed by a horizontal translation
2) a counterclockwise rotation of 90 degrees about point E followed by a horizontal translation
3) a rotation of 180 degrees about point E followed by a dilation with a scale factor of 2 centered at point E
4) a counterclockwise rotation of 90 degrees about point E followed by a dilation with a scale factor of 2 centered at point E

614 In the diagram below of circle O, the area of the shaded sector $A O C$ is 12π in 2 and the length of $\overline{O A}$ is 6 inches. Determine and state $\mathrm{m} \angle A O C$.

\qquad

615 In the diagram below, $\overleftrightarrow{F E}$ bisects $\overline{A C}$ at B, and $\overleftrightarrow{G E}$ bisects $\overline{B D}$ at C.

Which statement is always true?

1) $\overline{A B} \cong \overline{D C}$
2) $\overline{F B} \cong \overline{E B}$
3) $\overleftrightarrow{B D}$ bisects $\overline{G E}$ at C.
4) $\overleftrightarrow{A C}$ bisects $\overline{F E}$ at B.

616 Using a compass and straightedge, construct and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation with a scale factor of 2 and centered at B. [Leave all construction marks.] Describe the relationship between the lengths of $\overline{A C}$ and $\overline{A^{\prime} C^{\prime}}$.

617 Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

Determine and state, to the nearest tenth of a meter, the height of the flagpole.

618 In parallelogram $Q R S T$ shown below, diagonal $\overline{T R}$ is drawn, U and V are points on $\overline{T S}$ and $\overline{Q R}$, respectively, and $\overline{U V}$ intersects $\overline{T R}$ at W.

If $\mathrm{m} \angle S=60^{\circ}, \mathrm{m} \angle S R T=83^{\circ}$, and $\mathrm{m} \angle T W U=35^{\circ}$, what is $\mathrm{m} \angle W V Q$?

1) 37°
2) 60°
3) 72°
4) 83°
\qquad

619 In the diagram below, radius $\overline{O A}$ is drawn in circle O. Using a compass and a straightedge, construct a line tangent to circle O at point A. [Leave all construction marks.]

620 What are the coordinates of the center and length of the radius of the circle whose equation is
$x^{2}+6 x+y^{2}-4 y=23$?

1) $(3,-2)$ and 36
2) $(3,-2)$ and 6
3) $(-3,2)$ and 36
4) $(-3,2)$ and 6

621 What is the area of a sector of a circle with a radius of 8 inches and formed by a central angle that measures 60° ?

1) $\frac{8 \pi}{3}$
2) $\frac{16 \pi}{3}$
3) $\frac{32 \pi}{3}$
4) $\frac{64 \pi}{3}$

622 Which sequence of transformations will map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) reflection and translation
2) rotation and reflection
3) translation and dilation
4) dilation and rotation

623 The endpoints of $\overline{D E F}$ are $D(1,4)$ and $F(16,14)$. Determine and state the coordinates of point E, if $D E: E F=2: 3$.

624 Triangle MNP is the image of triangle $J K L$ after a 120° counterclockwise rotation about point Q. If the measure of angle L is 47° and the measure of angle N is 57°, determine the measure of angle M. Explain how you arrived at your answer.

\qquad

625 In parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. Which statement does not prove parallelogram $A B C D$ is a rhombus?

1) $\overline{A C} \cong \overline{D B}$
2) $\overline{A B} \cong \overline{B C}$
3) $\overline{A C} \perp \overline{D B}$
4) $\overline{A C}$ bisects $\angle D C B$

626 Given $\overline{M N}$ shown below, with $M(-6,1)$ and $N(3,-5)$, what is an equation of the line that passes through point $P(6,1)$ and is parallel to $\overline{M N}$?

1) $y=-\frac{2}{3} x+5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{3}{2} x+7$
4) $y=\frac{3}{2} x-8$

627 If $x^{2}+4 x+y^{2}-6 y-12=0$ is the equation of a circle, the length of the radius is

1) 25
2) 16
3) 5
4) 4

628 In the diagram of right triangle $A B C$ shown below, $A B=14$ and $A C=9$.

What is the measure of $\angle A$, to the nearest degree?

1) 33
2) 40
3) 50
4) 57

629 A fish tank in the shape of a rectangular prism has dimensions of 14 inches, 16 inches, and 10 inches. The tank contains 1680 cubic inches of water. What percent of the fish tank is empty?

1) 10
2) 25
3) 50
4) 75

630 In the diagram below of circle O, the area of the shaded sector $L O M$ is $2 \pi \mathrm{~cm}^{2}$.

If the length of $\overline{N L}$ is 6 cm , what is $\mathrm{m} \angle N$?

1) 10°
2) 20°
3) 40°
4) 80°
\qquad

631 On the set of axes below, rectangle $A B C D$ can be proven congruent to rectangle $K L M N$ using which transformation?

1) rotation
2) translation
3) reflection over the x-axis
4) reflection over the y-axis

632 The image of $\triangle A B C$ after a rotation of 90° clockwise about the origin is $\triangle D E F$, as shown below.

Which statement is true?

1) $\overline{B C} \cong \overline{D E}$
2) $\overline{A B} \cong \overline{D F}$
3) $\angle C \cong \angle E$
4) $\angle A \cong \angle D$

633 A hemispherical tank is filled with water and has a diameter of 10 feet. If water weighs 62.4 pounds per cubic foot, what is the total weight of the water in a full tank, to the nearest pound?

1) 16,336
2) 32,673
3) 130,690
4) 261,381

634 In $\triangle S C U$ shown below, points T and O are on $\overline{S U}$ and $\overline{C U}$, respectively. Segment $O T$ is drawn so that $\angle C \cong \angle O T U$.

If $T U=4, O U=5$, and $O C=7$, what is the length of $\overline{S T}$?

1) 5.6
2) 8.75
3) 11
4) 15

635 What are the coordinates of the point on the directed line segment from $K(-5,-4)$ to $L(5,1)$ that partitions the segment into a ratio of 3 to 2 ?

1) $(-3,-3)$
2) $(-1,-2)$
3) $\left(0,-\frac{3}{2}\right)$
4) $(1,-1)$
\qquad

636 In the diagram below, secant $\overline{A C D}$ and tangent $\overline{A B}$ are drawn from external point A to circle O.

Prove the theorem: If a secant and a tangent are drawn to a circle from an external point, the product of the lengths of the secant segment and its external segment equals the length of the tangent segment squared. $\left(A C \cdot A D=A B^{2}\right)$

637 The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.

Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

638 The line $y=2 x-4$ is dilated by a scale factor of $\frac{3}{2}$ and centered at the origin. Which equation represents the image of the line after the dilation?

1) $y=2 x-4$
2) $y=2 x-6$
3) $y=3 x-4$
4) $y=3 x-6$

639 In the diagram below, $\triangle A B E$ is the image of $\triangle A C D$ after a dilation centered at the origin. The coordinates of the vertices are $A(0,0), B(3,0)$, $C(4.5,0), D(0,6)$, and $E(0,4)$.

The ratio of the lengths of $\overline{B E}$ to $\overline{C D}$ is

1) $\frac{2}{3}$
2) $\frac{3}{2}$
3) $\frac{3}{4}$
4) $\frac{4}{3}$

640 As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point A, the angle of elevation from the ship to the light was 7°. A short time later, at point D, the angle of elevation was 16°.

To the nearest foot, determine and state how far the ship traveled from point A to point D.
\qquad

641 In the diagram below, lines ℓ, m, n, and p intersect line r.

Which statement is true?

1) $\ell \| n$
2) $\ell \| p$
3) $m \| p$
4) $m \| n$

642 Triangle $A B C$ has vertices with $A(x, 3), B(-3,-1)$, and $C(-1,-4)$. Determine and state a value of x that would make triangle $A B C$ a right triangle. Justify why $\triangle A B C$ is a right triangle. [The use of the set of axes below is optional.]

643 Describe a sequence of transformations that will map $\triangle A B C$ onto $\triangle D E F$ as shown below.

644 Line segment $N Y$ has endpoints $N(-11,5)$ and $Y(5,-7)$. What is the equation of the perpendicular bisector of $\overline{N Y}$?

1) $y+1=\frac{4}{3}(x+3)$
2) $y+1=-\frac{3}{4}(x+3)$
3) $y-6=\frac{4}{3}(x-8)$
4) $y-6=-\frac{3}{4}(x-8)$

645 If $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$, under which transformation will the triangles not be congruent?

1) reflection over the x-axis
2) translation to the left 5 and down 4
3) dilation centered at the origin with scale factor 2
4) rotation of 270° counterclockwise about the origin
\qquad

646 In the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the median to $\overline{A B}$. [Leave all construction marks.]

647 Which figure can have the same cross section as a sphere?
1)

2)

3)

4)

648 Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ is shown in the diagram below.

Which information is not enough to prove $A B C D$ is a parallelogram?

1) $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{D C}$
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$
3) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$
4) $\overline{A B} \| \overline{D C}$ and $\overline{B C} \| \overline{A D}$

649 A snow cone consists of a paper cone completely filled with shaved ice and topped with a hemisphere of shaved ice, as shown in the diagram below. The inside diameter of both the cone and the hemisphere is 8.3 centimeters. The height of the cone is 10.2 centimeters.

The desired density of the shaved ice is $0.697 \mathrm{~g} / \mathrm{cm}^{3}$, and the cost, per kilogram, of ice is $\$ 3.83$. Determine and state the cost of the ice needed to make 50 snow cones.
\qquad

650 What are the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+y^{2}-4 x+8 y+11=0$?

1) center $(2,-4)$ and radius 3
2) center $(-2,4)$ and radius 3
3) center $(2,-4)$ and radius 9
4) center $(-2,4)$ and radius 9

651 Two stacks of 23 quarters each are shown below. One stack forms a cylinder but the other stack does not form a cylinder.

Use Cavelieri’s principle to explain why the volumes of these two stacks of quarters are equal.

652 In the diagram of $\triangle A D C$ below, $\overline{E B} \| \overline{D C}, A E=9$, $E D=5$, and $A B=9.2$.

What is the length of $\overline{A C}$, to the nearest tenth?

1) 5.1
2) 5.2
3) 14.3
4) 14.4

653 In the diagram below of circle O with diameter $\overline{B C}$ and radius $\overline{O A}$, chord $\overline{D C}$ is parallel to chord $\overline{B A}$.

If $\mathrm{m} \angle B C D=30^{\circ}$, determine and state $\mathrm{m} \angle A O B$.

654 Steve drew line segments $A B C D, E F G, B F$, and $C F$ as shown in the diagram below. Scalene $\triangle B F C$ is formed.

Which statement will allow Steve to prove $\overline{A B C D} \| \overline{E F G}$?

1) $\angle C F G \cong \angle F C B$
2) $\angle A B F \cong \angle B F C$
3) $\angle E F B \cong \angle C F B$
4) $\angle C B F \cong \angle G F C$

655 An equation of a line perpendicular to the line represented by the equation $y=-\frac{1}{2} x-5$ and passing through $(6,-4)$ is

1) $y=-\frac{1}{2} x+4$
2) $y=-\frac{1}{2} x-1$
3) $y=2 x+14$
4) $y=2 x-16$
\qquad

656 As shown below, a canoe is approaching a lighthouse on the coastline of a lake. The front of the canoe is 1.5 feet above the water and an observer in the lighthouse is 112 feet above the water.

(Not drawn to scale)
At 5:00, the observer in the lighthouse measured the angle of depression to the front of the canoe to be 6°. Five minutes later, the observer measured and saw the angle of depression to the front of the canoe had increased by 49°. Determine and state, to the nearest foot per minute, the average speed at which the canoe traveled toward the lighthouse.

657 The image of $\triangle A B C$ after a dilation of scale factor k centered at point A is $\triangle A D E$, as shown in the diagram below.

Which statement is always true?

1) $2 A B=A D$
2) $\overline{A D} \perp \overline{D E}$
3) $A C=C E$
4) $\overline{B C} \| \overline{D E}$

658 After a reflection over a line, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$. Explain why triangle $A B C$ is congruent to triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$.

659 In the diagram of right triangle $A B C, \overline{C D}$ intersects hypotenuse $\overline{A B}$ at D.

If $A D=4$ and $D B=6$, which length of $\overline{A C}$ makes $\overline{C D} \perp \overline{A B}$?

1) $2 \sqrt{6}$
2) $2 \sqrt{10}$
3) $2 \sqrt{15}$
4) $4 \sqrt{2}$

660 Point P is on segment $A B$ such that $A P: P B$ is $4: 5$. If A has coordinates (4,2), and B has coordinates $(22,2)$, determine and state the coordinates of P.
\qquad

661 Segment $C D$ is the perpendicular bisector of $\overline{A B}$ at E. Which pair of segments does not have to be congruent?

1) $\overline{A D}, \overline{B D}$
2) $\overline{A C}, \overline{B C}$
3) $\overline{A E}, \overline{B E}$
4) $\overline{D E}, \overline{C E}$

662 The graph below shows $\overline{A B}$, which is a chord of circle O. The coordinates of the endpoints of $\overline{A B}$ are $A(3,3)$ and $B(3,-7)$. The distance from the midpoint of $\overline{A B}$ to the center of circle O is 2 units.

What could be a correct equation for circle O ?

1) $(x-1)^{2}+(y+2)^{2}=29$
2) $(x+5)^{2}+(y-2)^{2}=29$
3) $(x-1)^{2}+(y-2)^{2}=25$
4) $(x-5)^{2}+(y+2)^{2}=25$

663 The line $3 y=-2 x+8$ is transformed by a dilation centered at the origin. Which linear equation could be its image?

1) $2 x+3 y=5$
2) $2 x-3 y=5$
3) $3 x+2 y=5$
4) $3 x-2 y=5$

664 Triangle $A B C$ is graphed on the set of axes below. Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a reflection over the line $x=1$.

665 The grid below shows $\triangle A B C$ and $\triangle D E F$.

Let $\triangle A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$ after a rotation about point A. Determine and state the location of B^{\prime} if the location of point C^{\prime} is $(8,-3)$. Explain your answer. Is $\triangle D E F$ congruent to $\triangle A^{\prime} B^{\prime} C^{\prime}$? Explain your answer.
\qquad

666 In the diagram below, the circle shown has radius 10 . Angle B intercepts an arc with a length of 2π.

What is the measure of angle B, in radians?

1) $10+2 \pi$
2) 20π
3) $\frac{\pi}{5}$
4) $\frac{5}{\pi}$

667 Seawater contains approximately 1.2 ounces of salt per liter on average. How many gallons of seawater, to the nearest tenth of a gallon, would contain 1 pound of salt?

1) 3.3
2) 3.5
3) 4.7
4) 13.3

668 Lines $A E$ and $B D$ are tangent to circles O and P at A, E, B, and D, as shown in the diagram below. If $A C: C E=5: 3$, and $B D=56$, determine and state the length of $\overline{C D}$.

669 In the diagram below, $\overline{C D}$ is the image of $\overline{A B}$ after a dilation of scale factor k with center E.

Which ratio is equal to the scale factor k of the dilation?

1) $\frac{E C}{E A}$
2) $\frac{B A}{E A}$
3) $\frac{E A}{B A}$
4) $\frac{E A}{E C}$

670 In $\triangle A B C$, where $\angle C$ is a right angle, $\cos A=\frac{\sqrt{21}}{5}$. What is $\sin B$?

1) $\frac{\sqrt{21}}{5}$
2) $\frac{\sqrt{21}}{2}$
3) $\frac{2}{5}$
4) $\frac{5}{\sqrt{21}}$

Geometry Regents Exam Questions at Random Worksheet \#136 NAME: \qquad www.jmap.org

671 Given the theorem, "The sum of the measures of the interior angles of a triangle is 180°," complete the proof for this theorem.

Given: $\triangle A B C$
Prove: $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$
Fill in the missing reasons below.

Statements	Reasons
(1) $\triangle A B C$ (2) Through point C, draw $\overleftrightarrow{D C E}$ parallel to $\overline{A B}$.	(2) Given
(2)	
(3) $\mathrm{m} \angle 1=\mathrm{m} \angle A C D, \mathrm{~m} \angle 3=\mathrm{m} \angle B C E$	(3)
(4) $\mathrm{m} \angle A C D+\mathrm{m} \angle 2+\mathrm{m} \angle B C E=180^{\circ}$	(4)

\qquad

672 Line segment $E A$ is the perpendicular bisector of $\overline{Z T}$, and $\overline{Z E}$ and $\overline{T E}$ are drawn.

Which conclusion can not be proven?

1) $\overline{E A}$ bisects angle $Z E T$.
2) Triangle $E Z T$ is equilateral.
3) $\overline{E A}$ is a median of triangle $E Z T$.
4) Angle Z is congruent to angle T.

673 In the diagram below, $\triangle E R M \sim \triangle J T M$.

Which statement is always true?

1) $\cos J=\frac{R M}{R E}$
2) $\cos R=\frac{J M}{J T}$
3) $\tan T=\frac{R M}{E M}$
4) $\tan E=\frac{T M}{J M}$

674 In the diagram of $\triangle L A C$ and $\triangle D N C$ below, $\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$.

a) Prove that $\triangle L A C \cong \triangle D N C$.
b) Describe a sequence of rigid motions that will map $\triangle L A C$ onto $\triangle D N C$.

675 A flagpole casts a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim's shadow meets the end of the flagpole's shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the nearest tenth of a meter.

676 Point P is on the directed line segment from point $X(-6,-2)$ to point $Y(6,7)$ and divides the segment in the ratio 1:5. What are the coordinates of point P ?

1) $\left(4,5 \frac{1}{2}\right)$
2) $\left(-\frac{1}{2},-4\right)$
3) $\left(-4 \frac{1}{2}, 0\right)$
4) $\left(-4,-\frac{1}{2}\right)$
\qquad

Given: Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E

Prove: $\triangle A E D \cong \triangle C E B$
Describe a single rigid motion that maps $\triangle A E D$ onto $\triangle C E B$.

678
The coordinates of the vertices of $\triangle R S T$ are $R(-2,-3), S(8,2)$, and $T(4,5)$. Which type of triangle is $\triangle R S T$?

1) right
2) acute
3) obtuse
4) equiangular

679 Given: Circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E

Theorem: If two chords intersect in a circle, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. Prove this theorem by proving $A E \cdot E B=C E \cdot E D$.

680 The endpoints of one side of a regular pentagon are $(-1,4)$ and $(2,3)$. What is the perimeter of the pentagon?

1) $\sqrt{10}$
2) $5 \sqrt{10}$
3) $5 \sqrt{2}$
4) $25 \sqrt{2}$

681 The ratio of similarity of $\triangle B O Y$ to $\triangle G R L$ is $1: 2$. If $B O=x+3$ and $G R=3 x-1$, then the length of $\overline{G R}$ is

1) 5
2) 7
3) 10
4) 20

682 The equation of line h is $2 x+y=1$. Line m is the image of line h after a dilation of scale factor 4 with respect to the origin. What is the equation of the line m ?

1) $y=-2 x+1$
2) $y=-2 x+4$
3) $y=2 x+4$
4) $y=2 x+1$

683 A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?

1) 1,632
2) 408
3) 102
4) 92
\qquad

684 A contractor needs to purchase 500 bricks. The dimensions of each brick are 5.1 cm by 10.2 cm by 20.3 cm , and the density of each brick is $1920 \mathrm{~kg} / \mathrm{m}^{3}$. The maximum capacity of the contractor's trailer is 900 kg . Can the trailer hold the weight of 500 bricks? Justify your answer.

685 In the diagram below, $\triangle A B C$ and $\triangle X Y Z$ are graphed.

Use the properties of rigid motions to explain why $\triangle A B C \cong \triangle X Y Z$.

686 In $\triangle C E D$ as shown below, points A and B are located on sides $\overline{C E}$ and $\overline{E D}$, respectively. Line segment $A B$ is drawn such that $A E=3.75, A C=5$, $E B=4.5$, and $B D=6$.

Explain why $\overline{A B}$ is parallel to $\overline{C D}$.

687 William is drawing pictures of cross sections of the right circular cone below.

Which drawing can not be a cross section of a cone?
1)

2)

3)

4)

688 In parallelogram $A B C D$ shown below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

Prove: $\angle A C D \cong \angle C A B$
\qquad

689 In scalene triangle $A B C$ shown in the diagram below, $\mathrm{m} \angle C=90^{\circ}$.

Which equation is always true?

1) $\sin A=\sin B$
2) $\cos A=\cos B$
3) $\cos A=\sin C$
4) $\sin A=\cos B$

690 In the diagram below, quadrilateral $A B C D$ is inscribed in circle P.

What is $\mathrm{m} \angle A D C$?

1) 70°
2) 72°
3) 108°
4) 110°

691 A line that passes through the points whose coordinates are $(1,1)$ and $(5,7)$ is dilated by a scale factor of 3 and centered at the origin. The image of the line

1) is perpendicular to the original line
2) is parallel to the original line
3) passes through the origin
4) is the original line

692 As shown in the diagram below, $\overline{A B}$ and $\overline{C D}$ intersect at E, and $\overline{A C} \| \overline{B D}$.

Given $\triangle A E C \sim \triangle B E D$, which equation is true?

1) $\frac{C E}{D E}=\frac{E B}{E A}$
2) $\frac{A E}{B E}=\frac{A C}{B D}$
3) $\frac{E C}{A E}=\frac{B E}{E D}$
4) $\frac{E D}{E C}=\frac{A C}{B D}$

693 In the diagram below, a window of a house is 15 feet above the ground. A ladder is placed against the house with its base at an angle of 75° with the ground. Determine and state the length of the ladder to the nearest tenth of a foot.

\qquad www.jmap.org

694 A wooden cube has an edge length of 6 centimeters and a mass of 137.8 grams. Determine the density of the cube, to the nearest thousandth. State which type of wood the cube is made of, using the density table below.

Type of Wood	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Pine	0.373
Hemlock	0.431
Elm	0.554
Birch	0.601
Ash	0.638
Maple	0.676
Oak	0.711

695 In the diagram below, $\triangle A B C$ has vertices $A(4,5)$, $B(2,1)$, and $C(7,3)$.

What is the slope of the altitude drawn from A to $\overline{B C}$?

1) $\frac{2}{5}$
2) $\frac{3}{2}$
3) $-\frac{1}{2}$
4) $-\frac{5}{2}$

696 In circle O, diameter $\overline{A B}$, chord $\overline{B C}$, and radius $\overline{O C}$ are drawn, and the measure of arc $B C$ is 108°.

Some students wrote these formulas to find the area of sector $C O B$:

Amy $\frac{3}{10} \cdot \pi \cdot(B C)^{2}$
Beth $\frac{108}{360} \cdot \pi \cdot(O C)^{2}$
Carl $\frac{3}{10} \cdot \pi \cdot\left(\frac{1}{2} A B\right)^{2}$
Dex $\frac{108}{360} \cdot \pi \cdot \frac{1}{2}(A B)^{2}$
Which students wrote correct formulas?

1) Amy and Dex
2) Beth and Carl
3) Carl and Amy
4) Dex and Beth
\qquad

697
Given: $\triangle A B E$ and $\triangle C B D$ shown in the diagram below with $\overline{D B} \cong \overline{B E}$

Which statement is needed to prove
$\triangle A B E \cong \triangle C B D$ using only SAS \cong SAS?

1) $\angle C D B \cong \angle A E B$
2) $\angle A F D \cong \angle E F C$
3) $\overline{A D} \cong \overline{C E}$
4) $\overline{A E} \cong \overline{C D}$

698 Find the value of R that will make the equation $\sin 73^{\circ}=\cos R$ true when $0^{\circ}<R<90^{\circ}$. Explain your answer.

699 Prove the sum of the exterior angles of a triangle is 360°.

The cross section of a regular pyramid contains the altitude of the pyramid. The shape of this cross section is a

1) circle
2) square
3) triangle
4) rectangle

701 Line ℓ is mapped onto line m by a dilation centered at the origin with a scale factor of 2 . The equation of line ℓ is $3 x-y=4$. Determine and state an equation for line m.

702 In the coordinate plane, the vertices of $\triangle R S T$ are $R(6,-1), S(1,-4)$, and $T(-5,6)$. Prove that $\triangle R S T$ is a right triangle. State the coordinates of point P such that quadrilateral $R S T P$ is a rectangle. Prove that your quadrilateral RSTP is a rectangle. [The use of the set of axes below is optional.]

703 The diagonals of rhombus TEAM intersect at $P(2,1)$. If the equation of the line that contains diagonal $\overline{T A}$ is $y=-x+3$, what is the equation of a line that contains diagonal $E M$?

1) $y=x-1$
2) $y=x-3$
3) $y=-x-1$
4) $y=-x-3$
\qquad

704 Molly wishes to make a lawn ornament in the form of a solid sphere. The clay being used to make the sphere weighs .075 pound per cubic inch. If the sphere's radius is 4 inches, what is the weight of the sphere, to the nearest pound?

1) 34
2) 20
3) 15
4) 4

As shown in the diagram below, circle A has a radius of 3 and circle B has a radius of 5 .

Use transformations to explain why circles A and B are similar.

706 As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 60 -foot-tall screen is 12 feet off the ground. The projector sits on the ground at a horizontal distance of 75 feet from the screen.

Determine and state, to the nearest tenth of a degree, the measure of θ, the projection angle.

707 The coordinates of the endpoints of $\overline{A B}$ are $A(-6,-5)$ and $B(4,0)$. Point P is on $\overline{A B}$. Determine and state the coordinates of point P, such that $A P: P B$ is $2: 3$. [The use of the set of axes below is optional.]

708 In the diagram below, $\triangle A B C \sim \triangle D E F$.

If $A B=6$ and $A C=8$, which statement will justify similarity by SAS?

1) $D E=9, D F=12$, and $\angle A \cong \angle D$
2) $D E=8, D F=10$, and $\angle A \cong \angle D$
3) $D E=36, D F=64$, and $\angle C \cong \angle F$
4) $D E=15, D F=20$, and $\angle C \cong \angle F$

709 A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself.
\qquad

710 In the diagram below, $\mathrm{m} \angle B D C=100^{\circ}$, $\mathrm{m} \angle A=50^{\circ}$, and $\mathrm{m} \angle D B C=30^{\circ}$.

Which statement is true?

1) $\triangle A B D$ is obtuse.
2) $\triangle A B C$ is isosceles.
3) $\mathrm{m} \angle A B D=80^{\circ}$
4) $\triangle A B D$ is scalene.

711 A man who is 5 feet 9 inches tall casts a shadow of 8 feet 6 inches. Assuming that the man is standing perpendicular to the ground, what is the angle of elevation from the end of the shadow to the top of the man's head, to the nearest tenth of a degree?

1) 34.1
2) 34.5
3) 42.6
4) 55.9

712 The center of circle Q has coordinates (3,-2). If circle Q passes through $R(7,1)$, what is the length of its diameter?

1) 50
2) 25
3) 10
4) 5

713 The equation of a circle is $x^{2}+y^{2}+6 y=7$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(0,3)$ and radius 4
2) center $(0,-3)$ and radius 4
3) center $(0,3)$ and radius 16
4) center $(0,-3)$ and radius 16

714 In triangle $C H R, O$ is on $\overline{H R}$, and D is on $\overline{C R}$ so that $\angle H \cong \angle R D O$.

If $\underline{R D}=4, R O=6$, and $O H=4$, what is the length of $\overline{C D}$?

1) $2 \frac{2}{3}$
2) $6 \frac{2}{3}$
3) 11
4) 15

715 Which transformation of $\overline{O A}$ would result in an image parallel to $\overline{O A}$?

1) a translation of two units down
2) a reflection over the x-axis
3) a reflection over the y-axis
4) a clockwise rotation of 90° about the origin

716 Two right triangles must be congruent if

1) an acute angle in each triangle is congruent
2) the lengths of the hypotenuses are equal
3) the corresponding legs are congruent
4) the areas are equal
\qquad

717 In right triangle $A B C$ with the right angle at C, $\sin A=2 x+0.1$ and $\cos B=4 x-0.7$. Determine and state the value of x. Explain your answer.

718 In the diagram below, $\triangle A B C \sim \triangle D E C$.

If $A C=12, D C=7, D E=5$, and the perimeter of $\triangle A B C$ is 30 , what is the perimeter of $\triangle D E C$?

1) 12.5
2) 14.0
3) 14.8
4) 17.5

719 A carpenter leans an extension ladder against a house to reach the bottom of a window 30 feet above the ground. As shown in the diagram below, the ladder makes a 70° angle with the ground. To the nearest foot, determine and state the length of the ladder.

720 Given: $\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ Prove that $\angle Y W Z$ is a right angle.

721 Kevin's work for deriving the equation of a circle is shown below.

$$
x^{2}+4 x=-\left(y^{2}-20\right)
$$

STEP $1 \quad x^{2}+4 x=-y^{2}+20$
STEP $2 x^{2}+4 x+4=-y^{2}+20-4$
STEP $3(x+2)^{2}=-y^{2}+20-4$
STEP $4(x+2)^{2}+y^{2}=16$
In which step did he make an error in his work?

1) Step 1
2) Step 2
3) Step 3
4) $\operatorname{Step} 4$

722 In the diagram below of circle $O, \overline{O B}$ and $\overline{O C}$ are radii, and chords $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are drawn.

Which statement must always be true?

1) $\angle B A C \cong \angle B O C$
2) $\mathrm{m} \angle B A C=\frac{1}{2} \mathrm{~m} \angle B O C$
3) $\triangle B A C$ and $\triangle B O C$ are isosceles.
4) The area of $\triangle B A C$ is twice the area of $\triangle B O C$.
\qquad

723 In circle O shown below, diameter $\overline{A C}$ is perpendicular to $\overline{C D}$ at point C, and chords $\overline{A B}$, $\overline{B C}, \overline{A E}$, and $\overline{C E}$ are drawn.

Which statement is not always true?

1) $\angle A C B \cong \angle B C D$
2) $\angle A B C \cong \angle A C D$
3) $\angle B A C \cong \angle D C B$
4) $\angle C B A \cong \angle A E C$

724 Triangle RST is graphed on the set of axes below.

How many square units are in the area of $\triangle R S T$?

1) $9 \sqrt{3}+15$
2) $9 \sqrt{5}+15$
3) 45
4) 90

725 A ladder leans against a building. The top of the ladder touches the building 10 feet above the ground. The foot of the ladder is 4 feet from the building. Find, to the nearest degree, the angle that the ladder makes with the level ground.

726 The water tower in the picture below is modeled by the two-dimensional figure beside it. The water tower is composed of a hemisphere, a cylinder, and a cone. Let C be the center of the hemisphere and let D be the center of the base of the cone.

If $A C=8.5$ feet, $B F=25$ feet, and $\mathrm{m} \angle E F D=47^{\circ}$, determine and state, to the nearest cubic foot, the volume of the water tower. The water tower was constructed to hold a maximum of 400,000 pounds of water. If water weighs 62.4 pounds per cubic foot, can the water tower be filled to 85% of its volume and not exceed the weight limit? Justify your answer.

727 In the diagram below, $\triangle A B C \sim \triangle A D E$.

Which measurements are justified by this similarity?

1) $A D=3, A B=6, A E=4$, and $A C=12$
2) $A D=5, A B=8, A E=7$, and $A C=10$
3) $A D=3, A B=9, A E=5$, and $A C=10$
4) $A D=2, A B=6, A E=5$, and $A C=15$
\qquad

728 In the diagram shown below, $\overline{A C}$ is tangent to circle O at A and to circle P at $C, \overline{O P}$ intersects $\overline{A C}$ at $B, O A=4, A B=5$, and $P C=10$.

What is the length of $\overline{B C}$?

1) 6.4
2) 8
3) 12.5
4) 16

729 In the diagram below, $\triangle D E F$ is the image of $\triangle A B C$ after a clockwise rotation of 180° and a dilation where $A B=3, B C=5.5, A C=4.5$, $D E=6, F D=9$, and $E F=11$.

Which relationship must always be true?

1) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=\frac{1}{2}$
2) $\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}=\frac{2}{1}$
3) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle C}=\frac{\mathrm{m} \angle F}{\mathrm{~m} \angle D}$
4) $\frac{\mathrm{m} \angle B}{\mathrm{~m} \angle E}=\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}$

730 Which statement is sufficient evidence that $\triangle D E F$ is congruent to $\triangle A B C$?

1) $A B=D E$ and $B C=E F$
2) $\angle D \cong \angle A, \angle B \cong \angle E, \angle C \cong \angle F$
3) There is a sequence of rigid motions that maps $\overline{A B}$ onto $\overline{D E}, \overline{B C}$ onto $\overline{E F}$, and $\overline{A C}$ onto $\overline{D F}$.
4) There is a sequence of rigid motions that maps point A onto point $D, \overline{A B}$ onto $\overline{D E}$, and $\angle B$ onto $\angle E$.

731 The coordinates of vertices A and B of $\triangle A B C$ are $A(3,4)$ and $B(3,12)$. If the area of $\triangle A B C$ is 24 square units, what could be the coordinates of point C?

1) $(3,6)$
2) $(8,-3)$
3) $(-3,8)$
4) $(6,3)$

732 A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?

1) The area of the image is nine times the area of the original triangle.
2) The perimeter of the image is nine times the perimeter of the original triangle.
3) The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
4) The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.
\qquad

733 In the diagram below, triangles $X Y Z$ and $U V Z$ are drawn such that $\angle X \cong \angle U$ and $\angle X Z Y \cong \angle U Z V$.

Describe a sequence of similarity transformations that shows $\triangle X Y Z$ is similar to $\triangle U V Z$.

734 A sequence of transformations maps rectangle $A B C D$ onto rectangle $A " B " C$ " D ", as shown in the diagram below.

Which sequence of transformations maps $A B C D$ onto $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and then maps $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ onto A"B"C"D"?

1) a reflection followed by a rotation
2) a reflection followed by a translation
3) a translation followed by a rotation
4) a translation followed by a reflection

735 Which expression is always equivalent to $\sin x$ when $0^{\circ}<x<90^{\circ}$?

1) $\cos \left(90^{\circ}-x\right)$
2) $\cos \left(45^{\circ}-x\right)$
3) $\cos (2 x)$
4) $\cos x$

736 In the diagram of circle A shown below, chords $\overline{C D}$ and $\overline{E F}$ intersect at G, and chords $\overline{C E}$ and $\overline{F D}$ are drawn.

Which statement is not always true?

1) $\overline{C G} \cong \overline{F G}$
2) $\angle C E G \cong \angle F D G$
3) $\frac{C E}{E G}=\frac{F D}{D G}$
4) $\triangle C E G \sim \triangle F D G$

737 The diagram below shows parallelogram $L M N O$ with diagonal $\overline{L N}, \mathrm{~m} \angle M=118^{\circ}$, and $\mathrm{m} \angle L N O=22^{\circ}$.

Explain why $\mathrm{m} \angle N L O$ is 40 degrees.
\qquad

738 In the diagram below, $A B C D$ is a parallelogram, $\overline{A B}$ is extended through B to E, and $\overline{C E}$ is drawn.

If $\overline{C E} \cong \overline{B E}$ and $\mathrm{m} \angle D=112^{\circ}$, what is $\mathrm{m} \angle E$?

1) 44°
2) 56°
3) 68°
4) 112°

739 Triangle $A B C$ and triangle $D E F$ are graphed on the set of axes below.

Which sequence of transformations maps triangle $A B C$ onto triangle $D E F$?

1) a reflection over the x-axis followed by a reflection over the y-axis
2) a 180° rotation about the origin followed by a reflection over the line $y=x$
3) a 90° clockwise rotation about the origin followed by a reflection over the y-axis
4) a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

740 In the diagram below, $\overline{B C}$ is the diameter of circle A.

Point D, which is unique from points B and C, is plotted on circle A. Which statement must always be true?

1) $\triangle B C D$ is a right triangle.
2) $\triangle B C D$ is an isosceles triangle.
3) $\triangle B A D$ and $\triangle C B D$ are similar triangles.
4) $\triangle B A D$ and $\triangle C A D$ are congruent triangles.

741 In $\triangle R S T$ shown below, altitude $\overline{S U}$ is drawn to $\overline{R T}$ at U.

If $S U=h, U T=12$, and $R T=42$, which value of h will make $\triangle R S T$ a right triangle with $\angle R S T$ as a right angle?

1) $6 \sqrt{3}$
2) $6 \sqrt{10}$
3) $6 \sqrt{14}$
4) $6 \sqrt{35}$
\qquad

742 Directed line segment $P T$ has endpoints whose coordinates are $P(-2,1)$ and $T(4,7)$. Determine the coordinates of point J that divides the segment in the ratio 2 to 1 . [The use of the set of axes below is optional.]

743 In the diagram below, $\overline{A C} \cong \overline{D F}$ and points A, C, D, and F are collinear on line ℓ.

Let $\triangle D^{\prime} E^{\prime} F^{\prime}$ be the image of $\triangle D E F$ after a translation along ℓ, such that point D is mapped onto point A. Determine and state the location of F^{\prime}. Explain your answer. Let $\triangle D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ be the image of $\triangle D^{\prime} E^{\prime} F^{\prime}$ after a reflection across line ℓ. Suppose that $E^{\prime \prime}$ is located at B. Is $\triangle D E F$ congruent to $\triangle A B C$? Explain your answer.

744 Using a straightedge and compass, construct a square inscribed in circle O below. [Leave all construction marks.]

Determine the measure of the arc intercepted by two adjacent sides of the constructed square. Explain your reasoning.

745 Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?

1) $(x, y) \rightarrow(y, x)$
2) $(x, y) \rightarrow(x,-y)$
3) $(x, y) \rightarrow(4 x, 4 y)$
4) $(x, y) \rightarrow(x+2, y-5)$

746 Line $y=3 x-1$ is transformed by a dilation with a scale factor of 2 and centered at $(3,8)$. The line's image is

1) $y=3 x-8$
2) $y=3 x-4$
3) $y=3 x-2$
4) $y=3 x-1$
\qquad

747 Triangles $A B C$ and $D E F$ are drawn below.

If $A B=9, B C=15, D E=6, E F=10$, and $\angle B \cong \angle E$, which statement is true?

1) $\angle C A B \cong \angle D E F$
2) $\frac{A B}{C B}=\frac{F E}{D E}$
3) $\triangle A B C \sim \triangle D E F$
4) $\frac{A B}{D E}=\frac{F E}{C B}$

748 Quadrilateral $A B C D$ is graphed on the set of axes below.

When $A B C D$ is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?

1) no and $C^{\prime}(1,2)$
2) no and $D^{\prime}(2,4)$
3) yes and $A^{\prime}(6,2)$
4) yes and $B^{\prime}(-3,4)$

749 In the diagram of parallelogram FRED shown below, $\overline{E D}$ is extended to A, and $\overline{A F}$ is drawn such that $\overline{A F} \cong \overline{D F}$.

If $\mathrm{m} \angle R=124^{\circ}$, what is $\mathrm{m} \angle A F D$?

1) 124°
2) 112°
3) 68°
4) 56°

750 In the diagram below, $\overline{D B}$ and $\overline{A F}$ intersect at point C, and $\overline{A D}$ and $\overline{F B E}$ are drawn.

If $A C=6, D C=4, F C=15, \mathrm{~m} \angle D=65^{\circ}$, and $\mathrm{m} \angle C B E=115^{\circ}$, what is the length of $\overline{C B}$?

1) 10
2) 12
3) 17
4) 22.5
\qquad

751 If an equilateral triangle is continuously rotated around one of its medians, which 3-dimensional object is generated?

1) cone
2) pyramid
3) prism
4) sphere

752 Which transformation would not always produce an image that would be congruent to the original figure?

1) translation
2) dilation
3) rotation
4) reflection

753 A company is creating an object from a wooden cube with an edge length of 8.5 cm . A right circular cone with a diameter of 8 cm and an altitude of 8 cm will be cut out of the cube. Which expression represents the volume of the remaining wood?

1) $(8.5)^{3}-\pi(8)^{2}(8)$
2) $(8.5)^{3}-\pi(4)^{2}(8)$
3) $(8.5)^{3}-\frac{1}{3} \pi(8)^{2}(8)$
4) $(8.5)^{3}-\frac{1}{3} \pi(4)^{2}(8)$

754 Given: Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ that bisect each other, and $\angle 1 \cong \angle 2$

Prove: $\triangle A C D$ is an isosceles triangle and $\triangle A E B$ is a right triangle

755 A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation?
1)

2)

3)
4)

756 Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?

1) octagon
2) decagon
3) hexagon
4) pentagon
\qquad www.jmap.org

757 Linda is designing a circular piece of stained glass with a diameter of 7 inches. She is going to sketch a square inside the circular region. To the nearest tenth of an inch, the largest possible length of a side of the square is

1) 3.5
2) 4.9
3) 5.0
4) 6.9

Triangle $X Y Z$ is shown below. Using a compass and straightedge, on the line below, construct and label $\triangle A B C$, such that $\triangle A B C \cong \triangle X Y Z$. [Leave all construction marks.] Based on your construction, state the theorem that justifies why $\triangle A B C$ is congruent to $\triangle X Y Z$.

759 A water glass can be modeled by a truncated right cone (a cone which is cut parallel to its base) as shown below.

The diameter of the top of the glass is 3 inches, the diameter at the bottom of the glass is 2 inches, and the height of the glass is 5 inches. The base with a diameter of 2 inches must be parallel to the base with a diameter of 3 inches in order to find the height of the cone. Explain why. Determine and state, in inches, the height of the larger cone. Determine and state, to the nearest tenth of a cubic inch, the volume of the water glass.

760 In isosceles $\triangle M N P$, line segment $N O$ bisects vertex $\angle M N P$, as shown below. If $M P=16$, find the length of $\overline{M O}$ and explain your answer.

\qquad

761 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of the diagonal of the screen is the television's screen size. Determine and state, to the nearest inch, the screen size (diagonal) of this flat-screen television with a screen height of 20.6 inches.

762 As graphed on the set of axes below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a sequence of transformations.

Is $\triangle A^{\prime} B^{\prime} C^{\prime}$ congruent to $\triangle A B C$? Use the properties of rigid motion to explain your answer.

763 A 20-foot support post leans against a wall, making a 70° angle with the ground. To the nearest tenth of a foot, how far up the wall will the support post reach?

1) 6.8
2) 6.9
3) 18.7
4) 18.8

764 A hemispherical water tank has an inside diameter of 10 feet. If water has a density of 62.4 pounds per cubic foot, what is the weight of the water in a full tank, to the nearest pound?

1) 16,336
2) 32,673
3) 130,690
4) 261,381

765 In the diagram below, $\overline{D C}, \overline{A C}, \overline{D O B}, \overline{C B}$, and $\overline{A B}$ are chords of circle $O, F D E$ is tangent at point D, and radius $\overline{A O}$ is drawn. Sam decides to apply this theorem to the diagram: "An angle inscribed in a semi-circle is a right angle."

Which angle is Sam referring to?

1) $\angle A O B$
2) $\angle B A C$
3) $\angle D C B$
4) $\angle F D B$

766 Line segment $A^{\prime} B^{\prime}$, whose endpoints are $(4,-2)$ and $(16,14)$, is the image of $\overline{A B}$ after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of $\overline{A B}$?

1) 5
2) 10
3) 20
4) 40
\qquad

767 Use a compass and straightedge to construct an inscribed square in circle T shown below. [Leave all construction marks.]

In the diagram below, a square is graphed in the coordinate plane.

A reflection over which line does not carry the square onto itself?

1) $x=5$
2) $y=2$
3) $y=x$
4) $x+y=4$

769 In the diagram below of circle O, diameter $\overline{A B}$ and radii $\overline{O C}$ and $\overline{O D}$ are drawn. The length of $\overline{A B}$ is 12 and the measure of $\angle C O D$ is 20 degrees.

If $\overparen{A C} \cong \overparen{B D}$, find the area of sector $B O D$ in terms of π.

770 During an experiment, the same type of bacteria is grown in two petri dishes. Petri dish A has a diameter of 51 mm and has approximately 40,000 bacteria after 1 hour. Petri dish B has a diameter of 75 mm and has approximately 72,000 bacteria after 1 hour.

Determine and state which petri dish has the greater population density of bacteria at the end of the first hour.

Geometry Regents at Random Worksheets

Answer Section

1 ANS: $1 \quad$ PTS: 2
TOP: Chords, Secants and Tangents
2 ANS: 4

REF: 082320geo NAT: G.C.A. 2
KEY: secants drawn from common point, length

$\triangle B A C \sim \triangle Y A X$

PTS: 2 REF: 082324geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
3 ANS: 4
$-5+\frac{3}{4}(7--5)=-5+\frac{3}{4}(12)=-5+9=43+\frac{3}{4}(-5-3)=3+\frac{3}{4}(-8)=3-6=-3$

PTS: 2 REF: 082302geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
4 ANS:
$\frac{-2--4}{-3-4}=\frac{2}{-7} ; y-2=-\frac{2}{7}(x-3)$

PTS: 2 REF: 062331geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
5 ANS:
$\frac{80}{360} \cdot \pi(6.4)^{2} \approx 29$

PTS: 2 REF: 062328geo NAT: G.C.B. 5 TOP: Sectors
6 ANS:

PTS: 2
REF: 062325geo
NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines

7 ANS:
$\frac{4}{3} \pi \cdot(1)^{3}+\frac{4}{3} \pi \cdot(2)^{3} \frac{4}{3} \pi \cdot(3)^{3}=\frac{4}{3} \pi+\frac{32}{3} \pi+\frac{108}{3} \pi=48 \pi$
PTS: 2 REF: 062329geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres
8 ANS: 3
$3 \times 10 \times \frac{3}{12}=7.5 \mathrm{ft}^{3} \frac{7.5}{2}=3.754 \times 3.66=14.64$
PTS: 2 REF: 062311geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
9 ANS: 3
(1) and (2) are false as dilations preserve angle measure. (4) would be true if the scale factor was 2.

PTS: 2 REF: 082323geo NAT: G.SRT.A. 2 TOP: Dilations
10 ANS: 3

PTS: 2 REF: 062306geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
11 ANS:
Yes, because of SAS. $\quad \frac{A B}{A D}=\frac{A E}{A C}$

$$
\begin{aligned}
\frac{4.1}{3.42+5.6} & =\frac{5.6}{4.1+8.22} \\
50.512 & =50.512
\end{aligned}
$$

PTS: 2
REF: 012429geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic

12 ANS:

$$
\begin{array}{cc}
-5+\frac{2}{5}(5--5) & 1+\frac{2}{5}(6-1)(-1,3) \\
-5+\frac{2}{5}(10) & 1+\frac{2}{5}(5) \\
-5+4 & 1+2 \\
-1 & 3
\end{array}
$$

PTS: 2 REF: 062327geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
13 ANS: 1
$.5 \mathrm{ft}^{3} \times \frac{1728 \mathrm{in}^{3}}{1 \mathrm{ft}^{3}}=864 \mathrm{in}^{3} \frac{43 \mathrm{in} \times 30 \mathrm{in} \times 9 \mathrm{in}}{864 \mathrm{in}^{3}} \approx 13.4$
PTS: 2 REF: 012419geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
14 ANS: 4
$\left(\frac{-4+0}{2}, \frac{6+4}{2}\right) \rightarrow(-2,5) ; \frac{6-4}{-4-0}=\frac{2}{-4}=-\frac{1}{2} ; m_{\perp}=2 ; y-5=2(x+2)$

$$
\begin{aligned}
& y=2 x+4+5 \\
& y=2 x+9
\end{aligned}
$$

PTS: 2 REF: 062324geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector
15 ANS: 2 PTS: 2 REF: 012409geo NAT: G.SRT.A. 2
TOP: Dilations
16 ANS: 2
$19.9=\pi d \quad \frac{4}{3} \pi\left(\frac{19.9}{2 \pi}\right)^{3} \approx 133$
$\frac{19.9}{\pi}=d$
PTS: 2
REF: 012310geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres

17 ANS: 1

PTS: 2 REF: 082310geo NAT: G.CO.C. 10 TOP: Angle Side Relationship
18 ANS: 3
$2 \times \frac{40 \times 16}{33 \frac{1}{3}}=38.4$
PTS: 2 REF: 012404geo NAT: G.MG.A. 3 TOP: Area of Polygons
19 ANS: 2
$\frac{7.5}{3.5}=\frac{9.5}{x}$

$$
x \approx 4.4
$$

PTS: 2 REF: 012303geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
20 ANS: 4
PTS: 2
REF: 082301geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
21 ANS:
$m_{\overline{D U}}=\frac{9}{2} m_{\overline{U C}}=-\frac{2}{9}$ Since the slopes of $\overline{D U}$ and $\overline{U C}$ are opposite reciprocals, they are perpendicular and form a right angle. $\triangle D U C$ is a right triangle because $\angle D U C$ is a right angle. Each side of quadrilateral $D U C U^{\prime}$ is $\sqrt{9^{2}+2^{2}}=\sqrt{85}$. Quadrilateral $D U C U^{\prime}$ is a square because all four side are congruent and it has a right angle.

PTS: 6
22 ANS: 1
TOP: Medians, Altitudes and Bisectors

NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane REF: 012316geo NAT: G.CO.C. 10

23 ANS: 2
$x_{0}=\frac{k x_{1}-x_{2}}{k-1}=\frac{\frac{1}{3}(-4)-0}{\frac{1}{3}-1}=\frac{\frac{-4}{3}}{\frac{-2}{3}}=2 \quad y_{0}=\frac{k y_{1}-y_{2}}{k-1}=\frac{\frac{1}{3}(0)--2}{\frac{1}{3}-1}=\frac{2}{\frac{-2}{3}}=-3$

PTS: 2 REF: 062313geo NAT: G.SRT.A. 2 TOP: Dilations
24 ANS:
Nathan, because a line dilated through a point on the line results in the same line.
PTS: 2 REF: 082331geo NAT: G.SRT.A. 1 TOP: Line Dilations
25 ANS: 2 PTS: 2 REF: 062301geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
26 ANS: 3 PTS: 2 REF: 062310geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
27 ANS: 2
Since $\overline{A D} \| \overline{B C}, \overparen{A B} \cong \overparen{C D} . \mathrm{m} \angle A C B=\frac{1}{2} \mathrm{~m} \overparen{A B}$

$$
\mathrm{m} \angle C D F=\frac{1}{2} \mathrm{~m} \overparen{C D}
$$

PTS: 2
REF: 012323geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: chords and tangents
28
ANS: 1

$\triangle A D C \cong \triangle B D C$ by SAS
PTS: 2
REF: 082316geo
NAT: G.SRT.B. 5 TOP: Triangle Congruency
29 ANS: 2
PTS: 2
REF: 082322geo NAT: G.CO.A. 2
TOP: Identifying Transformations

30 ANS:

$$
\text { Rotate } 180^{\circ} \text { about }\left(-1, \frac{1}{2}\right) \text {. }
$$

PTS: 2
REF: 082325geo NAT: G.CO.A. 5
TOP: Compositions of Transformations
31 ANS:
$\tan 75=\frac{y}{85} \quad \tan 35=\frac{x}{85} \quad 317.2+59.5 \approx 377$
$y \approx 317.2 \quad h \approx 59.5$
PTS: 4 REF: 012432geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
32 ANS: 1
$\sin N=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{12}{20}$
PTS: 2 REF: 012307geo NAT: G.SRT.C. 6 TOP: Trigonometric Ratios
33 ANS: 2
$\frac{70}{360} \cdot 6^{2} \pi=7 \pi$
PTS: 2 REF: 082309geo NAT: G.C.B. 5 TOP: Sectors
34 ANS: 2
$x^{2}+2 x+1+y^{2}-16 y+64=-49+1+64$

$$
(x+1)^{2}+(y-8)^{2}=16
$$

PTS: 2 REF: 012314geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
35
ANS: 4
$x^{2}=3 \times 24$
$x=\sqrt{72}$
PTS: 2
REF: 012315geo NAT: G.SRT.B. 5 TOP: Similarity

36 ANS:

Quadrilateral $F A C T, \overline{B R}$ intersects diagonal $\overline{A T}$ at $E, \overline{A F} \| \overline{C T}$, and $\overline{A F} \cong \overline{C T}$
(Given); $F A C T$ is a parallelogram (A quadrilateral with one pair of opposite sides parallel and congruent is a parallelogram); $\overline{A C} \cong \overline{F T}$ (Opposite sides of a parallelogram are parallel); $\angle B A E \cong \angle R T E, \angle A B E \cong \angle T R E$ (Parallel lines cut by a transversal form alternate interior angles that are congruent); $\triangle A B E \sim \triangle T R E$ (AA);
$\frac{A B}{A E}=\frac{T R}{T E}$ (Corresponding sides of similar triangles are proportional); $(A B)(T E)=(A E)(T R)$ (Product of the means equals the product of the extremes).

PTS: 6 REF: 082335geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
37 ANS: 2
$\frac{100000 \mathrm{~g}}{7.48 \mathrm{~g} / \mathrm{ft}^{3}}=\pi\left(r^{2}\right)(30 \mathrm{ft})$
$11.92 \mathrm{ft} \approx r$
$23.8 \approx d$
PTS: 2 REF: 012424geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
38 ANS: 2
$\frac{136-x}{2}=44$
$136-x=88$
$48=x$
PTS: 2 REF: 012414geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, angle
39 ANS: 3
$5 x-10=4 x-44(6)-4=20$
$x=6$
PTS: 2 REF: 012408geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
40 ANS: 1
PTS: 2
REF: 062308geo NAT: G.CO.A. 5
TOP: Compositions of Transformations

41 ANS:
Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, diagonal $\overline{A C}$ intersects $\overline{E F}$ at G, and $\overline{D E} \cong \overline{B F}$ (given); $A B C D$ is a parallelogram (a quadrilateral with a pair of opposite sides \|is a parallelogram); $\overline{A D} \cong \overline{C B}$ (opposite side of a parallelogram are congruent); $\overline{A E} \cong \overline{C F}$ (subtraction postulate); $\overline{A D} \| \overline{C B}$ (opposite side of a parallelogram are parallel); $\angle E A G \cong \angle F C G$ (if parallel sides are cut by a transversal, the alternate interior angles are congruent); $\angle A G E \cong \angle C G F$ (vertical angles); $\triangle A E G \cong \triangle C F G$ (AAS); $\overline{E G} \cong \overline{F G}$ (CPCTC): G is the midpoint of $\overline{E F}$ (since G divides $\overline{E F}$ into two equal parts, G is the midpoint of $\overline{E F}$).

PTS: 6 REF: 062335geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
42 ANS:
$\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$ (given); $\angle A \cong \angle D$ (Alternate interior angles formed by parallel lines and a transversal are congruent); $\angle E B A \cong \angle F C D$ (Alternate exterior angles formed by parallel lines and a transversal are congruent); $\overline{B C} \cong \overline{B C}$ (reflexive); $\overline{A B} \cong \overline{C D}$ (segment subtraction); $\triangle E A B \cong \triangle F D C$ (ASA)

PTS: 4 REF: 012333geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: proof
43 ANS: 3 PTS: 2 REF: 062307geo NAT: G.SRT.B. 5
TOP: Side Splitter Theorem
44 ANS: 4
$\frac{360}{6}=60$ and 300 is a multiple of 60.
PTS: 2 REF: 082306geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
45 ANS: 4
$m_{\overline{A D}}=\frac{3-1}{-2-2}=\frac{2}{-4}=-\frac{1}{2} \quad$ A pair of opposite sides is parallel.
$m_{B C}=\frac{8-4}{-3-5}=\frac{4}{-8}=-\frac{1}{2}$
PTS: 2 REF: 082321geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
46 ANS: 1
$r=8$, forming an 8-15-17 triple. $V=\frac{1}{3} \pi(8)^{2} 15=320 \pi$
PTS: 2 REF: 082318geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones

47 ANS: 4

PTS: 2 REF: 012305geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles
48 ANS: 1
PTS: 2
TOP: Mapping a Polygon onto Itself
49 ANS: 1
2) 90°; 3) 360°; 4) 72°

PTS: 2 REF: 012311geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
50 ANS: 3 PTS: 2 REF: 012413geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
51 ANS: 4
$\cos 47=\frac{50}{x}$
$x \approx 73$
PTS: 2 REF: 012406geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
52 ANS: 3
$x^{2}+12 x+36+y^{2}=-27+36$
$(x+6)^{2}+y^{2}=9$
PTS: 2
REF: 082313geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
53 ANS: 1
$y=3 x+4, m=3, m_{\perp}=-\frac{1}{3}$
PTS: 2
REF: 012405geo
NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: identify perpendicular lines

54 ANS:

The slope of $\overline{M A}$ and $\overline{T H}$ equals $-\frac{1}{2}$. Distinct lines with equal slope are parallel. MATH is a trapezoid because it has a pair of parallel lines. (7,3). The slope of $\overline{M Y}$ and $\overline{T H}$ equals $-\frac{1}{2}$. The slope of $\overline{Y T}$ and $\overline{H M}$ equals 2 . The slopes of each side are opposite reciprocals and therefore perpendicular. Perpendicular sides form right angles, so MYTH has four right angles and is a rectangle.

PTS: 6
REF: 012435geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
55
ANS: 4
$2(x+13)=5 x-1 \quad M N=9+13=22$

$$
2 x+26=5 x-1
$$

$$
\begin{aligned}
27 & =3 x \\
x & =9
\end{aligned}
$$

PTS: 2 REF: 062322geo NAT: G.CO.C. 10 TOP: Midsegments
56
ANS:
$5 x-14=3 x+10$
$2 x=24$
$x=12$
PTS: 2
REF: 082326geo
NAT: G.SRT.B. 5 TOP: Isosceles Triangle Theorem

57 ANS:

$$
\begin{aligned}
& x=-2+\frac{3}{5}(8+2)=-2+6=4 \\
& y=5+\frac{3}{5}(-1-5)=\frac{25}{5}-\frac{18}{5}=\frac{7}{5}
\end{aligned}
$$

PTS: 2 REF: 012328geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
58 ANS: 3
PTS: 2
REF: 062302geo NAT: G.CO.B. 6
TOP: Properties of Transformations
KEY: graphics
59 ANS: 4

PTS: 2 REF: 012421geo NAT: G.CO.C. 9 TOP: Lines and Angles
60 ANS: 4
$5+\frac{2}{5}(-10-5)=5+\frac{2}{5}(-15)=5-6=-17+\frac{2}{5}(-8-7)=7+\frac{2}{5}(-15)=7-6=1$
PTS: 2 REF: 012410geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
61 ANS:
$\tan 53=\frac{f}{91}$

$$
f \approx 120.8
$$

PTS: 2 REF: 082327geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
62 ANS: 1
$\frac{36}{4}=9$
PTS: 2 REF: 012321geo NAT: G.CO.C. 10 TOP: Midsegments

63 ANS:

$$
\begin{aligned}
& \tan 15=\frac{x}{3280} ; \tan 31=\frac{y}{3280} ; 1970.8-878.9 \approx 1092 \\
& x \approx 878.9 \quad x \approx 1970.8
\end{aligned}
$$

PTS: 4 REF: 062332geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
64 PTS: 2 REF: 012420geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
65 ANS: 3

$$
\begin{aligned}
30+2 x & =180 \\
2 x & =150 \\
x & =75
\end{aligned}
$$

PTS: 2 REF: 082315geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
66 ANS: 4

$$
x^{2}+6 x+y^{2}-2 y=-1
$$

$x^{2}+6 x+9+y^{2}-2 y+1=-1+9+1$
$(x+3)^{2}+(y-1)^{2}=9$
PTS: 2
REF: 062309geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
67 ANS: 4
Another equation of line t is $y=3 x-6$. $-6 \bullet \frac{1}{2}=-3$
PTS: 2 REF: 012319geo NAT: G.SRT.A. 1 TOP: Line Dilations
68 ANS: 2 PTS: 2 REF: 012416geo NAT: G.SRT.A. 1
TOP: Line Dilations
69 ANS:
In quadrilateral $A B C D, \overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$, segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that
$\overline{B E} \cong \overline{D F}$ (Given); $\angle A B F \cong \angle C D E$ (Parallel lines cut by a transversal form congruent interior angles); $\overline{E F} \cong \overline{F E}$ (Reflexive); $\overline{B E}+\overline{E F} \cong \overline{D F}+\overline{F E}$ (Addition); $\triangle A F B \cong \triangle C E D$ (SAS); $\overline{C E} \cong \overline{A F}$ (CPCTC).

$$
\overline{B F} \cong \overline{D E}
$$

PTS: 4
REF: 012434geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs

70 ANS:
$h=\sqrt{16^{2}-\left(\frac{12}{2}\right)^{2}}=\sqrt{220} \quad V=\frac{1}{3}(12)^{2} \sqrt{220} \approx 712 \quad 712 \times 0.32 \approx 23$
PTS: 4 REF: 012433geo NAT: G.MG.A. 2 TOP: Density
71 ANS: 2
$24^{2}=4 x \cdot 9 x \quad 5 \cdot 4=20$
$576=36 x^{2}$
$16=x^{2}$
$4=x$
PTS: 2 REF: 012312geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: secant and tangent drawn from common point, length
72 ANS:
Since $\angle A B H$ is $100^{\circ}, \angle A H B$ is 40°. An isosceles triangle has two congruent angles. $\cos 80=\frac{x}{85}$

$$
x \approx 14.8
$$

$$
\begin{aligned}
\tan 40 & =\frac{y}{85+14.8} \\
y & \approx 84
\end{aligned}
$$

PTS: 4 REF: 012334geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
73 ANS: 3
$\cos x=\frac{8}{25}$
$x \approx 71$
PTS: 2 REF: 082303geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
74 ANS: 3 PTS: 2 REF: 012309geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
75 ANS: 2
$\frac{1}{3}(36)(10)(2.7)=324$
PTS: 2 REF: 082312geo NAT: G.MG.A. 2 TOP: Density
76 ANS:
$\pi(3.5)^{2}(9) \approx 346 ; \pi(4.5)^{2}(13) \approx 827 ; \frac{827}{346} \approx 2.4 ; 3$ cans
PTS: 4
REF: 062333geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders

77 ANS:
A rhombus has four congruent sides. Since each side measures $\sqrt{85}$, all four sides of MATH are congruent, and

MATH is a rhombus. $16 \times 8-(21+9+21+9)=68$
REF: 062334geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
78 ANS:
$x^{2}+16 x++64+y^{2}+12 y+36=44+64+36(-8,-6) ; r=12$

$$
(x+8)^{2}+(y+6)^{2}=144
$$

PTS: 2
REF: 012430geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
79 ANS: 4
$\sin 30=\frac{x}{75}$
$x=37.5$
PTS: 2 REF: 012411geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
80 ANS:
$4 x \cdot x=8^{2} 4+4(4)=20$

$$
\begin{aligned}
4 x^{2} & =64 \\
x^{2} & =16 \\
x & =4
\end{aligned}
$$

PTS: 2 REF: 082330geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
81 ANS: 3

1) $\left.\left.\left.\frac{360}{3}=120 ; 2\right) \frac{360}{6}=60 ; 3\right) \frac{360}{8}=45 ; 4\right) \frac{360}{9}=40.120$ is not a multiple of 45.

PTS: 2 REF: 062320geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
82 ANS: 3
(3) is AAS, which proves congruency. (1) is AAA, (2) is SSA and (4) is AS.

PTS: 2
REF: 012422geo
NAT: G.CO.B. 7 TOP: Triangle Congruency

83 ANS:
$\cos J=\frac{3}{5} \quad S \approx 90-53=37$

$$
J \approx 53
$$

PTS: 2 REF: 012431geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
84 ANS: 2
$V=\frac{1}{3} \pi \cdot(2.5)^{2} \cdot 7.2 \cong 47.1$
PTS: 2 REF: 062303geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
85 ANS:
Yes. $\triangle A B C$ and $\triangle D E F$ are both 5-12-13 triangles and therefore congruent by SSS. All congruent triangles are similar.

PTS: 2 REF: 012329geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: statements
86 ANS: 2
$24 \mathrm{ht}\left(\frac{0.75 \mathrm{in}^{3}}{\mathrm{ht}}\right)\left(\frac{0.323 \mathrm{lb}}{1 \mathrm{in}^{3}}\right)\left(\frac{\$ 3.68}{\mathrm{lb}}\right) \approx \$ 21.40$
PTS: 2 REF: 012306geo NAT: G.MG.A. 2 TOP: Density
87 ANS: 4 PTS: 2 REF: 062318geo NAT: G.CO.C. 9
TOP: Lines and Angles
88 ANS: 3
$90-30=60$
PTS: 2 REF: 012401geo NAT: G.SRT.C. 7 TOP: Cofunctions
89 ANS:
Mary. Sally: $V=\pi \cdot 2^{2} \cdot 8 \approx 100.5$ Mary: $V=\frac{1}{3} \pi \cdot 3.5^{2} \cdot 12.5 \approx 160.4 \quad 160.4-100.5 \approx 60$
PTS: 4 REF: 012332geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
90 ANS: 1 PTS: 2 REF: 062312geo NAT: G.SRT.C. 7
TOP: Cofunctions
91 ANS: 3
$V=\pi(8)^{2}(4-0.5)(7.48) \approx 5264$
PTS: 2
REF: 012320geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders

92 ANS: 4

$$
\begin{aligned}
\frac{x}{10} & =\frac{12}{8} \quad 15+10=25 \\
x & =15
\end{aligned}
$$

PTS: 2 REF: 082314geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
93 ANS: 2
$180-(180-42-42)$
PTS: 2 REF: 062317geo NAT: G.CO.C. 10 TOP: Exterior Angle Theorem
94 ANS: 4
A: $(-3-3,4-5) \rightarrow(-6,-1) \rightarrow(-12,-2) \rightarrow(-12+3,-2+5)$
B: $(5-3,2-5) \rightarrow(2,-3) \rightarrow(4,-6) \rightarrow(4+3,-6+5)$
PTS: 2 REF: 012322geo NAT: G.SRT.A. 1 TOP: Line Dilations
95 ANS:

PTS: 2 REF: 082329geo NAT: G.CO.D. 12 TOP: Constructions
KEY: line bisector
96 ANS: 2

PTS: 2
REF: 062314geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
97 ANS:
$\tan ^{-1}\left(\frac{4}{12}\right) \approx 18$
PTS: 2 REF: 012327geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
98 ANS: 2
$3 y=-6 x+3$
$y=-2 x+1$
PTS: 2 REF: 062319geo NAT: G.SRT.A. 1 TOP: Line Dilations
$\begin{array}{llll}99 & \text { ANS: } 1 & \text { PTS: } 2 & \text { REF: 012418geo } \\ \text { TOP: Similarity } & \text { KEY: altitude } & & \end{array}$
100 ANS: 1
$m_{A B}^{-}=\frac{-3-5}{-1-6}=\frac{-8}{-7}=\frac{8}{7}$

PTS: 2 REF: 062315geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
101 ANS: 3
$3-1=2$
$1-2=-1$
PTS: 2 REF: 082317geo NAT: G.CO.A. 5 TOP: Reflections
102 ANS:
Rotation of 90° counterclockwise about the origin.
PTS: 2 REF: 012428geo NAT: G.CO.A. 2 TOP: Identifying Transformations
103 ANS: 4 PTS: 2 REF: 062321geo NAT: G.SRT.B. 5
TOP: Side Splitter Theorem
104 ANS: 4 PTS: 2 REF: 012415geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
105 ANS: 3
The half diagonals have lengths of 6 and 8 , so each side of $A B C D$ is 10 .
PTS: 2 REF: 012417geo NAT: G.CO.C. 11 TOP: Parallelograms
106 ANS:
$\frac{1}{2}(5)(L)(4)=70$
$10 L=70$
$L=7$
PTS: 2 REF: 012330geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
107 ANS: 3
3) Could be an isosceles trapezoid.

PTS: 2 REF: 012318geo NAT: G.CO.C. 11 TOP: Parallelograms
108 ANS: 4

AA from diagram; SSS as the three corresponding sides are proportional; SAS as two corresponding sides are proportional and an angle is equal.

PTS: 2
REF: 012324geo
NAT: G.SRT.A. 3 TOP: Similarity Proofs

109 ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $\frac{3}{5}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: 012313geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: find slope of perpendicular line
110 ANS: 2
$\triangle A C B \sim \triangle A E D$
PTS: 2 REF: 012308geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
111 ANS:
$\frac{(3.5)^{2}(1.5)-(2)^{2}(1.5)}{.6} \approx 20.6 .21$ bags
PTS: 4 REF: 082332geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
112 ANS: 2 PTS: 2 REF: 082311geo NAT: G.SRT.C. 7
TOP: Cofunctions
113 ANS: 4
$\frac{140}{360} \cdot 9^{2} \pi=31.5 \pi$
PTS: 2 REF: 012317geo NAT: G.C.B. 5 TOP: Sectors
114 ANS: 1
$\cos S=\frac{12.3}{13.6}$

$$
S \approx 25^{\circ}
$$

PTS: 2 REF: 062304geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
115 ANS: 1
$V=\pi r^{2} h=\pi \cdot 5^{2} \cdot 8 \approx 200 \pi$
PTS: 2 REF: 082304geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
116 ANS: 1
The lengths of the sides of a triangle remain the same after all rotations and reflections because rotations and reflections are rigid motions which preserve distance.

PTS: 2 REF: 012301geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
117 ANS: 3 PTS: 2 REF: 012302geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects

118 ANS: 2
$7 \times 4-\frac{1}{2}((7)(1)+(3)(4)+(4)(3))=28-\frac{7}{2}-6-6=12.5$
PTS: 2 REF: 012407geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
119 ANS:

$$
6 \times 12-\frac{1}{2}(12 \times 3)-\frac{1}{2}(6 \times 6)-\frac{1}{2}(6 \times 3)=27
$$

PTS: 2 REF: 012331geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane 120 ANS: 1

PTS: 2
REF: 012423geo NAT: G.SRT.B. 5 TOP: Triangle Proofs KEY: statements
121 ANS:

PTS: 2
KEY: polygons
REF: 012427geo NAT: G.CO.D. 12 TOP: Constructions

122 ANS: 4
$\angle 6$ and $\angle 9$ are alternate interior angles; since congruent, $\ell \| m . \angle 9$ and $\angle 11$ are corresponding angles; since congruent, $n \| p$. Both pairs of opposite sides are parallel.

PTS: 2 REF: 082319geo NAT: G.CO.C. 11 TOP: Parallelograms
123 ANS:

$\overline{A D}$ and $\overline{B C}$ have equal slope, so are parallel. $\overline{A B}$ and $\overline{C D}$ have equal slope, so are parallel. Since both pairs of opposite sides are parallel, $A B C D$ is a parallelogram. The slope of $\overline{A B}$ and $\overline{B C}$ are not opposite reciprocals, so they are not perpendicular, and so $\angle B$ is not a right angle. $A B C D$ is not a rectangle since all four angles are not right angles.

PTS: 4 REF: 082334geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
124 ANS:
$\frac{5 \pi(2)^{2}+5(6)(4)}{25} \approx 7.38 \mathrm{cans}$
PTS: 2 REF: 082328geo NAT: G.MG.A. 3 TOP: Compositions of Polygons and Circles KEY: area
125 ANS: 4
$\sin 18=\frac{8}{x}$

$$
x \approx 25.9
$$

PTS: 2 REF: 062316geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
126 ANS: 2

$$
\frac{10}{x}=\frac{8}{6}
$$

$$
8 x=60
$$

$$
x=7.5
$$

PTS: 2
REF: 012402geo
NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
127 ANS: 2
PTS: 2
REF: 082305geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals

128 ANS: 2

PTS: 2
REF: 062305geo NAT: G.C.A. 2
KEY: inscribed
129
ANS:
$T_{4,-4}$, followed by a 90° clockwise rotation about point D.
PTS: 2
ANS: 2
$m=\frac{-4}{-5}=\frac{4}{5}$
$m_{\perp}=-\frac{5}{4}$

PTS: 2
REF: 082308geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line
131 ANS:
$\frac{102}{360}(\pi)\left(38^{2}\right) \approx 1285$
PTS: 2
REF: 012426geo
NAT: G.C.B. 5
TOP: Sectors
132
$6^{2}=2(x+2) ; 16+2=18$
$36=2 x+4$
$32=2 x$
$16=x$
PTS: 2
REF: 062330geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
133 ANS: 1
$6^{2}=4 x$
$x=9$
PTS: 2
REF: 012412geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
134
ANS: 3
PTS: 2
REF: 082307geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects

135 ANS:
$\sin 65=\frac{7.7}{x} \cdot \tan 65=\frac{7.7}{y}$
$x \approx 8.5 \quad y \approx 3.6$
PTS: 4 REF: 082333geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side 136 ANS: 1 PTS: 2 REF: 012304geo NAT: G.SRT.C. 7

TOP: Cofunctions
137 ANS:
Rotate 90° clockwise about B and translate down 4 and right 3 .
PTS: 2 REF: 012326geo NAT: G.CO.A. 5 TOP: Compositions of Transformations KEY: identify
138 ANS:
$\frac{1}{3} \pi \times 5^{2} \times 12=100 \pi \approx 314$
PTS: 2 REF: 012425geo NAT: G.GMD.B. 4 TOP: Rotations of Two-Dimensional Objects

Geometry Regents at Random Worksheets

Answer Section

139 ANS:

PTS: 2 REF: 012029geo NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines
140 ANS: 4
The line $y=\frac{3}{2} x-4$ does not pass through the center of dilation, so the dilated line will be distinct from $y=\frac{3}{2} x-4$. Since a dilation preserves parallelism, the line $y=\frac{3}{2} x-4$ and its image will be parallel, with slopes of $\frac{3}{2}$. To obtain the y-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{4}$, can be applied to the y-intercept, ($0,-4$). Therefore, $\left(0 \cdot \frac{3}{4},-4 \cdot \frac{3}{4}\right) \rightarrow(0,-3)$. So the equation of the dilated line is $y=\frac{3}{2} x-3$.

PTS: 2 REF: 011924geo NAT: G.SRT.A. 1 TOP: Line Dilations
ANS: 4 PTS: 2 REF: 081911geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
142 ANS:
$R_{(-5,2), 90^{\circ}} \circ T_{-3,1} \circ r_{\mathrm{x}-\mathrm{xxis}}$
PTS: 2 REF: 011928geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
143
ANS: 3
PTS: 2
REF: 061924geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
144
ANS: 3
$\frac{10}{x}=\frac{15}{12}$
$x=8$
PTS: 2 REF: 081918geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem

145 ANS: 4

PTS: 2
REF: 061908geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: statements
146
ANS: 3
$8 \cdot 15=16 \cdot 7.5$
PTS: 2
REF: 061913geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: intersecting chords, length
ANS:
$\sqrt{(-2--7)^{2}+(4--1)^{2}}=\sqrt{(-2--3)^{2}+(4--3)^{2}}$ Since $\overline{A B}$ and $\overline{A C}$ are congruent, $\triangle A B C$ is isosceles.

$$
\sqrt{50}=\sqrt{50}
$$

$A^{\prime}(3,-1), B^{\prime}(-2,-6), C^{\prime}(2,-8) . A C=\sqrt{50} A A^{\prime}=\sqrt{(-2-3)^{2}+(4--1)^{2}}, A^{\prime} C^{\prime}=\sqrt{50}$ (translation preserves

$$
=\sqrt{50}
$$

distance), $C C^{\prime}=\sqrt{(-3-2)^{2}+(-3--8)^{2}}$ Since all four sides are congruent, $A A^{\prime} C^{\prime} C$ is a rhombus.

PTS: 6 REF: 062235geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
148 ANS:
$T_{0,5}{ }^{\circ} r_{\text {y-xis }}$
PTS: 2 REF: 082225geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
ANS: 4
$\left(\frac{360-120}{360}\right)(\pi)\left(9^{2}\right)=54 \pi$
PTS: 2 REF: 081912geo NAT: G.C.B. 5 TOP: Sectors

150 ANS: 4 PTS: 2
REF: 061904geo NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
151 ANS:
$30^{\circ} \triangle C A D$ is an equilateral triangle, so $\angle C A B=60^{\circ}$. Since $\overrightarrow{A D}$ is an angle bisector, $\angle C A D=30^{\circ}$.
PTS: 2 REF: 081929geo NAT: G.CO.D. 12 TOP: Constructions
KEY: polygons
152 ANS: 1 PTS: 2 REF: 082209geo NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
153 ANS:
$\angle D=46^{\circ}$ because the angles of a triangle equal $180^{\circ} . \angle B=46^{\circ}$ because opposite angles of a parallelogram are congruent.

PTS: 2 REF: 081925geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
154 ANS:
$\cos 68=\frac{10}{x}$
$x \approx 27$
PTS: 2 REF: 061927geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
155 ANS: 3 PTS: 2 REF: 011911geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
156 ANS: 1
A dilation by a scale factor of 4 centered at the origin preserves parallelism and $(0,-2) \rightarrow(0,-8)$.
PTS: 2 REF: 081910geo NAT: G.SRT.A. 1 TOP: Line Dilations
157 ANS: 4
$90-35=5555 \times 2=110$
PTS: 2 REF: 012015geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
158 ANS:
$\sin 4.76=\frac{1.5}{x} \quad \tan 4.76=\frac{1.5}{x} \quad 18-\frac{16}{12} \approx 16.7$
$x \approx 18.1 \quad x \approx 18$
PTS: 4 REF: 011934geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
159 ANS: 2
Create two congruent triangles by drawing $\overline{B D}$, which has a length of 8 . Each triangle has an area of $\frac{1}{2}(8)(3)=12$.

PTS: 2 REF: 012018geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
160 ANS: 1
PTS: 2
REF: 012004geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals

161 ANS: 4
$\sin x=\frac{10}{12}$

$$
x \approx 56
$$

PTS: 2 REF: 061922geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
162 ANS: 4
$x^{2}+8 x+16+y^{2}-12 y+36=144+16+36$

$$
(x+4)^{2}+(y-6)^{2}=196
$$

PTS: 2 REF: 061920geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
163 ANS:
$17 x=15^{2}$
$17 x=225$

$$
x \approx 13.2
$$

PTS: 2
REF: 061930geo
NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
164
ANS:
$x^{2}=8 \times 12.5$
$x=10$
PTS: 2 REF: 012028geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, length
165
ANS:
Quadrilateral $A B C \underline{D}, E$ and F are points on $\overline{B C}$ and $\overline{A D}$, respectively, and $\overline{B G D}$ and $\overline{E G F}$ are drawn such that $\angle A B G \cong \angle C D G, \overline{A B} \cong \overline{C D}$, and $\overline{C E} \cong \overline{A F}$ (given); $\overline{B D} \cong \overline{B D}$ (reflexive); $\triangle A B D \cong \triangle C D B$ (SAS); $\overline{B C} \cong \overline{D A}$ (CPCTC); $\overline{B E}+\overline{C E} \cong \overline{A F}+\overline{D F}$ (segment addition); $\overline{B E} \cong \overline{D F}$ (segment subtraction); $\angle B G E \cong \angle D G F$ (vertical angles are congruent); $\angle C B D \cong \angle A D B$ (СРСТС); $\triangle E B G \cong \triangle F D G$ (AAS); $\overline{F G} \cong \overline{E G}$ (СРСТС).

PTS: 6
REF: 012035geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
166
ANS: 2

$$
108 \pi=\frac{6^{2} \pi h}{3}
$$

$\frac{324 \pi}{36 \pi}=h$

$$
9=h
$$

PTS: 2 REF: 012002geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones

167 ANS: 4
$-8+\frac{2}{3}(10--8)=-8+\frac{2}{3}(18)=-8+12=44+\frac{2}{3}(-2-4)=4+\frac{2}{3}(-6)=4-4=0$
PTS: 2 REF: 061919geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
168 ANS:
$\triangle A B E \cong \triangle C B D$ (given); $\angle A \cong \angle C$ (CPCTC); $\angle A F D \cong \angle C F E$ (vertical angles are congruent); $\overline{A B} \cong \overline{C B}$,
$\overline{D B} \cong \overline{E B}$ (СРСТС); $\overline{A D} \cong \overline{C E}$ (segment subtraction); $\triangle A F D \cong \triangle C F E$ (AAS)
PTS: 4 REF: 081933geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: proof
169 ANS: 4
$-7+\frac{1}{4}(5--7)=-7+\frac{1}{4}(12)=-7+3=-4-5+\frac{1}{4}(3--5)=-5+\frac{1}{4}(8)=-5+2=-3$
PTS: 2 REF: 012005geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
170 ANS: 2
$E R=\sqrt{17^{2}-8^{2}}=15$
PTS: 2 REF: 061917geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals
171 ANS: 2
slope of $\overline{O A}=\frac{4-0}{-3-0}=-\frac{4}{3} m_{\perp}=\frac{3}{4}$
PTS: 2 REF: 082223geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: radius drawn to tangent
172 ANS: 1
$5 x=12 \cdot 7 \quad 16.8+7=23.8$
$5 x=84$
$x=16.8$
PTS: 2 REF: 061911geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
173 ANS: 3
Since orientation is preserved, a reflection has not occurred.
PTS: 2 REF: 062205geo NAT: G.CO.A. 2 TOP: Identifying Transformations
KEY: graphics
174 ANS:
$2 \times(90 \times 10)+(\pi)\left(30^{2}\right)-(\pi)\left(20^{2}\right) \approx 3371$
PTS: 2
REF: 011931geo NAT: G.MG.A. 3 TOP: Compositions of Polygons and Circles
KEY: area

175 ANS: 3
$\frac{150}{360} \cdot 9^{2} \pi=33.75 \pi$
PTS: 2 REF: 012013geo NAT: G.C.B. 5 TOP: Sectors
176 ANS: 1
$x^{2}+y^{2}-12 y+36=20.25+36 \sqrt{56.25}=7.5$
$x^{2}+(y-6)^{2}=56.25$
PTS: 2 REF: 082219geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
177 ANS: 2
$\tan 36=\frac{x}{8} \quad 5.8+1.5 \approx 7$

$$
x \approx 5.8
$$

PTS: 2 REF: 081915geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
178 ANS: 2
$\frac{x}{15}=\frac{5}{12}$

$$
x=6.25
$$

PTS: 2 REF: 011906geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
179 ANS: 3
PTS: 2
REF: 011904geo NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
180 ANS: 1

$$
\begin{aligned}
\frac{6.5}{10.5} & =\frac{5.2}{x} \\
x & =8.4
\end{aligned}
$$

PTS: 2 REF: 012006geo NAT: G.CO.C. 11 TOP: Trapezoids
181 ANS: 2

$$
\begin{aligned}
18^{2} & =12(x+12) \\
324 & =12(x+12) \\
27 & =x+12 \\
x & =15
\end{aligned}
$$

PTS: 2
REF: 081920geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude

182 ANS: 2
$m=\frac{-(-2)}{3}=\frac{2}{3}$
PTS: 2 REF: 061916geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of parallel line
ANS:

PTS: 2 REF: 011926geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
184 ANS: 1
$h=\sqrt{6.5^{2}-2.5^{2}}=6, V=\frac{1}{3} \pi(2.5)^{2} 6=12.5 \pi$
PTS: 2
REF: 011923geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
185
ANS:
$\sin 38=\frac{24.5}{x}$

$$
x \approx 40
$$

PTS: 2
REF: 012026geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: graphics
ANS: 4
$2 x-1=16$

$$
x=8.5
$$

PTS: 2
REF: 011902geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
187
ANS: 3
Broome: $\frac{200536}{706.82} \approx 284$ Dutchess: $\frac{280150}{801.59} \approx 349$ Niagara: $\frac{219846}{522.95} \approx 420$ Saratoga: $\frac{200635}{811.84} \approx 247$
PTS: 2 REF: 061902geo NAT: G.MG.A. 2 TOP: Density

188
ANS: 2
$V=\frac{1}{3} \cdot 197^{2} \cdot 107=1,384,188$

PTS: 2 REF: 082208geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
189
 Triangle with vertices $A(-2,4), B(6,2)$, and $C(1,-1)$ (given); $m_{\overline{A C}}=-\frac{5}{3}, m_{B C}=\frac{3}{5}$,
definition of slope; Because the slopes of the legs of the triangle are opposite reciprocals, the legs are perpendicular (definition of perpendicular); $\angle C$ is a right angle (definition of right angle); $\triangle A B C$ is a right triangle (if a triangle has a right angle, it is a right triangle); $\overline{A C} \cong \overline{B C}=\sqrt{34}$ (distance formula); $\triangle A B C$ is an isosceles triangle (an isosceles triangle has two congruent sides).

PTS: 4 REF: 011932geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
190 ANS:
$((10 \times 6)+\sqrt{7(7-6)(7-4)(7-4)})(6.5) \approx 442$

PTS: 4
REF: 081934geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
191
ANS: 2
$-4+\frac{2}{5}(6--4)=-4+\frac{2}{5}(10)=-4+4=0-1+\frac{2}{5}(4--1)=-1+\frac{2}{5}(5)=-1+2=1$

PTS: 2 REF: 062222geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
192 ANS: 2
$180-40-95=45$
PTS: 2 REF: 082201geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
ANS: 1
$\cos C=\frac{15}{17}$
$C \approx 28$

PTS: 2 REF: 012007geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

194 ANS: 4
$(8 \times 2)+(3 \times 2)-\left(\frac{18}{12} \times \frac{21}{12}\right) \approx 19$
PTS: 2 REF: 081917geo NAT: G.MG.A. 3 TOP: Compositions of Polygons and Circles
KEY: area
195 ANS: 1
A dilation preserves angle measure, so $\angle A \cong \angle C D E$.
PTS: 2 REF: 062203geo NAT: G.SRT.C. 6 TOP: Trigonometric Ratios
ANS: 4 PTS: 2 REF: 011905geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents KEY: inscribed
197 ANS: 4

$$
\frac{2}{4}=\frac{8}{x+2} \quad 14+2=16
$$

$2 x+4=32$

$$
x=14
$$

PTS: 2 REF: 012024geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
198 ANS:

$$
\begin{aligned}
\tan 56 & =\frac{x}{1.3} \quad \sqrt{(1.3 \tan 56)^{2}+1.5^{2}} \approx 3.7 \\
x & =1.3 \tan 56
\end{aligned}
$$

PTS: 4
KEY: advanced
199 ANS: 1
TOP: Similarity
PTS: 2
KEY: altitude
200
ANS: 2

PTS: 2
201 ANS: 2
REF: 081907geo
PTS: 2
TOP: Line Dilations
202 ANS: 3
TOP: Trapezoids
203 ANS: 1
TOP: Compositions of Transformations

NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
REF: 081901geo NAT: G.SRT.A. 1
REF: 062323geo NAT: G.CO.C. 11
REF: 012022geo NAT: G.SRT.A. 2
KEY: grids

204 ANS: 4
$x^{2}=10.2 \times 14.3$
$x \approx 12.1$
PTS: 2
REF: 012016geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
205 ANS:

Yes, because a dilation preserves angle measure.
PTS: 4
REF: 081932geo NAT: G.CO.D. 12 TOP: Constructions
KEY: congruent and similar figures
ANS:
Reflections preserve distance and angle measure.
PTS: 2 REF: 062228geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
ANS: $2 \quad$ PTS: 2
REF: 081909geo NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify
ANS:

PTS: 2 REF: 012030geo NAT: G.CO.C. 10
TOP: Centroid, Orthocenter, Incenter and Circumcenter
PTS: 1
REF: 012017geo NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify
210 ANS: 2

$$
\begin{aligned}
\tan 11.87 & =\frac{x}{0.5(5280)} \\
x & \approx 555
\end{aligned}
$$

PTS: 2 REF: 011913geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

211 ANS:

PTS: 2 REF: 082231geo NAT: G.C.B. 5 TOP: Sectors
212 ANS:

PTS: 2 REF: 081928geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
213 ANS: 2
$\left(\frac{1}{4}\right)^{2}=\frac{1}{16}$
PTS: 2 REF: 082216geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: perimeter and area
214 ANS: 2
$8 \times 8 \times 9+\frac{1}{3}(8 \times 8 \times 3)=640$
PTS: 2 REF: 011909geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
215 ANS: 1

$$
(x-1)^{2}+(y-4)^{2}=\left(\frac{10}{2}\right)^{2}
$$

$$
x^{2}-2 x+1+y^{2}-8 y+16=25
$$

$$
x^{2}-2 x+y^{2}-8 y=8
$$

PTS: 2
REF: 011920geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: write equation, given center and radius

216 ANS:
$\left(7^{2}\right) 18 \pi=16 x^{2} \frac{80}{13.2} \approx 6.1 \frac{60}{13.2} \approx 4.56 \times 4=24$

$$
13.2 \approx x
$$

PTS: 4
KEY: cylinders
217 ANS: 1
REF: 012034geo NAT: G.GMD.A. 3 TOP: Volume

TOP: Cofunctions
218 ANS:
$8 \times 3 \times \frac{1}{12} \times 43=86$
PTS: 2 REF: 012027geo NAT: G.MG.A. 2 TOP: Density
219 ANS:
$\frac{10 \pi(.5)^{2} 4}{\frac{2}{3}} \approx 47.148$ bags
PTS: 4 REF: 062234geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
220 ANS:
$r_{y=2}{ }^{\circ} r_{y \text {-xis }}$
PTS: 2 REF: 081927geo NAT: G.CO.A. 5 TOP: Compositions of Transformations KEY: identify
221 ANS: 3
Therefore $\angle 2 \cong \angle 7$. Since opposite angles are congruent, $A B C D$ is a parallelogram.
PTS: 2
REF: 062209geo NAT: G.CO.C. 11 TOP: Parallelograms
222

$$
\begin{aligned}
\cos 14 & =\frac{5-1.2}{x} \\
x & \approx 3.92
\end{aligned}
$$

PTS: 2 REF: 082228geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

ANS:

1) Quadrilateral $A B C D, \overline{A C}$ and $\overline{E F}$ intersect at $H, \overline{E F} \| \overline{A D}$, $\overline{E F} \| \overline{B C}$, and $\overline{A D} \cong \overline{B C}$ (Given); 2) $\angle E H A \cong \angle F H C$ (Vertical angles are congruent); 3) $\overline{A D} \| \overline{B C}$ (Transitive property of parallel lines); 4) $A B C D$ is a parallelogram (Quadrilateral with a pair of sides both parallel and congruent); 5) $\overline{A B} \| \overline{C D}$ (Opposite sides of a parallelogram); 6) $\angle A E H \cong \angle C F H$ (Alternate interior angles formed by parallel lines and a transversal); 7) $\triangle A E H \sim \triangle C F H$ (AA); 8) $\frac{E H}{F H}=\frac{A H}{C H}$ (Corresponding sides of similar triangles are proportional); 8) $(E H)(C H)=(F H)(A H)$ (Product of means equals product of extremes).

PTS: 6
REF: 082235geo
NAT: G.SRT.B. 5
REF: 061912geo
TOP: Quadrilateral Proofs
ANS: 3
PTS: 2
TOP: Parallelograms
225 ANS: 4

$$
\begin{aligned}
x^{2}-8 x+y^{2}+6 y & =39 \\
x^{2}-8 x+16+y^{2}+6 y+9 & =39+16+9 \\
(x-4)^{2}+(y+3)^{2} & =64
\end{aligned}
$$

PTS: 2 REF: 081906geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: completing the square
ANS:

$$
\begin{aligned}
\frac{121-x}{2} & =35 \\
121-x & =70 \\
x & =51
\end{aligned}
$$

PTS: 2
REF: 011927geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, angle
227 ANS:
$\frac{124-56}{2}=34$
PTS: 2
REF: 081930geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, angle

228 ANS: 1

$$
C \quad \frac{72-34}{2}=19
$$

PTS: 2 REF: 061918geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: secants drawn from common point, angle
229 ANS: 4
d) is SSA

PTS: 2 REF: 061914geo NAT: G.CO.B. 7 TOP: Triangle Congruency
230 ANS:
$3 y+7=2 x \quad y-6=\frac{2}{3}(x-2)$
$3 y=2 x-7$
$y=\frac{2}{3} x-\frac{7}{3}$
PTS: 2 REF: 011925geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of parallel line
231 ANS: 4

1) SAS; 2) AAS; 3) SSS

PTS: 2 REF: 062216geo NAT: G.SRT.B. 5 TOP: Triangle Congruency
232 ANS: 2
$\frac{x}{360}(15)^{2} \pi=75 \pi$

$$
x=120
$$

PTS: 2
REF: 011914geo
NAT: G.C.B. 5
TOP: Sectors
233 ANS:
$4 x \cdot x=6^{2}$

$$
\begin{aligned}
4 x^{2} & =36 \\
x^{2} & =9 \\
x & =3
\end{aligned}
$$

PTS: 2
REF: 082229geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude

234 ANS: 1
$8 \times 3.5 \times 2.25 \times 1.055=66.465$
PTS: 2 REF: 012014geo NAT: G.MG.A. 2 TOP: Density
235 ANS: 1
$-7+\frac{1}{3}(2--7)=-7+\frac{1}{3}(9)=-7+3=-43+\frac{1}{3}(-6-3)=3+\frac{1}{3}(-9)=3-3=0$
PTS: 2 REF: 082213geo NAT: G.GPE.B. 6 TOP: Directed Line Segments 236 ANS:
$x^{2}+6 x+9+y^{2}-6 y+9=63+9+9(-3,3) ; r=9$

$$
(x+3)^{2}+(y-3)^{2}=81
$$

PTS: 2 REF: 062230geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
237 ANS: 3
$180-(48+66)=180-114=66$
PTS: 2 REF: 012001geo NAT: G.CO.C. 9 TOP: Lines and Angles
238 ANS: 3

PTS: 2 REF: 081905geo NAT: G.CO.C. 10 TOP: Exterior Angle Theorem
239 ANS: 4
$\frac{18}{4.5}=4$
PTS: 2 REF: 011901geo NAT: G.SRT.A. 1 TOP: Line Dilations
240 ANS: 3
$12^{2}=9 \cdot G M \quad I M^{2}=16 \cdot 25$
$G M=16 \quad I M=20$
PTS: 2 REF: 011910geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
241 ANS: 1
$\triangle A B C \sim \triangle R S T$
PTS: 2
REF: 011908geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic

242 ANS:

PTS: 2 REF: 012325geo NAT: G.CO.D. 12 TOP: Constructions
KEY: angle bisector
243 ANS: 3
PTS: 2
REF: 062215geo NAT: G.CO.C. 10
TOP: Exterior Angle Theorem
244 ANS:
Quadrilateral $A B C D$ with diagonal $\overline{A C}$, segments $G H$ and $E F, \overline{A E} \cong \overline{C G}, \overline{B E} \cong \overline{D G}, \overline{A H} \cong \overline{C F}$, and $\overline{A D} \cong \overline{C B}$ (given); $\overline{H F} \cong \overline{H F}, \overline{A C} \cong \overline{A C}$ (reflexive property); $\overline{A H}+\overline{H F} \cong \overline{C F}+\overline{H F}, \overline{A E}+\overline{B E} \cong \overline{C G}+\overline{D G}$ (segment

$$
\overline{A F} \cong \overline{C H} \quad \overline{A B} \cong \overline{C D}
$$

addition); $\triangle A B C \cong \triangle C D A(S S S) ; \angle E A F \cong \angle G C H$ (СРСТС); $\triangle A E F \cong \triangle C G H$ (SAS); $\overline{E F} \cong \overline{G H}$ (СРСТС).
PTS: 6 REF: 011935geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
245 ANS: 4 PTS: 2
TOP: Exterior Angle Theorem
246 ANS: 4 PTS: 2
REF: 062223geo NAT: G.SRT.A. 1
TOP: Line Dilations
247 ANS: 3
Sine and cosine are cofunctions.
PTS: 2 REF: 062206geo NAT: G.SRT.C. 7 TOP: Cofunctions
248 ANS: 3

PTS: 2
REF: 082217geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: statements
249 ANS:
No, because dilations do not preserve distance.
PTS: 2
REF: 061925geo NAT: G.SRT.A. 2 TOP: Dilations

250 ANS:
$\sin ^{-1}\left(\frac{5}{25}\right) \approx 11.5$
PTS: 2 REF: 081926geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
251 ANS: 3
$1)$ and 2) are wrong because the orientation of $\triangle L E T$ has changed, implying one reflection has occurred. The sequence in 4) moves $\triangle L E T$ back to Quadrant II.

PTS: 2 REF: 062218geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
252 ANS: 3 PTS: 2 REF: 081913geo NAT: G.CO.C. 11
TOP: Parallelograms
253 ANS: 4 PTS: 2
TOP: Chords, Secants and Tangents
REF: 081922geo NAT: G.C.A. 2
KEY: intersecting chords, length
ANS:
24 in $\times 12$ in $\times 18$ in $2.94 \approx 3 \frac{24}{3} \times \frac{12}{3} \times \frac{18}{3}=192192\left(\frac{4}{3} \pi\right)\left(\frac{2.94}{2}\right)^{3}(0.025) \approx 64$
PTS: 4 REF: 082234geo NAT: G.MG.A. 2 TOP: Density
255 ANS:
$R_{90^{\circ}}$ or $T_{2,-6}{ }^{\circ} R_{(-4,2), 90^{\circ}}$ or $R_{270^{\circ}}{ }^{\circ} r_{\text {x-xxis }}{ }^{\circ} r_{y \text {-xxis }}$
PTS: 2 REF: 061929geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
256 ANS: $2 \quad$ PTS: 2
REF: 012012geo NAT: G.CO.C. 10
TOP: Medians, Altitudes and Bisectors
257 ANS: 3
A dilation does not preserve distance.
PTS: 2
REF: 062210geo NAT: G.CO.A. 2
TOP: Analytical Representations of Transformations KEY: basic
258 ANS:

PTS: 2
REF: 011929geo NAT: G.CO.D. 12 TOP: Constructions
KEY: polygons

259 ANS:

PTS: 2 REF: 082227geo NAT: G.CO.D. 12 TOP: Constructions
KEY: congruent and similar figures
260
ANS: 2
PTS: 2
REF: 011912geo NAT: G.CO.C. 11
TOP: Parallelograms

$$
\begin{aligned}
& \frac{4}{5}=\frac{6}{x} \quad \frac{4}{9}=\frac{y}{18} 5+18+7.5+8=38.5 \\
& x=7.5 \quad y=8
\end{aligned}
$$

PTS: 2
REF: 082222geo
NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
262 ANS: 1

$$
\begin{aligned}
\sin 10 & =\frac{x}{140} \\
x & \approx 24
\end{aligned}
$$

PTS: 2
REF: 062217geo
NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
ANS: 2
$\angle A D E \cong \angle A B C$ and $\angle A E D \cong \angle A C B$
PTS: 2 REF: 062214geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem

ANS:

PTS: 2 REF: 061926geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane 265 ANS: 4

Isosceles triangle theorem.
PTS: 2 REF: 062207geo NAT: G.SRT.B. 5 TOP: Isosceles Triangle Theorem
266 ANS: 1
$\frac{9}{6}=\frac{3}{2}$
PTS: 2 REF: 061905geo NAT: G.SRT.A. 1 TOP: Line Dilations
267 ANS: 1
$\frac{\frac{1}{3} \pi(2)^{2}\left(\frac{1}{2}\right)}{\frac{1}{3} \pi(1)^{2}(1)}=2$
PTS: 2 REF: 012010geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
268 ANS: 4
$\tan A=\frac{\text { opposite }}{\text { adjacent }}=\frac{15}{8}$
PTS: 2 REF: 011917geo NAT: G.SRT.C. 6 TOP: Trigonometric Ratios
269 ANS: 1 PTS: 2 REF: 082211geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
270 ANS: 2
$\frac{(-4,2)}{(-2,1)}=2$
PTS: 2 REF: 062201geo NAT: G.SRT.A. 2 TOP: Dilations
271 ANS: 4

$$
\begin{aligned}
\frac{360^{\circ}}{n} & =36 \\
n & =10
\end{aligned}
$$

PTS: 2 REF: 082205geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself

ANS: $1 \quad$ PTS: 2
REF: 081904geo NAT: G.CO.C. 10
TOP: Centroid, Orthocenter, Incenter and Circumcenter
273 ANS: 1
$\mathrm{m} \angle C B E=180-51=129$

PTS: 2 REF: 062221geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
274 ANS: 3
$4 x+3 x+13=90 \quad 4(11)<3(11)+13$

$$
\begin{aligned}
7 x & =77 \\
x & =11
\end{aligned}
$$

PTS: 2 REF: 012021geo NAT: G.SRT.C. 7 TOP: Cofunctions
275 ANS: 2
$\frac{4}{3} \pi \times\left(\frac{1.68}{2}\right)^{3} \times 0.6523 \approx 1.62$
PTS: 2 REF: 081914geo NAT: G.MG.A. 2 TOP: Density
276 ANS:
$A B=\sqrt{(-5-1)^{2}+(3-2)^{2}}=\sqrt{37}, B C=\sqrt{(-5--6)^{2}+(3--3)^{2}}=\sqrt{37}$ (because $A B=B C, \triangle A B C$ is isosceles). $(0,-4) . A D=\sqrt{(1-0)^{2}+(2--4)^{2}}=\sqrt{37}, C D=\sqrt{(-6-0)^{2}+(-3--4)^{2}}=\sqrt{37}$, $m_{\overline{A B}}=\frac{3-2}{-5-1}=-\frac{1}{6}, m_{\overline{C B}}=\frac{3--3}{-5--6}=6(A B C D$ is a square because all four sides are congruent, consecutive sides
are perpendicular since slopes are opposite reciprocals and so $\angle B$ is a right angle).

PTS: 6
REF: 081935geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids

277
ANS:
$m=\frac{5}{4} ; m_{\perp}=-\frac{4}{5} \quad y-12=-\frac{4}{5}(x-5)$
PTS: 2 REF: 012031geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line
278 ANS: 2 PTS: 2 REF: 082220geo NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify
279 ANS: 3
$\frac{1}{2} \times 24=12$
PTS: 2 REF: 012009geo NAT: G.CO.C. 10 TOP: Midsegments
ANS: 1
$\frac{360^{\circ}}{5}=72^{\circ}$
PTS: 2
281 ANS:
No. The midpoint of $\overline{D F}$ is $\left(\frac{1+4}{2}, \frac{-1+2}{2}\right)=(2.5,0.5)$. A median from point E must pass through the midpoint.
PTS: 2 REF: 011930geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
282 ANS: 4
PTS: 2 REF: 012019geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
283 ANS: 2
$\frac{4}{x}=\frac{6}{9}$
$x=6$
PTS: 2 REF: 061915geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
284

285
ANS: 1
TOP: Rotations of Two-Dimensional Objects
ANS: 1
$\frac{1}{3}, \frac{3}{9}, \frac{\sqrt{10}}{\sqrt{90}}$

PTS: 2
REF: 082206geo
NAT: G.SRT.A. 2 TOP: Dilations

ANS:
Parallelogram $P Q R S, \overline{Q T} \perp \overline{P S}, \overline{S U} \perp \overline{Q R}$ (given); $\overline{Q U R} \cong \overline{P T S}$ (opposite sides of a parallelogram are parallel; Quadrilateral QUST is a rectangle (quadrilateral with parallel opposite sides and opposite right angles is a rectangle); $\overline{S U} \cong \overline{Q T}$ (opposite sides of a rectangle are congruent); $\overline{R S} \cong \overline{P Q}$ (opposite sides of a parallelogram are congruent); $\angle R U S$ and $\angle P T Q$ are right angles (the supplement of a right angle is a right angle),
$\triangle R S U \cong \triangle P Q T$ (HL); $\overline{P T} \cong \overline{R U}$ (СРСТС)
PTS: 4 REF: 062233geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
ANS: 3
$12 x=9^{2} \quad 6.75+12=18.75$
$12 x=81$

$$
x=\frac{82}{12}=\frac{27}{4}
$$

PTS: 2 REF: 062213geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
288 ANS:

PTS: 2 REF: 061931geo NAT: G.CO.D. 13 TOP: Constructions
289 ANS: 1
PTS: 2
REF: 011918geo
NAT: G.MG.A. 3
TOP: Compositions of Polygons and Circles KEY: area
ANS: 3
$\angle N$ is the smallest angle in $\triangle N Y A$, so side $\overline{A Y}$ is the shortest side of $\triangle N Y A . \angle V Y A$ is the smallest angle in $\triangle V Y A$, so side $\overline{V A}$ is the shortest side of both triangles.

PTS: 2 REF: 011919geo NAT: G.CO.C. 10 TOP: Angle Side Relationship
291 ANS: 3
$-9+\frac{1}{3}(9--9)=-9+\frac{1}{3}(18)=-9+6=-38+\frac{1}{3}(-4-8)=8+\frac{1}{3}(-12)=8-4=4$
PTS: 2 REF: 081903geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

292

KEY: cylinders
ANS:

PTS: 2
REF: 062231geo NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines
ANS:

$$
\begin{aligned}
& \overline{A N} \cong \overline{A T} \cong \overline{T S} \cong \overline{S N} \\
& \sqrt{5^{2}+5^{2}}=\sqrt{7^{2}+1^{2}}=\sqrt{5^{2}+5^{2}}=\sqrt{7^{2}+1^{2}} \\
& \sqrt{50}=\sqrt{50}=\sqrt{50}=\sqrt{50}
\end{aligned}
$$

because all four sides are congruent.
PTS: 4 REF: 012032geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
ANS: 4 PTS: 2
TOP: Mapping a Polygon onto Itself

296 ANS:

$m_{\overline{A D}}=\frac{0-6}{1--1}=-3 \overline{A D} \| \overline{B C}$ because their slopes are equal. $A B C D$ is a trapezoid $m_{B C}=\frac{-1-8}{6-3}=-3$
because it has a pair of parallel sides. $A C=\sqrt{(-1-6)^{2}+(6--1)^{2}}=\sqrt{98} A B C D$ is not an isosceles trapezoid

$$
B D=\sqrt{(8-0)^{2}+(3-1)^{2}}=\sqrt{68}
$$

because its diagonals are not congruent.
PTS: 4 REF: 061932geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
297 ANS: 3
PTS: 2
REF: 082212geo NAT: G.SRT.A. 1
TOP: Line Dilations
298 ANS: 2
$\triangle A B C \sim \triangle B D C$
$\cos A=\frac{A B}{A C}=\frac{B D}{B C}$
PTS: 2 REF: 012023geo
NAT: G.SRT.C. 6 TOP: Trigonometric Ratios
299 ANS: 2
PTS: 2
TOP: Similarity KEY: basic
300 ANS: 2
$\sqrt{8^{2}+6^{2}}=10$ for one side
PTS: 2 REF: 011907geo
NAT: G.CO.C. 11 TOP: Special Quadrilaterals
301 ANS: 2
PTS: 2
REF: 082204geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
302
ANS: 3 PTS: 2
REF: 011903geo NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify
ANS: 1
$m=\frac{-A}{B}=\frac{-3}{2} m_{\perp}=\frac{2}{3}$
PTS: 2 REF: 081908geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines

ANS:
47.5°

PTS: 2
305
ANS: 3
REF: 082230geo
PTS: 2
TOP: Properties of Transformations
306 ANS:
$V=\frac{2}{3} \pi\left(\frac{6.5}{2}\right)^{2}(1) \approx 2222 \cdot 7.48 \approx 165$

PTS: 4 REF: 061933geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
307 ANS:
If $d=10, r=5$ and $h=12 \quad V=\frac{1}{3} \pi\left(5^{2}\right)(12)=100 \pi$
PTS: 2 REF: 062227geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
308 ANS:

1) Quadrilateral $H Y P E$ with $H(-3,6), Y(2,9), P(8,-1)$, and $E(3,-4)$ (Given); 2) Slope of $\overline{H Y}$ and $\overline{P E}$ is $\frac{3}{5}$, slope of $\overline{Y P}$ and $\overline{E H}$ is $-\frac{5}{3}$ (Slope determined graphically); 3) $\overline{H Y} \perp \overline{Y P}, \overline{P E} \perp \overline{E H}$, $\overline{Y P} \perp \overline{P E}, \overline{E Y} \perp \overline{H Y}$ (The slopes of perpendicular lines are opposite reciprocals); 4) $\angle H, \angle Y, \angle P, \angle E$ are right angles (Perpendicular lines form right angles); 5) HYPE is a rectangle (A rectangle has four right angles).

PTS: 4
REF: 082233geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids

309 ANS: 4
$\sin A=\frac{13}{16}$

$$
A \approx 54^{\circ}
$$

PTS: 2 REF: 082207geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
310 ANS:
$\frac{72}{360}(\pi)\left(10^{2}\right)=20 \pi$
PTS: 2 REF: 061928geo NAT: G.C.B. 5 TOP: Sectors
311 ANS: 2
$90-57=33$
PTS: 2 REF: 061909geo NAT: G.SRT.C. 7 TOP: Cofunctions
312 ANS:

$$
\begin{array}{rlrl}
\tan 22.2 & =\frac{50}{x} \quad \tan 13.3 & =\frac{y}{122.52} \\
x & \approx 122.52 & y & \approx 29
\end{array}
$$

$50-29=21$
PTS: 4
KEY: advanced
313 ANS: 2
PTS: 2
REF: 062202geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
314 ANS: 2
PTS: 2
REF: 061903geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
315 ANS: 2

PTS: 2 REF: 061921geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
316 ANS: 3
$M_{x}=\frac{-5+-1}{2}=-\frac{6}{2}=-3 M_{y}=\frac{5+-1}{2}=\frac{4}{2}=2$.

PTS: 2
REF: 081902geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: general

317 ANS: 3

PTS: 2 REF: 082215geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
318 ANS: 4

$$
\sqrt{8^{2}+2^{2}} \times \sqrt{4^{2}+1^{2}}=\sqrt{68} \times \sqrt{17}=\sqrt{4} \sqrt{17} \times \sqrt{17}=2 \cdot 17=34
$$

PTS: 2
319
ANS: 1
TOP: Cofunctions
ANS: 2
The slope of $-3 x+4 y=8$ is $\frac{3}{4}$.
PTS: 2
REF: 061907geo
NAT: G.SRT.A. 1 TOP: Line Dilations
321 ANS: 1
$y=\frac{1}{2} x+4 \frac{2}{4}=\frac{1}{2}$
$y=\frac{1}{2} x+2$
PTS: 2 REF: 012008geo NAT: G.SRT.A. 1 TOP: Line Dilations
322 ANS: 1
$44\left(\left(10 \times 3 \times \frac{1}{4}\right)+\left(9 \times 3 \times \frac{1}{4}\right)\right)=627$
PTS: 2
REF: 082221geo
NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions

REF: 082214geo
PTS: 2

NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
REF: 081919geo NAT: G.SRT.C. 7

323
ANS:
$\sin 86.03=\frac{183.27}{x}$

$$
x \approx 183.71
$$

PTS: 2 REF: 062225geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
ANS: 4

PTS: 2
KEY: inscribed
325 ANS: 4
REF: 082218geo
NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
PTS: 2
REF: 082210geo NAT: G.SRT.C. 7
TOP: Cofunctions
326

327
ANS:
Theresa. $(30 \times 15 \times(4-0.5)) \mathrm{ft}^{3} \times \frac{7.48 \mathrm{~g}}{1 \mathrm{ft}^{3}} \times \frac{\$ 3.95}{100 \mathrm{~g}}=\$ 465.35,\left(\pi \times 12^{2} \times(4-0.5)\right) \mathrm{ft}^{3} \times \frac{7.48 \mathrm{~g}}{1 \mathrm{ft}^{3}} \times \frac{\$ 200}{6000 \mathrm{~g}}=\$ 394.79$
PTS: 4
REF: 011933geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
ANS: 3
$2(2 x+8)=7 x-2 \quad A B=7(6)-2=40$. Since $\overline{E F}$ is a midsegment, $E F=\frac{40}{2}=20$. Since $\triangle A B C$ is equilateral,
$4 x+16=7 x-2$
$18=3 x$
$6=x$
$A E=B F=\frac{40}{2}=20.40+20+20+20=100$
PTS: 2 REF: 061923geo NAT: G.CO.C. 10 TOP: Midsegments
328
ANS:
$\tan y=\frac{1.58}{3.74} \tan x=\frac{.41}{3.74} \quad 22.90-6.26=16.6$

$$
y \approx 22.90 \quad x \approx 6.26
$$

PTS: 4 REF: 062232geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

329
ANS: 3
$\frac{360^{\circ}}{6}=60^{\circ} 120^{\circ}$ is a multiple of 60°
PTS: 2 REF: 012011geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
330 ANS:
$\frac{1}{3} \pi \times 8^{2} \times 5 \approx 335.1$
PTS: 2 REF: 082226geo NAT: G.GMD.B. 4 TOP: Rotations of Two-Dimensional Objects
331 ANS:
Quadrilateral MATH, $\overline{H M} \cong \overline{A T}, \overline{H T} \cong \overline{A M}, \overline{H E} \perp \overline{M E A}$, and $\overline{H A} \perp \overline{A T}$ (given); $\angle H E A$ and $\angle T A H$ are right angles (perpendicular lines form right angles); $\angle H E A \cong \angle T A H$ (all right angles are congruent); MATH is a parallelogram (a quadrilateral with two pairs of congruent opposite sides is a parallelogram); $\overline{M A} \| \overline{T H}$ (opposite sides of a parallelogram are parallel); $\angle T H A \cong \angle E A H$ (alternate interior angles of parallel lines and a transversal are congruent); $\triangle H E A \sim \triangle T A H$ (AA); $\frac{H A}{T H}=\frac{H E}{T A}$ (corresponding sides of similar triangles are in proportion); $T A \bullet H A=H E \bullet T H$ (product of means equals product of extremes).

PTS: 6 REF: 061935geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
ANS: 1
$-1+\frac{1}{3}(8--1)=-1+\frac{1}{3}(9)=-1+3=2-3+\frac{1}{3}(9--3)=-3+\frac{1}{3}(12)=-3+4=1$
PTS: 2 REF: 011915geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
333 ANS: 1
$\cos 65=\frac{x}{15}$

$$
x \approx 6.3
$$

PTS: 2 REF: 081924geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
334 ANS: 1
$\frac{1}{3}(4.5)^{2}(10)(0.676) \approx 45.6$
PTS: 2 REF: 062212geo NAT: G.MG.A. 2 TOP: Density
335 ANS: 2
$V=\frac{1}{3}(8)^{2} \cdot 6=128$
PTS: 2 REF: 061906geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
336
ANS:
$\angle Q \cong \angle M \quad \angle P \cong \angle N \quad \overline{Q P} \cong \overline{M N}$
PTS: 2 REF: 012025geo NAT: G.CO.B. 7 TOP: Triangle Congruency

337 ANS: $4 \quad$ PTS: 2
TOP: Compositions of Transformations
338 ANS: 2
If (2) is true, $\angle A C B \cong \angle X Y B$ and $\angle C A B \cong \angle Y X B$.
PTS: 2 REF: 082202geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
339 ANS: 4
$\frac{54}{360} \cdot 10^{2} \pi=15 \pi$
PTS: 2 REF: 062224geo NAT: G.C.B. 5 TOP: Sectors
340 ANS:
$\frac{2+3}{15} \cdot 360=120 \frac{120}{2}=60$

PTS: 2 REF: 062226geo NAT: G.C.A. 3 TOP: Inscribed Quadrilaterals
341 ANS: 4

$$
\begin{aligned}
2 x+x+15 & =180 \quad 180-45=135 \\
3 x & =165 \\
x & =55
\end{aligned}
$$

PTS: 2 REF: 082224geo NAT: G.C.A. 3 TOP: Inscribed Quadrilaterals
ANS: 3
$\sqrt{40^{2}-\left(\frac{64}{2}\right)^{2}}=24 \quad V=\frac{1}{3}(64)^{2} \cdot 24=32768$
PTS: 2 REF: 081921geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
343 ANS: 2
The line $x=-2$ will be tangent to the circle at ($-2,-4$). A segment connecting this point and $(2,-4)$ is a radius of the circle with length 4.

PTS: 2
REF: 012020geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: other

344 ANS: 4
$\frac{12}{6.1 x-6.5}=\frac{5}{1.4 x+3} \quad 6.1(5)-6.5=24$
$16.8 x+36=30.5 x-32.5$

$$
\begin{aligned}
68.5 & =13.7 x \\
5 & =x
\end{aligned}
$$

PTS: 2 REF: 062211geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
345 ANS: 4
$\left(\frac{-5+7}{2}, \frac{1-9}{2}\right)=(1,-4) m=\frac{1--9}{-5-7}=\frac{10}{-12}=-\frac{5}{6} m_{\perp}=\frac{6}{5}$
PTS: 2 REF: 062220geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: perpendicular bisector
346 ANS:
$\tan 30=\frac{y}{440} \tan 38.8=\frac{h}{440} \quad 353.8-254 \approx 100$

$$
y \approx 254 \quad h \approx 353.8
$$

PTS: 4 REF: 061934geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: advanced
347 ANS: 1
$\frac{100-80}{2}=10$
PTS: 2
REF: 062219geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents KEY: secant and tangent drawn from common point, angle

Geometry Regents at Random Worksheets
 Answer Section

348 ANS: 1
Illinois: $\frac{12830632}{231.1} \approx 55520$ Florida: $\frac{18801310}{350.6} \approx 53626$ New York: $\frac{19378102}{411.2} \approx 47126$ Pennsylvania:
$\frac{12702379}{283.9} \approx 44742$
PTS: 2 REF: 081720geo NAT: G.MG.A. 2 TOP: Density
349 ANS:
$\cos 54=\frac{4.5}{m} \tan 54=\frac{h}{4.5}$
$m \approx 7.7 \quad h \approx 6.2$
PTS: 4 REF: 011834geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side 350 ANS:

Reflection across the y-axis, then translation up 5 .
PTS: 2 REF: 061827geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
ANS: 4

PTS: 2 REF: 061717geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles 352 ANS:

Because $\overline{A B} \cong \overline{A C}, \triangle A B C$ has two congruent sides and is isosceles. Because $\overline{A B} \cong \overline{B C}$ is not true, $\triangle A B C$ has sides that are not congruent and $\triangle A B C$ is not equilateral.

PTS: 4 REF: 061832geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
353
ANS: 4
PTS: 2
REF: 011723geo
NAT: G.GMD.B. 4

TOP: Cross-Sections of Three-Dimensional Objects

354 ANS: 1
$24 x=10^{2}$
$24 x=100$
$x \approx 4.2$
PTS: 2
REF: 061823geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
355 ANS: 2
$6 \cdot 6=x(x-5)$
$36=x^{2}-5 x$
$0=x^{2}-5 x-36$
$0=(x-9)(x+4)$
$x=9$
PTS: 2 REF: 061708geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: intersecting chords, length
356 ANS: 4
$40-x+3 x=90$
$2 x=50$
$x=25$
PTS: 2 REF: 081721geo NAT: G.SRT.C. 7 TOP: Cofunctions
357 ANS: 4
$\sin 16.5=\frac{8}{x}$

$$
x \approx 28.2
$$

PTS: 2 REF: 081806ai NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
358 ANS:
$\overline{G I}$ is parallel to $\overline{N T}$, and $\overline{I N}$ intersects at A (given); $\angle I \cong \angle N, \angle G \cong \angle T$ (paralleling lines cut by a transversal form congruent alternate interior angles); $\triangle G I A \sim \triangle T N A(A A)$.

PTS: 2 REF: 011729geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
359 ANS: 3

$$
V=\frac{1}{3} \pi r^{2} h
$$

$54.45 \pi=\frac{1}{3} \pi(3.3)^{2} h$
$h=15$
PTS: 2 REF: 011807geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones

360 ANS:
Yes. The triangles are congruent because of SSS $\left(5^{2}+12^{2}=13^{2}\right)$. All congruent triangles are similar.
PTS: 2 REF: 061830geo NAT: G.SRT.B. 5 TOP: Triangle Congruency
361 ANS:
No, The line $4 x+3 y=24$ passes through the center of dilation, so the dilated line is not distinct.
$4 x+3 y=24$

$$
\begin{aligned}
3 y & =-4 x+24 \\
y & =-\frac{4}{3} x+8
\end{aligned}
$$

PTS: 2 REF: 081830geo NAT: G.SRT.A. 1 TOP: Line Dilations
362 ANS: 2
$12^{2}=9 \cdot 16$
$144=144$
PTS: 2
REF: 081718geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
363
ANS: 1
B: $(4-3,3-4) \rightarrow(1,-1) \rightarrow(2,-2) \rightarrow(2+3,-2+4)$
$C:(2-3,1-4) \rightarrow(-1,-3) \rightarrow(-2,-6) \rightarrow(-2+3,-6+4)$
PTS: 2 REF: 011713geo NAT: G.SRT.A. 1 TOP: Line Dilations
364 ANS:
The four small triangles are 8-15-17 triangles. $4 \times 17=68$
PTS: 2 REF: 081726geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals
365 ANS: 4 PTS: 2 REF: 081702geo NAT: G.CO.A. 2
TOP: Identifying Transformations KEY: basic
366 ANS:

$$
\begin{aligned}
x^{2}+x^{2} & =58^{2} \quad A=(\sqrt{1682}+8)^{2} \approx 2402.2 \\
2 x^{2} & =3364 \\
x & =\sqrt{1682}
\end{aligned}
$$

PTS: 4
REF: 081734geo NAT: G.MG.A. 3 TOP: Area of Polygons

ANS:
C
PTS: 2 REF: 011725geo NAT: G.CO.D. 12 TOP: Constructions
KEY: line bisector
368 ANS: 3
In (1) and (2), $A B C D$ could be a rectangle with non-congruent sides. (4) is not possible
PTS: 2 REF: 081714geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals
369 ANS: 3
$\cos 40=\frac{14}{x}$

$$
x \approx 18
$$

PTS: 2 REF: 011712geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
370 ANS:
rotation 180° about the origin, translation 2 units down; rotation 180° about B, translation 6 units down and 6 units left; or reflection over x-axis, translation 2 units down, reflection over y-axis

PTS: 2 REF: 081828geo NAT: G.CO.A. 5 TOP: Compositions of Transformations KEY: identify
371 ANS: 2

$$
\begin{aligned}
(x-5)^{2}+(y-2)^{2} & =16 \\
x^{2}-10 x+25+y^{2}-4 y+4 & =16 \\
x^{2}-10 x+y^{2}-4 y & =-13
\end{aligned}
$$

PTS: 2 REF: 061820geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: write equation, given graph
372 ANS: 4
$C=12 \pi \frac{120}{360}(12 \pi)=\frac{1}{3}(12 \pi)$
PTS: 2 REF: 061822geo NAT: G.C.B. 5 TOP: Arc Length
KEY: arc length

373 ANS: 4
$x^{2}+4 x+4+y^{2}-8 y+16=-16+4+16$

$$
(x+2)^{2}+(y-4)^{2}=4
$$

PTS: 2
REF: 081821geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
374 ANS:
$\sqrt[3]{\frac{3 V_{f}}{4 \pi}}-\sqrt[3]{\frac{3 V_{p}}{4 \pi}}=\sqrt[3]{\frac{3(294)}{4 \pi}}-\sqrt[3]{\frac{3(180)}{4 \pi}} \approx 0.6$
PTS: 2 REF: 061728geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres
ANS:
If an altitude is drawn to the hypotenuse of a triangle, it divides the triangle into two right triangles similar to each other and the original triangle.

PTS: 2 REF: 061729geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
376
ANS: 2

PTS: 2 REF: 081814geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: tangents drawn from common point, length
ANS:
$29.5=2 \pi r \quad V=\frac{4}{3} \pi \cdot\left(\frac{29.5}{2 \pi}\right)^{3} \approx 434$
$r=\frac{29.5}{2 \pi}$
PTS: 2 REF: 061831geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres
378
ANS: 4
Opposite angles of an inscribed quadrilateral are supplementary.
PTS: 2 REF: 011821geo NAT: G.C.A. 3 TOP: Inscribed Quadrilaterals
379 ANS: 2
$6+6 \sqrt{3}+6+6 \sqrt{3} \approx 32.8$
PTS: 2 REF: 011709geo NAT: G.SRT.C. 8 TOP: 30-60-90 Triangles

380 ANS: 1
$x=-5+\frac{1}{3}(4--5)=-5+3=-2 \quad y=2+\frac{1}{3}(-10-2)=2-4=-2$
PTS: 2 REF: 011806geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
381 ANS:

PTS: 2 REF: 081826geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons 382 ANS: 1

Parallel chords intercept congruent arcs. $\frac{180-130}{2}=25$
PTS: 2
REF: 081704geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: parallel lines
ANS: 2
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$

$$
3.6=x
$$

PTS: 2
REF: 081820geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
384 ANS: 1
$84=\frac{1}{3} \cdot s^{2} \cdot 7$
$6=s$
PTS: 2
REF: 061716geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
385

$$
\begin{aligned}
& \text { ANS: } \\
& \begin{aligned}
\frac{Q}{360}(\pi)\left(25^{2}\right) & =(\pi)\left(25^{2}\right)-500 \pi \\
Q & =\frac{125 \pi(360)}{625 \pi} \\
Q & =72
\end{aligned}
\end{aligned}
$$

PTS: 2 REF: 011828geo NAT: G.C.B. 5 TOP: Sectors

386
ANS:
Yes, as translations do not change angle measurements.
PTS: 2 REF: 061825geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: basic
387 ANS: 4
PTS: 2
REF: 011810geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
ANS:
$100 \times \frac{1}{2} \times \frac{4}{3} \times \pi \times 2.8^{3} \approx 4598$
PTS: 2
REF: 062229geo
NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres
ANS: 3
PTS: 2
REF: 061703geo NAT: G.SRT.C. 7
TOP: Cofunctions
390
ANS:
C: $V=\pi(26.7)^{2}(750)-\pi(24.2)^{2}(750)=95,437.5 \pi$

$$
95,437.5 \pi \mathrm{~cm}^{3}\left(\frac{2.7 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{\$ 0.38}{\mathrm{~kg}}\right)=\$ 307.62
$$

P: $V=40^{2}(750)-35^{2}(750)=281,250$
$\$ 307.62-288.56=\$ 19.06$

$$
281,250 \mathrm{~cm}^{3}\left(\frac{2.7 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{\$ 0.38}{\mathrm{~kg}}\right)=\$ 288.56
$$

PTS: 6
REF: 011736geo NAT: G.MG.A. 2 TOP: Density

ANS:

$A(-2,1) \rightarrow(-3,-1) \rightarrow(-6,-2) \rightarrow(-5,0), B(0,5) \rightarrow(-1,3) \rightarrow(-2,6) \rightarrow(-1,8)$, $C(4,-1) \rightarrow(3,-3) \rightarrow(6,-6) \rightarrow(7,-4)$

PTS: 2
REF: 061826geo NAT: G.SRT.A. 2 TOP: Dilations

ANS: 3

$\frac{x+72}{2}=58$

$$
\begin{aligned}
x+72 & =116 \\
x & =44
\end{aligned}
$$

PTS: 2 REF: 061817geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: intersecting chords, angle

393 ANS: 2
$x^{2}=3 \cdot 18$
$x=\sqrt{3 \cdot 3 \cdot 6}$
$x=3 \sqrt{6}$
PTS: 2 REF: 081712geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: secant and tangent drawn from common point, length
394 ANS:
$2\left(\frac{36}{12} \times \frac{36}{12} \times \frac{4}{12}\right) \times 3.25=19.50$
PTS: 2 REF: 081831geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
395 ANS: 1

$$
(12 \cdot 11)-\left(\frac{1}{2}(12 \cdot 4)+\frac{1}{2}(7 \cdot 9)+\frac{1}{2}(11 \cdot 3)\right)=60
$$

PTS: 2 REF: 061815geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
396 ANS: 3
PTS: 2
REF: 011714geo NAT: G.SRT.C. 6
TOP: Trigonometric Ratios
ANS:

PTS: 2
REF: 061725geo
NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines
398

```
ANS: 2
```

$8(x+8)=6(x+18)$
$8 x+64=6 x+108$
$2 x=44$
$x=22$
PTS: 2
REF: 011715geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, length

399 ANS: 4

$$
\begin{aligned}
\frac{5}{7} & =\frac{x}{x+5} 12 \frac{1}{2}+5=17 \frac{1}{2} \\
5 x+25 & =7 x \\
2 x & =25 \\
x & =12 \frac{1}{2}
\end{aligned}
$$

PTS: 2 REF: 061821geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
400 ANS: 1
NYSED accepts either (1) or (3) as a correct answer. Statement III is not true if A, B, A^{\prime} and B^{\prime} are collinear.
PTS: 2 REF: 061714geo NAT: G.SRT.A. 2 TOP: Compositions of Transformations
KEY: basic
401
Parallelogram $A B C D$ with diagonal $\overline{A C}$ drawn (given). $\overline{A C} \cong \overline{A C}$ (reflexive property). $\overline{A D} \cong \overline{C B}$ and $\overline{B A} \cong \overline{D C}$ (opposite sides of a parallelogram are congruent). $\triangle A B C \cong \triangle C D A$ (SSS).

PTS: 2 REF: 011825geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
402 ANS: 3
$\frac{360^{\circ}}{5}=72^{\circ} 216^{\circ}$ is a multiple of 72°
PTS: 2 REF: 061819geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
403 ANS: 3

$$
\begin{aligned}
v=\pi r^{2} h & \text { (1) } 6^{2} \cdot 10=360 \\
150 \pi=\pi r^{2} h & \text { (2) } 10^{2} \cdot 6=600 \\
150=r^{2} h & \text { (3) } 5^{2} \cdot 6=150 \\
& \text { (4) } 3^{2} \cdot 10=900
\end{aligned}
$$

PTS: 2 REF: 081713geo NAT: G.GMD.B. 4 TOP: Rotations of Two-Dimensional Objects 404 ANS: 3
$6 \cdot 3^{2}=5412 \cdot 3=36$
PTS: 2 REF: 081823geo NAT: G.SRT.A. 2 TOP: Dilations
405 ANS:
$\frac{152-56}{2}=48$
PTS: 2
REF: 011728geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, angle

406 ANS: 3
$\frac{24}{40}=\frac{15}{x}$
$24 x=600$
$x=25$
PTS: 2
REF: 011813geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
407 ANS:
$\cos B$ increases because $\angle A$ and $\angle B$ are complementary and $\sin A=\cos B$.
PTS: 2 REF: 011827geo NAT: G.SRT.C. 7 TOP: Cofunctions
408 ANS: 3
PTS: 2
REF: 011710geo NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify
409 ANS:

$$
\sqrt{(2.5-1)^{2}+(-.5-1.5)^{2}}=\sqrt{2.25+4}=2.5
$$

PTS: 2 REF: 081729geo NAT: G.SRT.A. 1 TOP: Line Dilations
410 ANS:

Right triangle because $\angle C B F$ is inscribed in a semi-circle.
PTS: 4 REF: 011733geo NAT: G.CO.D. 13 TOP: Constructions
411 ANS: 2
$m=\frac{3}{2} \quad . \quad 1=-\frac{2}{3}(-6)+b$
$m_{\perp}=-\frac{2}{3} \quad \begin{aligned} 1 & =4+b \\ -3 & =b\end{aligned}$
PTS: 2 REF: 061719geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line
ANS: 4 PTS: 2
REF: 011819geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals

413 ANS: 2
$x^{2}+y^{2}-6 x+2 y=6$
$x^{2}-6 x+9+y^{2}+2 y+1=6+9+1$

$$
(x-3)^{2}+(y+1)^{2}=16
$$

PTS: 2 REF: 011812geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: completing the square
414 ANS:
No. Since $\overline{B C}=5$ and $\overline{S T}=\sqrt{18}$ are not congruent, the two triangles are not congruent. Since rigid motions preserve distance, there is no rigid motion that maps $\triangle A B C$ onto $\triangle R S T$.

PTS: 2 REF: 011830geo NAT: G.CO.B. 7 TOP: Triangle Congruency
415 ANS:
$\frac{4 \pi}{3}\left(2^{3}-1.5^{3}\right) \approx 19.419 .4 \cdot 1.308 \cdot 8 \approx 203$
PTS: 4 REF: 081834geo NAT: G.MG.A. 2 TOP: Density
416 ANS: 1
$360-(82+104+121)=53$
PTS: 2 REF: 011801geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graph
417 ANS: 2
$\cos B=\frac{17.6}{26}$

$$
B \approx 47
$$

PTS: 2 REF: 061806geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
418 ANS: 4
$9 \cdot 3=27,27 \cdot 4=108$
PTS: 2 REF: 061805geo NAT: G.SRT.A. 2 TOP: Dilations
419 ANS:
$V=(\pi)\left(4^{2}\right)(9)+\left(\frac{1}{2}\right)\left(\frac{4}{3}\right)(\pi)\left(4^{3}\right) \approx 586$
PTS: 4 REF: 011833geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
420
ANS:

$$
\begin{aligned}
\tan 15 & =\frac{6250}{x} \quad \tan 52
\end{aligned}=\frac{6250}{y} 23325.3-4883=18442 \frac{18442 \mathrm{ft}}{1 \mathrm{~min}}\left(\frac{1 \mathrm{mi}}{5280 \mathrm{ft}}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{~h}}\right) \approx 210
$$

PTS: 6 REF: 061736geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: advanced

421 ANS:
$\cos W=\frac{6}{18}$
$W \approx 71$
PTS: 2 REF: 011831geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
422 ANS:

PTS: 2 REF: 081825geo NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines
423 ANS: 4

PTS: 2 REF: 081711geo NAT: G.CO.C. 10 TOP: Exterior Angle Theorem
424 ANS: 2
$\frac{x}{x+3}=\frac{14}{21} \quad 14-6=8$

$$
\begin{aligned}
21 x & =14 x+42 \\
7 x & =42 \\
x & =6
\end{aligned}
$$

PTS: 2 REF: 081812geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
425 ANS:
Yes, because 28° and 62° angles are complementary. The sine of an angle equals the cosine of its complement.
PTS: 2
REF: 011727geo NAT: G.SRT.C. 7 TOP: Cofunctions
426
ANS: 1
$\frac{64}{4}=16 \quad 16^{2}=256 \quad 2 w+2(w+2)=6415 \times 17=255 \quad 2 w+2(w+4)=64 \quad 14 \times 18=252 \quad 2 w+2(w+6)=64$
$w=15$
$w=14$
$w=13$
$13 \times 19=247$
PTS: 2 REF: 011708geo NAT: G.MG.A. 3 TOP: Area of Polygons

427 ANS: 1
$\sin 32=\frac{x}{6.2}$

$$
x \approx 3.3
$$

PTS: 2 REF: 081719geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side ANS: 4 PTS: 2

REF: 061813geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
429 ANS: 1
$2 x+4+46=90$
$2 x=40$
$x=20$
PTS: 2 REF: 061808geo NAT: G.SRT.C. 7 TOP: Cofunctions
430 ANS: 1
Since a dilation preserves parallelism, the line $4 y=3 x+7$ and its image $3 x-4 y=9$ are parallel, with slopes of $\frac{3}{4}$.
PTS: 2 REF: 081710geo NAT: G.SRT.A. 1 TOP: Line Dilations
431 ANS: 1 PTS: 2 REF: 011814geo NAT: G.SRT.A. 1
TOP: Line Dilations
432 ANS: 1
$-8+\frac{3}{8}(16--8)=-8+\frac{3}{8}(24)=-8+9=1-2+\frac{3}{8}(6--2)=-2+\frac{3}{8}(8)=-2+3=1$
PTS: 2 REF: 081717geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
433 ANS: 4
$\sin 71=\frac{x}{20}$
$x=20 \sin 71 \approx 19$
PTS: 2 REF: 061721geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: without graphics
434 ANS: 1
$V=\frac{1}{3} \pi(4)^{2}(6)=32 \pi$
PTS: 2 REF: 061718geo NAT: G.GMD.B. 4 TOP: Rotations of Two-Dimensional Objects
435 ANS: 4
$\frac{300}{360} \cdot 8^{2} \pi=\frac{160 \pi}{3}$
PTS: 2 REF: 011721geo NAT: G.C.B. 5 TOP: Sectors

436 ANS:

$$
m_{\overline{M H}}=\frac{6}{10}=\frac{3}{5}, m_{\overline{A T}}=\frac{6}{10}=\frac{3}{5}, m_{\overline{M A}}=-\frac{5}{3}, m_{\overline{H T}}=-\frac{5}{3} ; \overline{M H} \| \overline{A T} \text { and } \overline{M A} \| \overline{H T} .
$$

MATH is a parallelogram since both sides of opposite sides are parallel. $m_{M A}=-\frac{5}{3}, m_{A T}=\frac{3}{5}$. Since the slopes are negative reciprocals, $\overline{M A} \perp \overline{A T}$ and $\angle A$ is a right angle. $M A T H$ is a rectangle because it is a parallelogram with a right angle.

PTS: 6 REF: 081835geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids
437 ANS:

A dilation preserves slope, so the slopes of $\overline{Q R}$ and $\overline{Q^{\prime} R^{\prime}}$ are equal. Because the slopes are equal, $Q^{\prime} R^{\prime} \| Q R$.

PTS: 4 REF: 011732geo NAT: G.SRT.A. 2 TOP: Dilations
KEY: grids
438 ANS: 1
$20 \cdot 12 \cdot 45+\frac{1}{2} \pi(10)^{2}(45) \approx 17869$
PTS: 2 REF: 061807geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
439 ANS: 3
$4 \sqrt{(-1--3)^{2}+(5-1)^{2}}=4 \sqrt{20}$
PTS: 2 REF: 081703geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
440 ANS: 4
$\frac{360^{\circ}}{10}=36^{\circ} 252^{\circ}$ is a multiple of 36°
PTS: 2 REF: 081722geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself

441 ANS:
$\overline{R S}$ and $\overline{T V}$ bisect each other at point $X ; \overline{T R}$ and $\overline{S V}$ are drawn (given); $\overline{T X} \cong \overline{X V}$ and $\overline{R X} \cong \overline{X S}$ (segment bisectors create two congruent segments); $\angle T X R \cong \angle V X S$ (vertical angles are congruent); $\triangle T X R \cong \triangle V X S$ (SAS); $\angle T \cong \angle V$ (CPCTC); $\overline{T R} \| \overline{S V}$ (a transversal that creates congruent alternate interior angles cuts parallel lines).

PTS: 4 REF: 061733geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: proof
442 ANS: 4
The segment's midpoint is the origin and slope is -2 . The slope of a perpendicular line is $\frac{1}{2} . \quad y=\frac{1}{2} x+0$

$$
\begin{array}{r}
2 y=x \\
2 y-x=0
\end{array}
$$

PTS: 2 REF: 081724geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: perpendicular bisector
443 ANS: 4
$\frac{360^{\circ}}{10}=36^{\circ} 252^{\circ}$ is a multiple of 36°
PTS: 2 REF: 011717geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
444 ANS:
Parallelogram $A B C D, \overline{B F} \perp \overline{A F D}$, and $\overline{D E} \perp \overline{B E C}$ (given); $\overline{B C} \| \overline{A D}$ (opposite sides of a \square are $\|$); $\overline{B E} \| \overline{F D}$ (parts of $\|$ lines are $\|$); $\overline{B F} \| \overline{D E}$ (two lines \perp to the same line are $\|$); BEDF is \square (a quadrilateral with both pairs of opposite sides $\|$ is a \square); $\angle D E B$ is a right $\angle(\perp$ lines form right $\angle \mathrm{s}$); BEDF is a rectangle (a \square with one right \angle is a rectangle).

PTS: 6 REF: 061835geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs
445 ANS:

$$
\begin{aligned}
20000 \mathrm{~g}\left(\frac{1 \mathrm{ft}^{3}}{7.48 \mathrm{~g}}\right)=2673.8 \mathrm{ft}^{3} \quad 2673.8 & =\pi r^{2}(34.5) 9.9+1=10.9 \\
r & \approx 4.967 \\
d & \approx 9.9
\end{aligned}
$$

PTS: 4 REF: 061734geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
446 ANS: 4 PTS: 2 REF: 081813geo NAT: G.CO.C. 11
TOP: Parallelograms
447 ANS: 3 PTS: 2 REF: 061706geo NAT: G.SRT.A. 1
TOP: Line Dilations

448 ANS:
$\overline{P Q} \sqrt{(8-3)^{2}+(3--2)^{2}}=\sqrt{50} \overline{Q R} \sqrt{(1-8)^{2}+(4-3)^{2}}=\sqrt{50} \overline{R S} \sqrt{(-4-1)^{2}+(-1-4)^{2}}=\sqrt{50}$
$\overline{P S} \sqrt{(-4-3)^{2}+(-1--2)^{2}}=\sqrt{50} P Q R S$ is a rhombus because all sides are congruent. $m_{P Q}=\frac{8-3}{3-2}=\frac{5}{5}=1$
$m_{\overline{Q R}}=\frac{1-8}{4-3}=-7$ Because the slopes of adjacent sides are not opposite reciprocals, they are not perpendicular

and do not form a right angle. Therefore $P Q R S$ is not a square.
REF: 061735geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
PTS: 6 KEY: grids
ANS:

PTS: 2
REF: 061829geo NAT: G.CO.D. 12 TOP: Constructions
KEY: line bisector
450 ANS:
Each triangular prism has the same base area. Therefore, each corresponding cross-section of the prisms will have the same area. Since the two prisms have the same height of 14 , the two volumes must be the same.

PTS: 2 REF: 061727geo NAT: G.GMD.A. 1 TOP: Volume
451 ANS: 4
AA
PTS: 2 REF: 061809geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
452 ANS: 2
$V=\frac{1}{3}\left(\frac{60}{12}\right)^{2}\left(\frac{84}{12}\right) \approx 58$
PTS: 2
REF: 081819geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids

453
ANS: 1
$m=\frac{-4}{-6}=\frac{2}{3}$
$m_{\perp}=-\frac{3}{2}$
PTS: 2 REF: 011820geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line
ANS: 3

$$
\begin{aligned}
x(x-6) & =4^{2} \\
x^{2}-6 x-16 & =0 \\
(x-8)(x+2) & =0 \\
x & =8
\end{aligned}
$$

PTS: 2 REF: 081807geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude

The line is on the center of dilation, so the line does not change. $p: 3 x+4 y=20$
PTS: 2
REF: 061731geo
NAT: G.SRT.A. 1 TOP: Line Dilations
456 ANS: 4

$$
\begin{aligned}
\frac{2}{4} & =\frac{9-x}{x} \\
36-4 x & =2 x \\
x & =6
\end{aligned}
$$

PTS: 2 REF: 061705geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
ANS:
Isosceles trapezoid $A B C D, \angle C D E \cong \angle D C E, \overline{A E} \perp \overline{D E}$, and $\overline{B E} \perp \overline{C E}$ (given); $\overline{A D} \cong \overline{B C}$ (congruent legs of isosceles trapezoid); $\angle D E A$ and $\angle C E B$ are right angles (perpendicular lines form right angles); $\angle D E A \cong \angle C E B$ (all right angles are congruent); $\angle C D A \cong \angle D C B$ (base angles of an isosceles trapezoid are congruent); $\angle C D A-\angle C D E \cong \angle D C B-\angle D C E$ (subtraction postulate); $\triangle A D E \cong \triangle B C E$ (AAS); $\overline{E A} \cong \overline{E B}$ (СРСТС);

$$
\angle E D A \cong \angle E C B
$$

$\triangle A E B$ is an isosceles triangle (an isosceles triangle has two congruent sides).
PTS: 6
REF: 081735geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs

458 ANS: 1
$3+\frac{2}{5}(8-3)=3+\frac{2}{5}(5)=3+2=55+\frac{2}{5}(-5-5)=5+\frac{2}{5}(-10)=5-4=1$
PTS: 2 REF: 011720geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
459 ANS: 2
$\tan \theta=\frac{2.4}{x}$

$$
\begin{gathered}
\frac{3}{7}=\frac{2.4}{x} \\
x=5.6
\end{gathered}
$$

PTS: 2 REF: 011707geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
ANS: 1
PTS: 2
REF: 061801geo
NAT: G.CO.B. 6
TOP: Properties of Transformations
KEY: graphics
461 ANS:
$\frac{40}{360} \cdot \pi(4.5)^{2}=2.25 \pi$
PTS: 2
REF: 061726geo
NAT: G.C.B. 5 TOP: Sectors
462 ANS:
$V=\pi(10)^{2}(18)=1800 \pi \mathrm{in}^{3} 1800 \pi \mathrm{in}^{3}\left(\frac{1 \mathrm{ft}^{3}}{12^{3} \mathrm{in}^{3}}\right)=\frac{25}{24} \pi \mathrm{ft}^{3} \frac{25}{24} \pi(95.46)(0.85) \approx 266266+270=536$
PTS: 4 REF: 061834geo NAT: G.MG.A. 2 TOP: Density
463 ANS: 1
$V=\frac{1}{3} \pi\left(\frac{1.5}{2}\right)^{2}\left(\frac{4}{2}\right) \approx 1.2$
PTS: 2 REF: 011724geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
464
ANS: 2
PTS: 2
REF: 061709geo NAT: G.SRT.B. 5
TOP: Triangle Proofs
465 ANS: 4
PTS: 2
KEY: statements
REF: 011706geo NAT: G.CO.A. 2
KEY: basic
466 ANS: 1
$\cos S=\frac{60}{65}$
$S \approx 23$
PTS: 2 REF: 061713geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

467
ANS: 2
$\frac{\frac{512 \pi}{3}}{\left(\frac{32}{2}\right)^{2} \pi} \cdot 2 \pi=\frac{4 \pi}{3}$
PTS: 2 REF: 081723geo NAT: G.C.B. 5 TOP: Sectors
468 ANS:
Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, and $\overline{B F}$ and $\overline{D E}$ are perpendicular to diagonal $\overline{A C}$ at points F and E (given). $\angle A E D$ and $\angle C F B$ are right angles (perpendicular lines form right angles). $\angle A E D \cong \angle C F B$ (All right angles are congruent). $A B C D$ is a parallelogram (A quadrilateral with one pair of sides congruent and parallel is a parallelogram). $\overline{A D} \| \overline{B C}$ (Opposite sides of a parallelogram are parallel). $\angle D A E \cong \angle B C F$ (Parallel lines cut by a transversal form congruent alternate interior angles). $\overline{D A} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent). $\triangle A D E \cong \triangle C B F$ (AAS). $\overline{A E} \cong \overline{C F}$ (СРСТС).

PTS: 6 REF: 011735geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
469 ANS:
Yes. $\angle A \cong \angle X, \angle C \cong \angle Z, \overline{A C} \cong \overline{X Z}$ after a sequence of rigid motions which preserve distance and angle measure, so $\triangle A B C \cong \triangle X Y Z$ by ASA. $\overline{B C} \cong \overline{Y Z}$ by СРСТС.

PTS: 2 REF: 081730geo NAT: G.CO.B. 7 TOP: Triangle Congruency
470 ANS: 2
$x^{2}=12(12-8)$
$x^{2}=48$
$x=4 \sqrt{3}$
PTS: 2 REF: 011823geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
471
ANS: 4 PTS: 2
TOP: Chords, Secants and Tangents
REF: 011816geo NAT: G.C.A. 2
KEY: inscribed
472 ANS:

$$
\begin{aligned}
\tan 36 & =\frac{x}{10} \quad \cos 36=\frac{10}{y} 12.3607 \times 3 \approx 37 \\
x & \approx 7.3 \quad y \approx 12.3607
\end{aligned}
$$

PTS: 4 REF: 081833geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
473 ANS: 2
$\angle B=180-(82+26)=72 ; \angle D E C=180-26=154 ; \angle E D B=360-(154+26+72)=108 ; \angle B D F=\frac{108}{2}=54 ;$
$\angle D F B=180-(54+72)=54$
PTS: 2 REF: 061710geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles

474 ANS: 3
The x-axis and line $x=4$ are lines of symmetry and $(4,0)$ is a point of symmetry.
PTS: 2 REF: 081706geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
475 ANS: 4

PTS: 2 REF: 081708geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
476 ANS:

$r_{x=-1}$ Reflections are rigid motions that preserve distance, so $\triangle A B C \cong \triangle D E F$.
PTS: 4 REF: 061732geo NAT: G.CO.A. 2 TOP: Identifying Transformations
KEY: graphics
477
ANS: 3
$y=m x+b$
$2=\frac{1}{2}(-2)+b$
$3=b$
PTS: 2 REF: 011701geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of parallel line
478
ANS: 3
$\sqrt{(-5)^{2}+12^{2}}=\sqrt{169} \sqrt{11^{2}+(2 \sqrt{12})^{2}}=\sqrt{121+48}=\sqrt{169}$
PTS: 2
REF: 011722geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane

479 ANS:

PTS: 2
REF: 011731geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
480
ANS: 4
$4 \sqrt{(-1-2)^{2}+(2-3)^{2}}=4 \sqrt{10}$
PTS: 2 REF: 081808geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
ANS: 3
$\triangle C F B \sim \triangle C A D \quad \frac{C B}{C F}=\frac{C D}{C A}$

$$
\begin{aligned}
\frac{x}{21.6} & =\frac{7.2}{9.6} \\
x & =16.2
\end{aligned}
$$

PTS: 2 REF: 061804geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
482 ANS: 1
PTS. 2
TOP: Compositions of Transformations
REF: 081804geo NAT: G.SRT.A. 2
483 ANS: 2
$V=\frac{1}{3}\left(\frac{36}{4}\right)^{2} \cdot 15=405$
PTS: 2
KEY: pyramids
484 ANS: $4 \quad$ PTS: 2
TOP: Identifying Transformations
KEY: grids

REF: 011822geo
NAT: G.GMD.A. 3 TOP: Volume

ANS: 3
NYSED has stated that all students should be awarded credit regardless of their answer to this question.
PTS: 2 REF: 061722geo NAT: G.CO.B. 7 TOP: Triangle Congruency
486 ANS: 4
PTS: 2
REF: 081801geo NAT: G.CO.C. 9
TOP: Lines and Angles

487
ANS: 3
$2.5 \times 1.25 \times(27 \times 12)+\frac{1}{2} \pi(1.25)^{2}(27 \times 12) \approx 1808$
PTS: 2
REF: 061723geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
488
ANS: 1
$82.8=\frac{1}{3}(4.6)(9) h$
$h=6$
PTS: 2 REF: 061810geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
489
ANS:
$\tan 72=\frac{x}{400} \quad \sin 55=\frac{400 \tan 72}{y}$

$$
x=400 \tan 72 \quad y=\frac{400 \tan 72}{\sin 55} \approx 1503
$$

PTS: 4 REF: 061833geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: advanced
490 ANS: 2
$m=\frac{3}{2}$
$m_{\perp}=-\frac{2}{3}$

PTS: 2 REF: 061812geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line
491 ANS: 2
$\triangle A C B \sim \triangle A E D$
PTS: 2 REF: 061811geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
492 ANS: 2
$-4+\frac{2}{5}(1--4)=-4+\frac{2}{5}(5)=-4+2=-2-2+\frac{2}{5}(8--2)=-2+\frac{2}{5}(10)=-2+4=2$

PTS: 2 REF: 061814geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
493 ANS: 4
PTS: 2
REF: 011803geo NAT: G.CO.A. 2
TOP: Identifying Transformations
KEY: graphics
494
ANS: 2 PTS: 2
TOP: Parallelograms

495 ANS:
$\triangle P A T$ is an isosceles triangle because sides $\overline{A P}$ and $\overline{A T}$ are congruent $\left(\sqrt{3^{2}+11^{2}}=\sqrt{7^{2}+9^{2}}=\sqrt{130}\right)$.
$R(2,9)$. Quadrilateral PART is a parallelogram because the opposite sides are parallel since they have equal slopes
$\left(m_{\overline{A R}}=\frac{4}{6}=\frac{2}{3} ; m_{\overline{P T}}=\frac{4}{6}=\frac{2}{3} ; m_{P A}=-\frac{11}{3} ; m_{\overline{R T}}=-\frac{11}{3}\right)$

PTS: 6 REF: 011835geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
496 ANS: 4
$\frac{1}{2}(360-268)=46$

PTS: 2 REF: 061704geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: inscribed
497
ANS: 4 PTS: 2
TOP: Similarity KEY: basic
498 ANS: 2 PTS: 2
NAT: G.CO.C. 11
TOP: Parallelograms
499
ANS: 3 PTS: 2 REF: 061816geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
500 ANS: 1 PTS: 2 REF: 061707geo NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
501 ANS: 2 PTS: 2 REF: 081701geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
502 ANS: 4 PTS: 2 REF: 011704geo NAT: G.CO.C. 10
TOP: Midsegments
503 ANS:
$x^{2}-6 x+9+y^{2}+8 y+16=56+9+16(3,-4) ; r=9$
$(x-3)^{2}+(y+4)^{2}=81$
PTS: 2 REF: 081731geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
504 ANS: 3
$\frac{7-1}{0-2}=\frac{6}{-2}=-3$ The diagonals of a rhombus are perpendicular.
PTS: 2 REF: 011719geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane

505 ANS: 3
$\frac{s_{L}}{s_{S}}=\frac{6 \theta}{4 \theta}=1.5$
PTS: 2 REF: 011824geo NAT: G.C.B. 5 TOP: Arc Length
KEY: arc length
506
ANS:
$500 \times 1015 \mathrm{cc} \times \frac{\$ 0.29}{\mathrm{~kg}} \times \frac{7.95 \mathrm{~g}}{\mathrm{cc}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=\$ 1170$

PTS: 2 REF: 011829geo NAT: G.MG.A. 2 TOP: Density
507 ANS:
A dilation of 3 centered at A. A dilation preserves angle measure, so the triangles are similar.
PTS: 4 REF: 011832geo NAT: G.SRT.A. 2 TOP: Dilations
508 ANS: 1
$x^{2}+y^{2}-6 y+9=-1+9$
$x^{2}+(y-3)^{2}=8$
PTS: 2
REF: 011718geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
509

$\angle D E A \cong \angle C B A$ because they are both right $\angle \mathrm{s}$.
PTS: 2 REF: 081829geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
510 ANS: 4 PTS: 2
TOP: Medians, Altitudes and Bisectors
511 ANS: 4
TOP: Midsegments
512 ANS: 4 PTS: 2
513 ANS: 4 PTS: 2
TOP: Analytical Representations of Transformations
KEY: basic

514 ANS:

$$
\begin{array}{rlrl}
\tan 16.5 & =\frac{x}{13.5} & 9 \times 16 \times 4.5 & =648 \\
x & 3752-(35 \times 16 \times .5)=3472 \\
x & \approx 4.5 \times 16 \times 4.5 & =972 & 3472 \times 7.48 \approx 25971 \\
4+4.5 & =8.5 & \frac{1}{2} \times 13.5 \times 16 \times 4 & =432 \\
& & \frac{25971}{10.5} \approx 2473.4 \\
12.5 \times 16 \times 8.5 & =\frac{1700}{3752} \frac{2473.4}{60} \approx 41
\end{array}
$$

PTS: 6 REF: 081736geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
515 ANS:
$R_{180^{\circ}}$ about $\left(-\frac{1}{2}, \frac{1}{2}\right)$
PTS: 2 REF: 081727geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
516 ANS: 2
$\frac{30}{360}(5)^{2}(\pi) \approx 6.5$
PTS: 2 REF: 081818geo NAT: G.C.B. 5 TOP: Sectors
517 ANS: 3 PTS: 2 REF: 081817geo NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
518 ANS:
Rotate $\triangle A B C$ clockwise about point C until $\overline{D F} \| \overline{A C}$. Translate $\triangle A B C$ along $\overline{C F}$ so that C maps onto F.
PTS: 2 REF: 061730geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
519 ANS: 4
$\frac{36}{45} \neq \frac{15}{18}$
$\frac{4}{5} \neq \frac{5}{6}$
PTS: 2 REF: 081709geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
520 ANS: 4 PTS: 2 REF: 061711geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
521 ANS: 1
$V=\frac{1}{2} \times \frac{4}{3} \pi r^{3}=\frac{1}{2} \times \frac{4}{3} \pi \cdot\left(\frac{12.6}{2}\right)^{3} \approx 523.7$
PTS: 2
REF: 061910geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres

522 ANS: 1
$\tan x=\frac{1}{12}$

$$
x \approx 4.76
$$

PTS: 2 REF: 081715geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle 523 ANS:

PTS: 2 REF: 011826geo NAT: G.CO.D. 13 TOP: Constructions
524 ANS: 1
Distance and angle measure are preserved after a reflection and translation.
PTS: 2 REF: 081802geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: basic
ANS:
2 Reflexive; $4 \angle B D A \cong \angle B D C$; 6 CPCTC; 7 If points B and D are equidistant from the endpoints of $\overline{A C}$, then B and D are on the perpendicular bisector of $\overline{A C}$.

PTS: 4 REF: 081832geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: proof
526 ANS: 1
$\sin 32=\frac{O}{129.5}$
$O \approx 68.6$
PTS: 2 REF: 011804geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

527 ANS: 2

PTS: 2 REF: 011818geo NAT: G.CO.C. 9 TOP: Lines and Angles
528 ANS: 1
$-8+\frac{3}{5}(7--8)=-8+9=17+\frac{3}{5}(-13-7)=7-12=-5$
PTS: 2 REF: 081815geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
529 ANS: 3 PTS: 2 REF: 061802geo NAT: G.CO.C. 9
TOP: Lines and Angles
530 ANS:

PTS: 2 REF: 081827geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: intersecting chords, angle
531 ANS: 2
$-4+\frac{2}{5}(6--4)=-4+\frac{2}{5}(10)=-4+4=05+\frac{2}{5}(20-5)=5+\frac{2}{5}(15)=5+6=11$
PTS: 2 REF: 061715geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
532 ANS: 4
PTS: 2
TOP: Triangles in the Coordinate Plane
533
ANS: 3
PTS: 2
REF: 011921geo NAT: G.GPE.B. 4

TOP: Mapping a Polygon onto Itself
534 ANS:
Yes. The bases of the cylinders have the same area and the cylinders have the same height.
PTS: 2
REF: 081725geo NAT: G.GMD.A. 1 TOP: Volume

535 ANS:

PTS: 2 REF: 081728geo NAT: G.CO.D. 13 TOP: Constructions
536 ANS: 4 PTS: 2 REF: 081803geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
537 ANS:
$180-2(25)=130$
PTS: 2 REF: 011730geo NAT: G.CO.C. 10
TOP: Centroid, Orthocenter, Incenter and Circumcenter
538 ANS: 3 PTS: 2 REF: 061702geo NAT: G.GPE.B. 7
TOP: Polygons in the Coordinate Plane
539 ANS: 1 PTS: 2
REF: 011716geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
540 ANS: 2
$4 \times 4 \times 6-\pi(1)^{2}(6) \approx 77$
PTS: 2 REF: 011711geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
541 ANS: 3
$\frac{x}{6.3}=\frac{3}{5} \quad \frac{y}{9.4}=\frac{6.3}{6.3+3.78}$
$x=3.78 \quad y \approx 5.9$
PTS: 2 REF: 081816geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem

542 ANS:

PTS: 4
REF: 081732geo
543 ANS: 2
$2 x+7+4 x-7=90$

$$
\begin{aligned}
6 x & =90 \\
x & =15
\end{aligned}
$$

PTS: 2
REF: 081824geo
544 ANS: 1
$x^{2}+y^{2}-12 y+36=-20+36$

$$
x^{2}+(y-6)^{2}=16
$$

PTS: 2
REF: 061712geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
545 ANS: 2
PTS: 2
TOP: Compositions of Transformations
546 ANS:
$T_{0,-2} \circ r_{y \text {-axis }}$

PTS: 2
KEY: identify
547
ANS: 1
REF: 011726geo
PTS: 2
TOP: Triangle Congruency
548
TOP: Triangle Proofs

NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane

549 ANS: 1
The slope of $3 x+2 y=12$ is $-\frac{3}{2}$, which is the opposite reciprocal of $\frac{2}{3}$.
PTS: 2 REF: 081811geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: identify perpendicular lines
550
ANS:
Circle O, tangent $\overline{E C}$ to diameter $\overline{A C}$, chord $\overline{B C} \|$ secant $\overline{A D E}$, and chord $\overline{A B}$ (given); $\angle B$ is a right angle (an angle inscribed in a semi-circle is a right angle); $\overleftrightarrow{E C} \perp \overline{O C}$ (a radius drawn to a point of tangency is perpendicular to the tangent); $\angle E C A$ is a right angle (perpendicular lines form right angles); $\angle B \cong \angle E C A$ (all right angles are congruent); $\angle B C A \cong \angle C A E$ (the transversal of parallel lines creates congruent alternate interior angles); $\triangle A B C \sim \triangle E C A(A A) ; \frac{B C}{C A}=\frac{A B}{E C}$ (Corresponding sides of similar triangles are in proportion).

PTS: 4 REF: 081733geo NAT: G.SRT.B. 5 TOP: Circle Proofs
551 ANS:
$10 \cdot 6=15 x$

$$
x=4
$$

PTS: 2 REF: 061828geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: secants drawn from common point, length
552 ANS:

$$
C=2 \pi r \quad V=\frac{1}{3} \pi \cdot 5^{2} \cdot 13 \approx 340
$$

$31.416=2 \pi r$
$5 \approx r$
PTS: 4 REF: 011734geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
553 ANS: 3
$6 x-40+x+20=180-3 x \mathrm{~m} \angle B A C=180-(80+40)=60$

$$
\begin{aligned}
10 x & =200 \\
x & =20
\end{aligned}
$$

PTS: 2 REF: 011809geo NAT: G.CO.C. 10 TOP: Exterior Angle Theorem
554 ANS: 3
PTS: 2
REF: 081805geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects

555 ANS: 4
$\frac{6.6}{x}=\frac{4.2}{5.25}$
$4.2 x=34.65$

$$
x=8.25
$$

PTS: 2 REF: 081705geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
556 ANS: 2 PTS: 2 REF: 011805geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
557 ANS: 1
$\cos x=\frac{12}{13}$
$x \approx 23$
PTS: 2 REF: 081809ai NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle 558 ANS: 1
M is a centroid, and cuts each median 2:1.
PTS: 2 REF: 061818geo NAT: G.CO.C. 10
TOP: Centroid, Orthocenter, Incenter and Circumcenter
559 ANS: 2 PTS: 2 REF: 011702geo NAT: G.SRT.A. 2
TOP: Compositions of Transformations KEY: grids
560 ANS: 4
$\frac{1}{3.5}=\frac{x}{18-x}$
$3.5 x=18-x$
$4.5 x=18$

$$
x=4
$$

PTS: 2 REF: 081707geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
561 ANS:
The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.

PTS: 2 REF: spr1407geo NAT: G.SRT.C. 7 TOP: Cofunctions
562 ANS: 2
The line $y=-3 x+6$ passes through the center of dilation, so the dilated line is not distinct.
PTS: 2
REF: 061824geo NAT: G.SRT.A. 1 TOP: Line Dilations
563 ANS: 1
PTS: 2
REF: 011811geo NAT: G.SRT.A. 2
TOP: Dilations

ANS:
Translate $\triangle A B C$ along $\overline{C F}$ such that point C maps onto point F, resulting in image $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then reflect $\triangle A^{\prime} B^{\prime} C^{\prime}$ over $\overline{D F}$ such that $\triangle A^{\prime} B^{\prime} C^{\prime}$ maps onto $\triangle D E F$.
or
Reflect $\triangle A B C$ over the perpendicular bisector of $\overline{E B}$ such that $\triangle A B C$ maps onto $\triangle D E F$.
PTS: 2 REF: fall1408geo NAT: G.CO.B. 7 TOP: Triangle Congruency
565 ANS: 2
(1) AA; (3) SAS; (4) SSS. NYSED has stated that all students should be awarded credit regardless of their answer to this question.

PTS: 2 REF: 061724geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
566
ANS:
$M\left(\frac{4+0}{2}, \frac{6-1}{2}\right)=M\left(2, \frac{5}{2}\right) m=\frac{6--1}{4-0}=\frac{7}{4} m_{\perp}=-\frac{4}{7} y-2.5=-\frac{4}{7}(x-2)$ The diagonals, $\overline{M T}$ and $\overline{A H}$, of rhombus MATH are perpendicular bisectors of each other.

PTS: 4
REF: fall1411geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids

Geometry Regents at Random Worksheets

Answer Section

567 ANS:
Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E (Given). $\overline{A N} \cong \overline{R D}$, $\overline{A R} \cong \overline{D N}$ (Opposite sides of a parallelogram are congruent). $A E=\frac{1}{2} A R$, $W D=\frac{1}{2} D N$, so $\overline{A E} \cong \overline{W D}$ (Definition of bisect and division property of equality). $\overline{A R} \| \overline{D N}$ (Opposite sides of a parallelogram are parallel). AWDE is a parallelogram (Definition of parallelogram). $R E=\frac{1}{2} A R, N W=\frac{1}{2} D N$, so $\overline{R E} \cong \overline{N W}$ (Definition of bisect and division property of equality). $\overline{E D} \cong \overline{A W}$ (Opposite sides of a parallelogram are congruent). $\triangle A N W \cong \triangle D R E$ (SSS).

PTS: 6 REF: 011635geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
568 ANS: 4 PTS: 2 REF: 061502geo NAT: G.CO.A.2
TOP: Identifying Transformations KEY: basic
569 ANS:

$$
\begin{aligned}
\frac{120}{230} & =\frac{x}{315} \\
x & =164
\end{aligned}
$$

PTS: 2 REF: 081527geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
570 ANS:
$s=\theta \cdot r \quad s=\theta \cdot r \quad$ Yes, both angles are equal.
$\pi=A \cdot 4 \frac{13 \pi}{8}=B \cdot 6.5$
$\frac{\pi}{4}=A$

$$
\frac{\pi}{4}=B
$$

PTS: 2 REF: 061629geo NAT: G.C.B. 5 TOP: Arc Length
KEY: arc length
ANS: 2

$$
\begin{aligned}
C & =\pi d \quad V=\pi\left(\frac{2.25}{\pi}\right)^{2} \cdot 8 \approx 12.8916 W=12.8916 \cdot 752 \approx 9694 \\
4.5 & =\pi d \\
\frac{4.5}{\pi} & =d
\end{aligned}
$$

$$
\frac{2.25}{\pi}=r
$$

PTS: 2 REF: 081617geo NAT: G.MG.A. 2 TOP: Density

572 ANS: 4
$\frac{-2-1}{-1--3}=\frac{-3}{2} \quad \frac{3-2}{0-5}=\frac{1}{-5} \quad \frac{3-1}{0--3}=\frac{2}{3} \quad \frac{2--2}{5--1}=\frac{4}{6}=\frac{2}{3}$
PTS: 2
REF: 081522geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: general
573 ANS:
$\frac{\pi \cdot 11.25^{2} \cdot 33.5}{231} \approx 57.7$

PTS: 4 REF: 061632geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
574 ANS: 3
$\sqrt{20^{2}-10^{2}} \approx 17.3$
PTS: 2
575 ANS: 1
TOP: Rotations
576 ANS: 2
TOP: Dilations
577 ANS:

PTS: 2
REF: 081626geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: grids
578 ANS:
$r=25 \mathrm{~cm}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=0.25 \mathrm{~m} \quad V=\pi(0.25 \mathrm{~m})^{2}(10 \mathrm{~m})=0.625 \pi \mathrm{~m}^{3} \quad W=0.625 \pi \mathrm{~m}^{3}\left(\frac{380 \mathrm{~K}}{1 \mathrm{~m}^{3}}\right) \approx 746.1 \mathrm{~K}$
$n=\frac{\$ 50,000}{\left(\frac{\$ 4.75}{\mathrm{~K}}\right)(746.1 \mathrm{~K})}=14.1 \quad 15$ trees

PTS: 4
REF: spr1412geo NAT: G.MG.A. 2 TOP: Density

579
ANS:
It is given that point D is the image of point A after a reflection in line $C H$. It is given that $\overleftrightarrow{C H}$ is the perpendicular bisector of $\overline{B C E}$ at point C. Since a bisector divides a segment into two congruent segments at its midpoint, $\overline{B C} \cong \overline{E C}$. Point E is the image of point B after a reflection over the line $C H$, since points B and E are equidistant from point C and it is given that $\overleftrightarrow{C H}$ is perpendicular to $\overrightarrow{B E}$. Point C is on $\overleftrightarrow{C H}$, and therefore, point C maps to itself after the reflection over $\overleftrightarrow{C H}$. Since all three vertices of triangle $A B C$ map to all three vertices of triangle $D E C$ under the same line reflection, then $\triangle A B C \cong \triangle D E C$ because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

	PTS: 6	REF: spr1414geo	NAT: G.CO.B. 7	TOP: Triangle Congruency
580	ANS: 4	PTS: 2	REF: 061504geo	NAT: G.CO.A. 5
	TOP: Compositions of Transformations	KEY: identify		
581	ANS: 4	PTS: 2	REF: 061501geo	NAT: G.GMD.B. 4
	TOP: Rotations of Two-Dimensional Objects			
582	ANS:			
	$V=\frac{1}{3} \pi\left(\frac{3}{2}\right)^{2} \cdot 8 \approx 18.85 \cdot 100=18851885 \cdot 0.52 \cdot 0.10=98.02$	$1.95(100)-(37.83+98.02)=59.15$		

PTS: 6 REF: 081536geo NAT: G.MG.A. 2 TOP: Density
583 ANS:
A dilation of $\frac{5}{2}$ about the origin. Dilations preserve angle measure, so the triangles are similar by AA.
PTS: 4 REF: 061634geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
ANS: 2
$V=\frac{1}{3} \cdot 6^{2} \cdot 12=144$
PTS: 2 REF: 011607geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
585 ANS: 3
$\frac{\frac{4}{3} \pi\left(\frac{9.5}{2}\right)^{3}}{\frac{4}{3} \pi\left(\frac{2.5}{2}\right)^{3}} \approx 55$
PTS: 2
REF: 011614geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres
586 ANS:
Since linear angles are supplementary, $\mathrm{m} \angle G I H=65^{\circ}$. Since $\overline{G H} \cong \overline{I H}, \mathrm{~m} \angle G H I=50^{\circ}(180-(65+65))$. Since $\angle E G B \cong \angle G H I$, the corresponding angles formed by the transversal and lines are congruent and $\overline{A B} \| \overline{C D}$.

PTS: 4
REF: 061532geo
NAT: G.CO.C. 9 TOP: Lines and Angles

ANS: 4 PTS: 2
REF: 081503geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
588 ANS: 3
$\frac{60}{360} \cdot 6^{2} \pi=6 \pi$
PTS: 2 REF: 081518geo NAT: G.C.B. 5 TOP: Sectors
589 ANS: 2
Segments drawn from the center of the regular pentagon bisect each angle of the pentagon, and create five isosceles triangles as shown in the diagram below. Since each exterior angle equals the angles formed by the segments drawn from the center of the regular pentagon, the minimum degrees necessary to carry a regular polygon onto itself are equal to the measure of an exterior angle of the regular polygon.

PTS: 2 REF: spr1402geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
590 ANS: 2
PTS: 2
TOP: Special Quadrilaterals
591 ANS: 2 PTS: 2
TOP: Identifying Transformations
592 ANS: 4
$3 \times 6=18$
PTS: 2
REF: 061602geo
NAT: G.SRT.A. 1 TOP: Line Dilations
593 ANS:
$\frac{6}{14}=\frac{9}{21}$ SAS
$126=126$
PTS: 2
REF: 081529geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
594 ANS: 3

1) $\frac{12}{9}=\frac{4}{3}$ 2) AA 3) $\frac{32}{16} \neq \frac{8}{2}$ 4) SAS

PTS: 2 REF: 061605geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic

595 ANS: 4
$2592276=\frac{1}{3} \cdot s^{2} \cdot 146.5$
$230 \approx s$
PTS: 2 REF: 081521geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
596
ANS:
Yes. $\quad(x-1)^{2}+(y+2)^{2}=4^{2}$

$$
\begin{aligned}
(3.4-1)^{2}+(1.2+2)^{2} & =16 \\
5.76+10.24 & =16 \\
16 & =16
\end{aligned}
$$

PTS: 2 REF: 081630geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane

ANS:

$x=\sqrt{.55^{2}-.25^{2}} \cong 0.49$ No, $.49^{2}=.25 y \quad .9604+.25<1.5$

$$
.9604=y
$$

PTS: 4 REF: 061534geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
598
ANS: 4
TOP: Cofunctions
599 ANS: 2
x is $\frac{1}{2}$ the circumference. $\frac{C}{2}=\frac{10 \pi}{2} \approx 16$
PTS: 2
REF: 061523geo
NAT: G.GMD.A. 1 TOP: Circumference
600 ANS: 3
$\tan 34=\frac{T}{20}$
$T \approx 13.5$
PTS: 2 REF: 061505geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: graphics
601
ANS: 2
$S A=6 \cdot 12^{2}=864$
$\frac{864}{450}=1.92$
PTS: 2
REF: 061519geo NAT: G.MG.A. 3 TOP: Surface Area

602 ANS: 2
$\frac{12}{4}=\frac{36}{x}$
$12 x=144$
$x=12$
PTS: 2 REF: 061621geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
603 ANS:

PTS: 2 REF: fall1409geo NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines
604
ANS: 4
$V=\pi\left(\frac{6.7}{2}\right)^{2}(4 \cdot 6.7) \approx 945$
PTS: 2 REF: 081620geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
605
ANS:
Parallelogram $A B C D, \overline{E F G}$, and diagonal $\overline{D F B}$ (given); $\angle D F E \cong \angle B F G$ (vertical angles); $\overline{A D} \| \overline{C B}$ (opposite sides of a parallelogram are parallel); $\angle E D F \cong \angle G B F$ (alternate interior angles are congruent); $\triangle D E F \sim \triangle B G F$ (AA).

PTS: 4 REF: 061633geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
606 ANS:

PTS: 2
REF: 081526geo
NAT: G.CO.D. 13 TOP: Constructions

607 ANS: 1
$m=\frac{-A}{B}=\frac{-2}{-1}=2$
$m_{\perp}=-\frac{1}{2}$
PTS: 2
REF: 061509geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: identify perpendicular lines
608 ANS:
Parallelogram $A B C D, \overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$ (given). $\angle B E C \cong \angle D F C$ (perpendicular lines form right angles, which are congruent). $\angle F C D \cong \angle B C E$ (reflexive property). $\triangle B E C \cong \triangle D F C$ (ASA). $\overline{B C} \cong \overline{C D}$ (CPCTC). $A B C D$ is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

PTS: 6 REF: 081535geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
609 ANS: 2
$\sqrt{3 \cdot 21}=\sqrt{63}=3 \sqrt{7}$
PTS: 2
REF: 011622geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
610 ANS: 4
PTS: 2
REF: 061513geo NAT: G.CO.C. 11
TOP: Parallelograms
611 ANS:

PTS: 6
REF: fall1413geo

$$
M \approx 384
$$

$$
4960+384=5344
$$

$$
\begin{aligned}
\tan 0.64 & =\frac{A}{20,493} \\
A & \approx 229 \\
5344-229 & =5115
\end{aligned}
$$

NAT: G.SRT.C. 8
TOP: Using Trigonometry to Find a Side
KEY: advanced
612 ANS: 1
$\frac{1000}{20 \pi} \approx 15.9$
PTS: 2
613 ANS: 4
REF: 011623geo
NAT: G.GMD.A. 1 TOP: Circumference
TOP: Compositions of Transformations
REF: 081609geo NAT: G.SRT.A. 2
KEY: grids

614 ANS:
$A=6^{2} \pi=36 \pi 36 \pi \cdot \frac{x}{360}=12 \pi$

$$
\begin{aligned}
& x=360 \cdot \frac{12}{36} \\
& x=120
\end{aligned}
$$

PTS: 2
REF: 061529geo
NAT: G.C.B. 5 TOP: Sectors
615 ANS: 1
PTS: 2
REF: 011606geo NAT: G.CO.C. 9
TOP: Lines and Angles
616 ANS:

The length of $\overline{A^{\prime} C}$ is twice $\overline{A C}$.
PTS: 4
REF: 081632geo NAT: G.CO.D. 12 TOP: Constructions
KEY: congruent and similar figures
617 ANS:

$$
\begin{array}{rlrl}
\tan 52.8 & =\frac{h}{x} & x \tan 52.8 & =x \tan 34.9+8 \tan 34.9 \tan 52.8 \approx \frac{h}{9} \quad 11.86+1.7 \approx 13.6 \\
h & =x \tan 52.8 & x \tan 52.8-x \tan 34.9 & =8 \tan 34.9 \\
\tan 34.9 & =\frac{h}{x+8} & x(\tan 52.8-\tan 34.9) & =8 \tan 34.9 \\
h & =(x+8) \tan 34.9 & x & =\frac{8 \tan 34.9}{\tan 52.8-\tan 34.9} \\
x & \approx 9
\end{array}
$$

PTS: 6 REF: 011636geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
618 ANS: 3

PTS: 2
REF: 011603geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons

619 ANS:

PTS: 2
REF: 061631geo
NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines
620
ANS: 4
$x^{2}+6 x+9+y^{2}-4 y+4=23+9+4$
$(x+3)^{2}+(y-2)^{2}=36$
PTS: 2
REF: 011617geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
621 ANS: 3
$\frac{60}{360} \cdot 8^{2} \pi=\frac{1}{6} \cdot 64 \pi=\frac{32 \pi}{3}$
PTS: 2
REF: 061624geo
NAT: G.C.B. 5
REF: 061608geo NAT: G.SRT.A. 2
KEY: grids
623 ANS:
$\frac{2}{5} \cdot(16-1)=6 \frac{2}{5} \cdot(14-4)=4 \quad(1+6,4+4)=(7,8)$
PTS: 2 REF: 081531geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
624 ANS:
$M=180-(47+57)=76$ Rotations do not change angle measurements.
PTS: 2 REF: 081629geo NAT: G.CO.B. 6 TOP: Properties of Transformations
625 ANS: 1

1) opposite sides; 2) adjacent sides; 3) perpendicular diagonals; 4) diagonal bisects angle

PTS: 2
REF: 061609geo
NAT: G.CO.C. 11 TOP: Special Quadrilaterals

626 ANS: 1
$m=-\frac{2}{3} \quad 1=\left(-\frac{2}{3}\right) 6+b$
$1=-4+b$
$5=b$
PTS: 2 REF: 081510geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line
627 ANS: 3
$x^{2}+4 x+4+y^{2}-6 y+9=12+4+9$

$$
(x+2)^{2}+(y-3)^{2}=25
$$

PTS: 2 REF: 081509geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
628 ANS: 3
$\cos A=\frac{9}{14}$

$$
A \approx 50^{\circ}
$$

PTS: 2 REF: 011616geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
629 ANS: 2
$14 \times 16 \times 10=2240 \frac{2240-1680}{2240}=0.25$
PTS: 2 REF: 011604geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
630 ANS: 3
$\frac{x}{360} \cdot 3^{2} \pi=2 \pi \quad 180-80=100$

$$
x=80 \quad \frac{180-100}{2}=40
$$

PTS: 2 REF: 011612geo

NAT: G.C.B. 5
REF: 061616geo
KEY: graphics

631 ANS: 3
PTS: 2
TOP: Identifying Transformations

TOP: Sectors
NAT: G.CO.A. 2

632 ANS: 4
The measures of the angles of a triangle remain the same after all rotations because rotations are rigid motions which preserve angle measure.

PTS: 2
REF: fall1402geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics

633 ANS: 1
$V=\frac{\frac{4}{3} \pi\left(\frac{10}{2}\right)^{3}}{2} \approx 261.8 \cdot 62.4=16,336$
PTS: 2 REF: 081516geo NAT: G.MG.A. 2 TOP: Density
634 ANS: 3

$$
\begin{aligned}
\frac{12}{4} & =\frac{x}{5} \quad 15-4=11 \\
x & =15
\end{aligned}
$$

PTS: 2 REF: 011624geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
635 ANS: 4
$-5+\frac{3}{5}(5--5)-4+\frac{3}{5}(1--4)$

$$
-5+\frac{3}{5}(10) \quad-4+\frac{3}{5}(5)
$$

$$
-5+6 \quad-4+3
$$

1
-1
PTS: 2 REF: spr1401geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
636 ANS:
Circle O, secant $\overline{A C D}$, tangent $\overline{A B}$ (Given). Chords $\overline{B C}$ and $\overline{B D}$ are drawn (Auxiliary lines). $\angle A \cong \angle A$, $\overparen{B C} \cong \overparen{B C}$ (Reflexive property). $\mathrm{m} \angle B D C=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an inscribed angle is half the measure of the intercepted arc). $\mathrm{m} \angle C B A=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc). $\angle B D C \cong \angle C B A$ (Angles equal to half of the same arc are congruent).
$\triangle A B C \sim \triangle A D B(A A) . \frac{A B}{A C}=\frac{A D}{A B}$ (Corresponding sides of similar triangles are proportional). $A C \cdot A D=A B^{2}$ (In a proportion, the product of the means equals the product of the extremes).

PTS: 6
REF: spr1413geo NAT: G.SRT.B. 5 TOP: Circle Proofs
637
ANS:
$\sin x=\frac{4.5}{11.75}$

$$
x \approx 23
$$

PTS: 2 REF: 061528geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

638 ANS: 2
The line $y=2 x-4$ does not pass through the center of dilation, so the dilated line will be distinct from $y=2 x-4$. Since a dilation preserves parallelism, the line $y=2 x-4$ and its image will be parallel, with slopes of 2 . To obtain the y-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{2}$, can be applied to the y-intercept, $(0,-4)$. Therefore, $\left(0 \cdot \frac{3}{2},-4 \cdot \frac{3}{2}\right) \rightarrow(0,-6)$. So the equation of the dilated line is $y=2 x-6$.

PTS: 2 REF: fall1403geo NAT: G.SRT.A. 1 TOP: Line Dilations
639 ANS: 1 $\frac{4}{6}=\frac{3}{4.5}=\frac{2}{3}$

PTS: 2 REF: 081523geo NAT: G.SRT.A. 2 TOP: Dilations
640 ANS:
$\tan 7=\frac{125}{x} \quad \tan 16=\frac{125}{y} \quad 1018-436 \approx 582$
$x \approx 1018 \quad y \approx 436$
PTS: 4 REF: 081532geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: advanced
641 ANS: 2 PTS: 2 REF: 081601geo NAT: G.CO.C. 9
TOP: Lines and Angles

642 ANS:
The slopes of perpendicular line are opposite reciprocals. Since the lines are perpendicular, they form right angles
and a right triangle. $m_{B C}=-\frac{3}{2}-1=\frac{2}{3}(-3)+b$ or $-4=\frac{2}{3}(-1)+b$

$$
\begin{aligned}
& m_{\perp}=\frac{2}{3} \quad-1=-2+b \quad \frac{-12}{3}=\frac{-2}{3}+b \\
& 3=\frac{2}{3} x+1 \quad-\frac{10}{3}=b \\
& 2=\frac{2}{3} x \quad 3=\frac{2}{3} x-\frac{10}{3} \\
& 3=x \\
& 9=2 x-10 \\
& 19=2 x \\
& 9.5=x
\end{aligned}
$$

PTS: 4 REF: 081533geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
643 ANS:
$T_{6,0}{ }^{\circ} r_{x-\text {-xis }}$
PTS: 2
REF: 061625geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
644
$m=\left(\frac{-11+5}{2}, \frac{5+-7}{2}\right)=(-3,-1) m=\frac{5--7}{-11-5}=\frac{12}{-16}=-\frac{3}{4} m_{\perp}=\frac{4}{3}$
PTS: 2 REF: 061612geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: perpendicular bisector
645 ANS: $3 \quad$ PTS: 2
REF: 081502geo NAT: G.CO.A. 2
TOP: Identifying Transformations
KEY: basic

646 ANS:

PTS: 2
REF: 081628geo
NAT: G.CO.D. 12 TOP: Constructions
KEY: line bisector
647 ANS: 2
PTS: 2
REF: 061506geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
648 ANS: 3
(3) Could be a trapezoid.

PTS: 2 REF: 081607geo NAT: G.CO.C. 11 TOP: Parallelograms
649 ANS:
$V=\frac{1}{3} \pi\left(\frac{8.3}{2}\right)^{2}(10.2)+\frac{1}{2} \cdot \frac{4}{3} \pi\left(\frac{8.3}{2}\right)^{3} \approx 183.961+149.693 \approx 333.65 \mathrm{~cm}^{3} 333.65 \times 50=16682.7 \mathrm{~cm}^{3}$
$16682.7 \times 0.697=11627.8 \mathrm{~g} 11.6278 \times 3.83=\$ 44.53$
PTS: 6 REF: 081636geo NAT: G.MG.A. 2 TOP: Density
650 ANS: 1
$x^{2}-4 x+4+y^{2}+8 y+16=-11+4+16$

$$
(x-2)^{2}+(y+4)^{2}=9
$$

PTS: 2 REF: 081616geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
651
ANS.
Each quarter in both stacks has the same base area. Therefore, each corresponding cross-section of the stacks will have the same area. Since the two stacks of quarters have the same height of 23 quarters, the two volumes must be the same.

PTS: 2 REF: spr1405geo NAT: G.GMD.A. 1 TOP: Volume
652 ANS: 3
$\frac{9}{5}=\frac{9.2}{x} 5.1+9.2=14.3$
$9 x=46$
$x \approx 5.1$
PTS: 2 REF: 061511geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem

ANS:

$$
180-2(30)=120
$$

PTS: 2 REF: 011626geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: parallel lines
654 ANS: 1
Alternate interior angles
PTS: 2 REF: 061517geo NAT: G.CO.C. 9 TOP: Lines and Angles
655 ANS: 4
$m=-\frac{1}{2} \quad-4=2(6)+b$
$m_{\perp}=2 \quad-4=12+b$
PTS: 2 REF: 011602geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line
656 ANS:
x represents the distance between the lighthouse and the canoe at 5:00; y represents the distance between the lighthouse and the canoe at $5: 05 . \tan 6=\frac{112-1.5}{x} \tan (49+6)=\frac{112-1.5}{y} \frac{1051.3-77.4}{5} \approx 195$

$$
x \approx 1051.3 \quad y \approx 77.4
$$

PTS: 4
REF: spr1409geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: advanced
657
ANS: 4
TOP: Dilations
658 ANS:
Reflections are rigid motions that preserve distance.
PTS: 2
REF: 061530geo NAT: G.CO.B. 7 TOP: Triangle Congruency
659 ANS: 2
$x^{2}=4 \cdot 10$
$x=\sqrt{40}$
$x=2 \sqrt{10}$
PTS: 2
REF: 081610geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude

660 ANS:
$4+\frac{4}{9}(22-4) 2+\frac{4}{9}(2-2)(12,2)$
$4+\frac{4}{9}(18) \quad 2+\frac{4}{9}(0)$

$4+8$	$2+0$
12	2

PTS: 2 REF: 061626geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
661 ANS: 4
PTS: 2
REF: 081611geo NAT: G.CO.C. 9
TOP: Lines and Angles
662 ANS: 1

Since the midpoint of $\overline{A B}$ is $(3,-2)$, the center must be either $(5,-2)$ or $(1,-2)$.
$r=\sqrt{2^{2}+5^{2}}=\sqrt{29}$
PTS: 2 REF: 061623geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: other
663 ANS: 1
The line $3 y=-2 x+8$ does not pass through the center of dilation, so the dilated line will be distinct from $3 y=-2 x+8$. Since a dilation preserves parallelism, the line $3 y=-2 x+8$ and its image $2 x+3 y=5$ are parallel, with slopes of $-\frac{2}{3}$.

PTS: 2 REF: 061522geo NAT: G.SRT.A. 1 TOP: Line Dilations
664 ANS:

PTS: 2
REF: 011625geo NAT: G.CO.A. 5 TOP: Reflections
KEY: grids

665 ANS:
$A B C-$ point of reflection $\rightarrow(-y, x)+$ point of reflection $\quad \triangle D E F \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ because $\triangle D E F$ is a reflection of
$A(2,-3)-(2,-3)=(0,0) \rightarrow(0,0)+(2,-3)=A^{\prime}(2,-3)$
$B(6,-8)-(2,-3)=(4,-5) \rightarrow(5,4)+(2,-3)=B^{\prime}(7,1)$
$C(2,-9)-(2,-3)=(0,-6) \rightarrow(6,0)+(2,-3)=C^{\prime}(8,-3)$
$\triangle A^{\prime} B^{\prime} C^{\prime}$ and reflections preserve distance.
PTS: 4 REF: 081633geo NAT: G.CO.A. 5 TOP: Rotations
KEY: grids
666 ANS: 3
$\theta=\frac{s}{r}=\frac{2 \pi}{10}=\frac{\pi}{5}$
PTS: 2 REF: fall1404geo NAT: G.C.B. 5 TOP: Arc Length
KEY: angle
667 ANS: 2
$\frac{1 \mathrm{l}}{1.2 \mathrm{oz}}\left(\frac{16 \mathrm{oz}}{1 \mathrm{lb}}\right)=\frac{13 . \overline{3} 1}{\mathrm{lb}} \frac{13 . \overline{3} 1}{\mathrm{lb}}\left(\frac{1 \mathrm{~g}}{3.785 \mathrm{l}}\right) \approx \frac{3.5 \mathrm{~g}}{1 \mathrm{lb}}$
PTS: 2 REF: 061618geo NAT: G.MG.A. 2 TOP: Density
668 ANS:
$\frac{3}{8} \cdot 56=21$
PTS: 2 REF: 081625geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: common tangents
669 ANS: 1 PTS: 2
TOP: Line Dilations
670 ANS: 1
PTS: 2
REF: 081606geo NAT: G.SRT.C. 7
TOP: Cofunctions
671 ANS:
(2) Euclid's Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution

PTS: 4 REF: 011633geo NAT: G.CO.C. 10 TOP: Triangle Proofs
672 ANS: 2

PTS: 2 REF: 061619geo NAT: G.CO.C. 10 TOP: Triangle Proofs

673
ANS: 4
PTS: 2
TOP: Trigonometric Ratios
674 ANS:
$\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$ (Given). $\angle L C A$ and $\angle D C N$ are right angles (Definition of perpendicular lines). $\triangle L A C$ and $\triangle D N C$ are right triangles (Definition of a right triangle). $\triangle L A C \cong \triangle D N C$ (HL).
$\triangle L A C$ will map onto $\triangle D N C$ after rotating $\triangle L A C$ counterclockwise 90° about point C such that point L maps onto point D.

PTS: 4 REF: spr1408geo NAT: G.CO.B. 8 TOP: Triangle Congruency
675 ANS:
(12.45

$$
\begin{aligned}
16.6 & \frac{1.65}{4.15}
\end{aligned}=\frac{x}{16.6}
$$

PTS: 2
REF: 061531geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
676 ANS: 4
$x=-6+\frac{1}{6}(6--6)=-6+2=-4 \quad y=-2+\frac{1}{6}(7--2)=-2+\frac{9}{6}=-\frac{1}{2}$
PTS: 2 REF: 081618geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
677 ANS:
Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E (Given). $\overline{A D} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent). $\angle A E D \cong \angle C E B$ (Vertical angles are congruent). $\overline{B C} \| \overline{D A}$ (Definition of parallelogram). $\angle D B C \cong \angle B D A$ (Alternate interior angles are congruent). $\triangle A E D \cong \triangle C E B$ (AAS). 180° rotation of $\triangle A E D$ around point E.

PTS: 4 REF: 061533geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
678 ANS: 1
$m_{\overline{R T}}=\frac{5--3}{4--2}=\frac{8}{6}=\frac{4}{3} m_{\overline{S T}}=\frac{5-2}{4-8}=\frac{3}{-4}=-\frac{3}{4}$ Slopes are opposite reciprocals, so lines form a right angle.
PTS: 2 REF: 011618geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane

ANS:
Circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E (Given); Chords $\overline{C B}$ and $\overline{A D}$ are drawn (auxiliary lines drawn); $\angle C E B \cong \angle A E D$ (vertical angles); $\angle C \cong \angle A$ (Inscribed angles that intercept the same arc are congruent);
$\triangle B C E \sim \triangle D A E$ (AA); $\frac{A E}{C E}=\frac{E D}{E B}$ (Corresponding sides of similar triangles are proportional);
$A E \cdot E B=C E \cdot E D$ (The product of the means equals the product of the extremes).
PTS: 6 REF: 081635geo NAT: G.SRT.B. 5 TOP: Circle Proofs
680 ANS: 2
$\sqrt{(-1-2)^{2}+(4-3)^{2}}=\sqrt{10}$
PTS: 2 REF: 011615geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
681 ANS: 4

$$
\begin{aligned}
\frac{1}{2} & =\frac{x+3}{3 x-1} \quad G R=3(7)-1=20 \\
3 x-1 & =2 x+6 \\
x & =7
\end{aligned}
$$

PTS: 2 REF: 011620geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
682 ANS: 2
The given line $h, 2 x+y=1$, does not pass through the center of dilation, the origin, because the y-intercept is at $(0,1)$. The slope of the dilated line, m, will remain the same as the slope of line $h,-2$. All points on line h, such as $(0,1)$, the y-intercept, are dilated by a scale factor of 4 ; therefore, the y-intercept of the dilated line is $(0,4)$ because the center of dilation is the origin, resulting in the dilated line represented by the equation $y=-2 x+4$.

PTS: 2
REF: spr1403geo NAT: G.SRT.A. 1 TOP: Line Dilations
ANS: 3
$V=12 \cdot 8.5 \cdot 4=408$
$W=408 \cdot 0.25=102$
PTS: 2 REF: 061507geo NAT: G.MG.A. 2 TOP: Density
684 ANS:
No, the weight of the bricks is greater than $900 \mathrm{~kg} .500 \times(5.1 \mathrm{~cm} \times 10.2 \mathrm{~cm} \times 20.3 \mathrm{~cm})=528,003 \mathrm{~cm}^{3}$.
$528,003 \mathrm{~cm}^{3} \times \frac{1 \mathrm{~m}^{3}}{1000000 \mathrm{~cm}^{3}}=0.528003 \mathrm{~m}^{3} . \frac{1920 \mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.528003 \mathrm{~m}^{3} \approx 1013 \mathrm{~kg}$.
PTS: 2 REF: fall1406geo NAT: G.MG.A. 2 TOP: Density
685 ANS:
The transformation is a rotation, which is a rigid motion.
PTS: 2 REF: 081530geo NAT: G.CO.B. 7 TOP: Triangle Congruency

686 ANS:
$\frac{3.75}{5}=\frac{4.5}{6} \quad \overline{A B}$ is parallel to $\overline{C D}$ because $\overline{A B}$ divides the sides proportionately.
$39.375=39.375$
PTS: 2 REF: 061627geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
687 ANS: 1 PTS: 2 REF: 011601geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
688 ANS:
Parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E (given). $\overline{D C}\|\overline{A B} ; \overline{D A}\| \overline{C B}$ (opposite sides of a parallelogram are parallel). $\angle A C D \cong \angle C A B$ (alternate interior angles formed by parallel lines and a transversal are congruent).

PTS: 2 REF: 081528geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs
689 ANS: 4
PTS: 2
REF: 061512geo NAT: G.SRT.C. 7
TOP: Cofunctions
690 ANS: $3 \quad$ PTS: 2
REF: 081515geo NAT: G.C.A. 3
TOP: Inscribed Quadrilaterals
691 PNS: 2 PTS: 2 REF: 011610geo NAT: G.SRT.A. 1
TOP: Line Dilations
692 ANS: 2 PTS: 2 REF: 081519geo NAT: G.SRT.B. 5
TOP: Similarity KEY: basic
693 ANS:
$\sin 75=\frac{15}{x}$
$x=\frac{15}{\sin 75}$
$x \approx 15.5$
PTS: 2
REF: 081631geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: graphics
694 ANS:
$\frac{137.8}{6^{3}} \approx 0.638$ Ash
PTS: 2 REF: 081525geo NAT: G.MG.A. 2 TOP: Density
695 ANS: 4
The slope of $\overline{B C}$ is $\frac{2}{5}$. Altitude is perpendicular, so its slope is $-\frac{5}{2}$.
PTS: 2 REF: 061614geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
696 ANS: 2
PTS: 2
REF: 081619geo NAT: G.C.B. 5
TOP: Sectors
697 ANS: $3 \quad$ PTS: 2
TOP: Triangle Proofs
REF: 081622geo NAT: G.SRT.B. 5
KEY: statements

ANS:
$73+R=90$ Equal cofunctions are complementary.

$$
R=17
$$

PTS: 2 REF: 061628geo NAT: G.SRT.C. 7 TOP: Cofunctions
699 ANS:
As the sum of the measures of the angles of a triangle is $180^{\circ}, \mathrm{m} \angle A B C+\mathrm{m} \angle B C A+\mathrm{m} \angle C A B=180^{\circ}$. Each interior angle of the triangle and its exterior angle form a linear pair. Linear pairs are supplementary, so $\mathrm{m} \angle A B C+\mathrm{m} \angle F B C=180^{\circ}, \mathrm{m} \angle B C A+\mathrm{m} \angle D C A=180^{\circ}$, and $\mathrm{m} \angle C A B+\mathrm{m} \angle E A B=180^{\circ}$. By addition, the sum of these linear pairs is 540°. When the angle measures of the triangle are subtracted from this sum, the result is 360°, the sum of the exterior angles of the triangle.

PTS: 4 REF: fall1410geo NAT: G.CO.C. 10 TOP: Triangle Proofs
700 ANS: 3
PTS: 2
REF: 081613geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
701
ANS:
$\ell: y=3 x-4$
$m: y=3 x-8$
PTS: 2 REF: 011631geo NAT: G.SRT.A. 1 TOP: Line Dilations
ANS:
$m_{\overline{T S}}=\frac{-10}{6}=-\frac{5}{3} m_{\overline{S R}}=\frac{3}{5}$ Since the slopes of $\overline{T S}$ and $\overline{S R}$ are opposite reciprocals, they are perpendicular and form a right angle. $\triangle R S T$ is a right triangle because $\angle S$ is a right angle. $P(0,9) m_{R P}=\frac{-10}{6}=-\frac{5}{3} m_{P T}=\frac{3}{5}$
Since the slopes of all four adjacent sides ($\overline{T S}$ and $\overline{S R}, \overline{S R}$ and $\overline{R P}, \overline{P T}$ and $\overline{T S}, \overline{R P}$ and $\overline{P T}$) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral RSTP is a rectangle because it has four right angles.

PTS: 6 REF: 061536geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
ANS: 1
$m_{T A}=-1 \quad y=m x+b$
$m_{E M}=1 \quad 1=1(2)+b$
$-1=b$
PTS: 2 REF: 081614geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: general

704 ANS: 2
$\frac{4}{3} \pi \cdot 4^{3}+0.075 \approx 20$
PTS: 2 REF: 011619geo NAT: G.MG.A. 2 TOP: Density
705 ANS:
Circle A can be mapped onto circle B by first translating circle A along vector $\overline{A B}$ such that A maps onto B, and then dilating circle A, centered at A, by a scale factor of $\frac{5}{3}$. Since there exists a sequence of transformations that maps circle A onto circle B, circle A is similar to circle B.

PTS: 2 REF: spr1404geo NAT: G.C.A. 1 TOP: Similarity Proofs
706 ANS:

$$
\begin{aligned}
& \tan x=\frac{12}{75} \quad \tan y=\frac{72}{75} \quad 43.83-9.09 \approx 34.7 \\
& x \approx 9.09 \quad y \approx 43.83
\end{aligned}
$$

PTS: 4
REF: 081634geo
NAT: G.SRT.C. 8
TOP: Using Trigonometry to Find an Angle 707 ANS:

$$
\begin{array}{cc}
-6+\frac{2}{5}(4--6) & -5+\frac{2}{5}(0--5) \\
-6+\frac{2}{5}(10) & -5+\frac{2}{5}(5) \\
-6+4 & -5+2 \\
-2 & -3
\end{array}
$$

PTS: 2 REF: 061527geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
708 ANS: 1
$\frac{6}{8}=\frac{9}{12}$
PTS: 2
REF: 011613geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
709 ANS:
$\frac{360}{6}=60$
PTS: 2 REF: 081627geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself

710 ANS: 2

PTS: 2 REF: 081604geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles
711 ANS: 1
The man's height, 69 inches, is opposite to the angle of elevation, and the shadow length, 102 inches, is adjacent to the angle of elevation. Therefore, tangent must be used to find the angle of elevation. $\tan x=\frac{69}{102}$

$$
x \approx 34.1
$$

PTS: 2 REF: fall1401geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
712 ANS: 3
$r=\sqrt{(7-3)^{2}+(1--2)^{2}}=\sqrt{16+9}=5$
PTS: 2 REF: 061503geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane
713 ANS: 2
$x^{2}+y^{2}+6 y+9=7+9$
$x^{2}+(y+3)^{2}=16$
PTS: 2 REF: 061514geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
714 ANS: 3
$\frac{x}{10}=\frac{6}{4} \quad \overline{C D}=15-4=11$
$x=15$
PTS: 2 REF: 081612geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
715 ANS: $1 \quad$ PTS: 2
REF: 061604geo NAT: G.CO.A. 2
TOP: Identifying Transformations KEY: graphics
716 ANS: 3

1) only proves AA; 2) need congruent legs for HL; 3) SAS; 4) only proves product of altitude and base is equal

PTS: 2
REF: 061607geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: statements

717 ANS:
$4 x-.07=2 x+.01 \operatorname{Sin} A$ is the ratio of the opposite side and the hypotenuse while $\cos B$ is the ratio of the adjacent

$$
2 x=0.8
$$

$$
x=0.4
$$

side and the hypotenuse. The side opposite angle A is the same side as the side adjacent to angle B. Therefore, $\sin A=\cos B$.

PTS: 2 REF: fall1407geo NAT: G.SRT.C. 7 TOP: Cofunctions
718 ANS: 4
$\frac{7}{12} \cdot 30=17.5$
PTS: 2 REF: 061521geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: perimeter and area
719 ANS:

$$
\begin{aligned}
\sin 70 & =\frac{30}{L} \\
L & \approx 32
\end{aligned}
$$

PTS: 2 REF: 011629geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: graphics
ANS:
 $\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ (Given). $\triangle X Y Z$ is isosceles
(Definition of isosceles triangle). $\overline{Y W}$ is an altitude of $\triangle X Y Z$ (The angle bisector of the vertex of an isosceles triangle is also the altitude of that triangle). $\overline{Y W} \perp \overline{X Z}$ (Definition of altitude). $\angle Y W Z$ is a right angle (Definition of perpendicular lines).

PTS: 4
REF: spr1411geo
NAT: G.CO.C. 10 TOP: Triangle Proofs
721 ANS: 2
PTS: 2
REF: 061603geo NAT: G.GPE.A. 1
TOP: Equations of Circles KEY: find center and radius | completing the square
722 ANS: $2 \quad$ PTS: 2
TOP: Chords, Secants and Tangents
REF: 061610geo NAT: G.C.A. 2
KEY: inscribed
REF: 061520geo NAT: G.C.A. 2
KEY: mixed

724 ANS: 3

PTS: 2 REF: 061622geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
725 ANS:
$\tan x=\frac{10}{4}$

$$
x \approx 68
$$

PTS: 2 REF: 061630geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
726 ANS:
$\tan 47=\frac{x}{8.5} \quad$ Cone: $V=\frac{1}{3} \pi(8.5)^{2}(9.115) \approx 689.6$ Cylinder: $V=\pi(8.5)^{2}(25) \approx 5674.5$ Hemisphere: $x \approx 9.115$
$V=\frac{1}{2}\left(\frac{4}{3} \pi(8.5)^{3}\right) \approx 1286.3689 .6+5674.5+1286.3 \approx 7650$ No, because $7650 \cdot 62.4=477,360$ $477,360 \cdot 85=405,756$, which is greater than 400,000 .

PTS: 6
REF: 061535geo
NAT: G.MG.A. 2 TOP: Density
727 ANS: 4
$\frac{2}{6}=\frac{5}{15}$
PTS: 2 REF: 081517geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
728 ANS: 3
$5 \cdot \frac{10}{4}=\frac{50}{4}=12.5$

PTS: 2
REF: 081512geo
NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: common tangents
729 ANS: 4 PTS: 2
REF: 081514geo NAT: G.SRT.A. 2
TOP: Compositions of Transformations
KEY: grids
ANS: 3 PTS: 2
REF: 061524geo NAT: G.CO.B. 7
TOP: Triangle Congruency

ANS: 3
$A=\frac{1}{2} a b \quad 3-6=-3=x$
$24=\frac{1}{2} a(8) \frac{4+12}{2}=8=y$
$a=6$

PTS: 2 REF: 081615geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
732 ANS: 1
$3^{2}=9$
PTS: 2 REF: 081520geo NAT: G.SRT.A. 2 TOP: Dilations
733 ANS:
Triangle $X^{\prime} Y^{\prime} Z^{\prime}$ is the image of $\triangle X Y Z$ after a rotation about point Z such that $\overline{Z X}$ coincides with $\overline{Z U}$. Since rotations preserve angle measure, $\overline{Z Y}$ coincides with $\overline{Z V}$, and corresponding angles X and Y, after the rotation, remain congruent, so $\overline{X Y} \| \overline{U V}$. Then, dilate $\Delta X^{\prime} Y^{\prime} Z^{\prime}$ by a scale factor of $\frac{Z U}{Z X}$ with its center at point Z. Since dilations preserve parallelism, $\overline{X Y}$ maps onto $\overline{U V}$. Therefore, $\triangle X Y Z \sim \triangle U V Z$.

PTS: 2 REF: spr1406geo NAT: G.SRT.A. 2 TOP: Compositions of Transformations
KEY: grids
734 ANS: 1
PTS: 2
REF: 081507geo NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify
735 ANS: 1 PTS: 2 REF: 081504geo NAT: G.SRT.C. 7
TOP: Cofunctions
736 ANS: 1 PTS: 2 REF: 061508geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents KEY: inscribed
737 ANS:
Opposite angles in a parallelogram are congruent, so $\mathrm{m} \angle O=118^{\circ}$. The interior angles of a triangle equal 180°. $180-(118+22)=40$.

PTS: 2 REF: 061526geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
738 ANS: 1 180-(68•2)

PTS: 2 REF: 081624geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
739 ANS: 1 PTS: 2 REF: 011608geo NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify
740 ANS: 1
The other statements are true only if $\overline{A D} \perp \overline{B C}$.
PTS: 2 REF: 081623geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: inscribed

ANS: 2
$h^{2}=30 \cdot 12$
$h^{2}=360$
$h=6 \sqrt{10}$
PTS: 2 REF: 061613geo NAT: G.SRT.B. 5 TOP: Similarity KEY: altitude
ANS:

PTS: 2
REF: 011627geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
743 ANS:
Translations preserve distance. If point D is mapped onto point A, point F would map onto point C. $\triangle D E F \cong \triangle A B C$ as $\overline{A C} \cong \overline{D F}$ and points are collinear on line ℓ and a reflection preserves distance.

PTS: 4
REF: 081534geo NAT: G.CO.B. 7 TOP: Triangle Congruency

ANS:

Since the square is inscribed, each vertex of the square is on the circle and the diagonals of the square are diameters of the circle. Therefore, each angle of the square is an inscribed angle in the circle that intercepts the circle at the endpoints of the diameters. Each angle of the square, which is an inscribed angle, measures 90 degrees. Therefore, the measure of the arc intercepted by two adjacent sides of the square is 180 degrees because it is twice the measure of its inscribed angle.

PTS: 4 REF: fall1412geo NAT: G.CO.D. 13 TOP: Constructions
745 ANS: 3
PTS: 2
REF: 011605geo
NAT: G.CO.A. 2
TOP: Analytical Representations of Transformations KEY: basic
746 ANS: 4
The line $y=3 x-1$ passes through the center of dilation, so the dilated line is not distinct.
PTS: 2 REF: 081524geo NAT: G.SRT.A. 1 TOP: Line Dilations
747 ANS: 3
$\frac{A B}{B C}=\frac{D E}{E F}$
$\frac{9}{15}=\frac{6}{10}$
$90=90$
PTS: 2
REF: 061515geo
NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
748 ANS: 4
PTS: 2
REF: 011611geo NAT: G.CO.B. 6
TOP: Properties of Transformations
KEY: graphics
ANS: 3

PTS: 2
REF: 081508geo
NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons

750 ANS: 1
$\frac{f}{4}=\frac{15}{6}$
$f=10$

| | PTS: 2 | REF: 061617geo | NAT: G.CO.C.9 | TOP: Lines and Angles |
| :--- | :--- | ---: | :--- | :--- | :--- |
| 751 | ANS: 1 | PTS: 2 | REF: 081603geo | NAT: G.GMD.B. 4 |
| | TOP: Rotations of Two-Dimensional Objects | | | |
| 752 | ANS: 2 | PTS: 2 | REF: 081602geo | NAT: G.CO.A. 2 |
| | TOP: Identifying Transformations | KEY: basic | | |
| 753 | ANS: 4 | PTS: 2 | REF: 061606geo | NAT: G.GMD.A. 3 |
| | TOP: Volume | KEY: compositions | | |
| 754 | ANS: | | | |

ANS:
Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ that bisect each other, and $\angle 1 \cong \angle 2$ (given); quadrilateral $A B C D$ is a parallelogram (the diagonals of a parallelogram bisect each other); $\overline{A B} \| \overline{C D}$ (opposite sides of a parallelogram are parallel); $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$ (alternate interior angles are congruent); $\angle 2 \cong \angle 3$ and $\angle 3 \cong \angle 4$ (substitution); $\triangle A C D$ is an isosceles triangle (the base angles of an isosceles triangle are congruent); $\overline{A D} \cong \overline{D C}$ (the sides of an isosceles triangle are congruent); quadrilateral $A B C D$ is a rhombus (a rhombus has consecutive congruent sides); $\overline{A E} \perp \overline{B E}$ (the diagonals of a rhombus are perpendicular); $\angle B E A$ is a right angle (perpendicular lines form a right angle); $\triangle A E B$ is a right triangle (a right triangle has a right angle).

PTS: 6	REF: 061635geo	NAT: G.CO.C. 11	TOP: Quadrilateral Proofs	
755	ANS: 3	PTS: 2	REF: 061601geo	NAT: G.GMD.B. 4

TOP: Rotations of Two-Dimensional Objects
756 ANS: 1
$\frac{360^{\circ}}{45^{\circ}}=8$

PTS: 2 REF: 061510geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
757 ANS: 2
$s^{2}+s^{2}=7^{2}$

$$
2 s^{2}=49
$$

$$
s^{2}=24.5
$$

$$
s \approx 4.9
$$

PTS: 2 REF: 081511geo NAT: G.C.A. 3 TOP: Inscribed Quadrilaterals

758
ANS:

PTS: 4 REF: 011634geo NAT: G.CO.D. 12 TOP: Constructions
KEY: congruent and similar figures
ANS:
Similar triangles are required to model and solve a proportion. $\frac{x+5}{1.5}=\frac{x}{1} \quad \frac{1}{3} \pi(1.5)^{2}(15)-\frac{1}{3} \pi(1)^{2}(10) \approx 24.9$

$$
\begin{aligned}
x+5 & =1.5 x \\
5 & =.5 x \\
10 & =x \\
10+5 & =15
\end{aligned}
$$

PTS: 6 REF: 061636geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
760 ANS:
$\triangle M N O$ is congruent to $\triangle P N O$ by SAS. Since $\triangle M N O \cong \triangle P N O$, then $\overline{M O} \cong \overline{P O}$ by СРСТС. So $\overline{N O}$ must divide $\overline{M P}$ in half, and $M O=8$.

PTS: 2 REF: fall1405geo NAT: G.CO.C. 10 TOP: Medians, Altitudes and Bisectors
761 ANS:
$\frac{16}{9}=\frac{x}{20.6} \quad D=\sqrt{36.6^{2}+20.6^{2}} \approx 42$

$$
x \approx 36.6
$$

PTS: 4 REF: 011632geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
ANS:
Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

PTS: 2 REF: 011628geo NAT: G.CO.B. 7 TOP: Triangle Congruency
763 ANS: 4
$\sin 70=\frac{x}{20}$
$x \approx 18.8$
PTS: 2 REF: 061611geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: without graphics

764 ANS: 1
$\frac{1}{2}\left(\frac{4}{3}\right) \pi \cdot 5^{3} \cdot 62.4 \approx 16,336$
PTS: 2 REF: 061620geo NAT: G.MG.A. 2 TOP: Density
765 ANS: 3
PTS: 2
REF: 011621geo NAT: G.C.A. 2
KEY: inscribed
766 ANS: 4
$\sqrt{(32-8)^{2}+(28--4)^{2}}=\sqrt{576+1024}=\sqrt{1600}=40$
PTS: 2 REF: 081621geo NAT: G.SRT.A. 1 TOP: Line Dilations
767 ANS:

PTS: 2 REF: 061525geo NAT: G.CO.D. 13 TOP: Constructions
768 ANS: $1 \quad$ PTS: 2
REF: 081505geo NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
769 ANS:
$\frac{\left(\frac{180-20}{2}\right)}{360} \times \pi(6)^{2}=\frac{80}{360} \times 36 \pi=8 \pi$
PTS: 4 REF: spr1410geo NAT: G.C.B. 5 TOP: Sectors
770 ANS:
$\frac{40000}{\pi\left(\frac{51}{2}\right)^{2}} \approx 19.6 \frac{72000}{\pi\left(\frac{75}{2}\right)^{2}} \approx 16.3 \operatorname{Dish} A$

PTS: 2 REF: 011630geo NAT: G.MG.A. 2 TOP: Density

