LIVING ENVIRONMENT

Wednesday, January 23, 2002 — 1:15 to 4:15 p.m., only

Print your name and the name of your school on the lines above. Then turn to the last page of this booklet, which is the answer sheet for Part A. Fold the last page along the perforations and, slowly and carefully, tear off the answer sheet. Then fill in the heading of your answer sheet.

This examination has three parts with a total of 71 questions. You must answer all questions in this examination. Write your answers to the Part A multiple-choice questions on the separate answer sheet. Write your answers for the questions in Parts B and C directly in this examination booklet. All answers should be written in pen, except for graphs and drawings which should be done in pencil. You may use scrap paper to work out the answers to the questions, but be sure to record all your answers on the answer sheet and in this examination booklet.

When you have completed the examination, you must sign the statement printed on the Part A answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN.
Part A

Answer all questions in this part. [35]

Directions (1–35): For each statement or question, write on the separate answer sheet the number of the word or expression that, of those given, best completes the statement or answers the question.

1 Which statement accurately compares cells in the human circulatory system to cells in the human nervous system?
 (1) Cells in the circulatory system carry out the same life function for the organism as cells in the nervous system.
 (2) Cells in the circulatory system are identical in structure to cells in the nervous system.
 (3) Cells in the nervous system are different in structure from cells in the circulatory system, and they carry out different specialized functions.
 (4) Cells in the nervous system act independently, but cells in the circulatory system function together.

2 An iodine test of a tomato plant leaf revealed that starch was present at 5:00 p.m. on a sunny afternoon in July. When a similar leaf from the same tomato plant was tested with iodine at 6:00 a.m. the next morning, the test indicated that less starch was present. This reduction in starch content most likely occurred because starch was
 (1) changed directly into proteins
 (2) transported out of the leaves through the guard cells
 (3) transported downward toward the roots through tubes
 (4) changed into simple sugars

3 Luciferin is a molecule that, when broken down in fireflies, produces heat and light. The rate at which luciferin is broken down in cells is controlled by
 (1) a carbohydrate (3) an enzyme
 (2) a simple sugar (4) a complex fat

4 Communication between cells is affected if there is decreased ability to produce
 (1) digestive enzymes and gametes
 (2) antibodies and chloroplasts
 (3) hormones and nerve impulses
 (4) antibiotics and guard cells

5 Tomato plants in a garden are not growing well. The gardener hypothesizes that the soil is too acidic. To test this hypothesis accurately, the gardener could
 (1) plant seeds of a different kind of plant
 (2) move the tomato plants to an area with less sunlight
 (3) change the pH of the soil
 (4) reduce the amount of water available to the plant

6 A glucose-tolerance test was conducted to observe the effect of time on glucose concentration in the blood. An animal was fed 10 milliliters of glucose solution. At five different times after the ingestion of the solution, the blood glucose concentration was determined, and the results were recorded in the data table below.

<table>
<thead>
<tr>
<th>Time After Glucose Ingestion (minutes)</th>
<th>Glucose Concentration in Blood (mg/100 dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>30</td>
<td>125</td>
</tr>
<tr>
<td>60</td>
<td>110</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>120</td>
<td>80</td>
</tr>
<tr>
<td>180</td>
<td>70</td>
</tr>
</tbody>
</table>

The change in glucose concentration in the blood between 0 and 30 minutes was probably due to
 (1) the liver releasing glucose into the small intestine
 (2) glucose being absorbed from the digestive system
 (3) the synthesis of glucose from starch
 (4) glucose being used for cellular respiration
7 The diagram below represents movement of a large molecule across a membrane. Which process is best represented in this diagram?

(1) active transport (3) protein building
(2) diffusion (4) gene manipulation

8 How does the type of reproduction shown in method A in the diagram below differ from the type of reproduction shown in method B?

(1) Method A illustrates sexual reproduction, and method B illustrates asexual reproduction.
(2) Offspring produced by method B will be genetically alike, but offspring produced by method A will be genetically different.
(3) The two cells shown in the last step of method A are genetically alike, but the two cells shown in the last step of method B are genetically different.
(4) Offspring produced by method A will be genetically like the parent, but offspring produced by method B will be genetically different from the parents.

9 When humans first domesticated dogs, there was relatively little diversity in the species. Today, there are many variations such as the German shepherd and the dalmation. This increase in diversity is most closely associated with

(1) cloning of selected body cells
(2) selective breeding
(3) mitotic cell division
(4) environmental influences on inherited traits

10 As a result of sexual reproduction, an organism can pass a gene mutation to its offspring if the mutation occurs in

(1) a body cell (3) liver tissue
(2) a gamete (4) white blood cells
11 The diversity within the wild bird species in the diagram below can best be explained by which process?

(1) natural selection (3) ecological succession
(2) asexual reproduction (4) mitotic cell division

12 What is the most probable reason for the increase in the percentage of variety A in the population of the species shown in the graph below?

(1) There is no chance for variety A to mate with variety B.
(2) There is no genetic difference between variety A and variety B.
(3) Variety A is less fit to survive than variety B.
(4) Variety A has some adaptive advantage that variety B does not have.

13 The type of molecule represented below is found in organisms.

Which statement correctly describes the sequence of bases found in this type of molecule?

(1) It changes every time it replicates.
(2) It determines the characteristics that will be inherited.
(3) It is exactly the same in all organisms.
(4) It directly controls the synthesis of starch within a cell.
14 The diagram below illustrates a proposed evolutionary path of certain organisms, based on the theory of evolution.

Which statement could best be inferred from the information in this diagram?

(1) Evolution does not involve gradual change.
(2) Evolutionary changes can result in extinction.
(3) Evolution begins with plants.
(4) Evolution produces organisms that all fill the same niche.

15 Which statement best describes the result of some of the processes involved in genetic engineering?

(1) They alter the arrangement of hereditary material.
(2) They provide energy for mitosis and meiosis.
(3) They are necessary for normal gamete formation.
(4) They reduce variation in organisms that reproduce asexually.

16 A characteristic of mutations is that they usually

(1) are caused only by the events of mitosis
(2) do not occur at random
(3) result in different genetic sequences
(4) occur to meet the needs of a species

17 Regulation of sexual reproductive cycles of human males is related most directly to the presence of the hormone

(1) estrogen (3) testosterone
(2) progesterone (4) insulin

18 The nucleus is removed from a body cell of one organism and is placed in an egg cell that has had its nucleus removed. This process, which results in the production of organisms that are genetically alike, is known as

(1) cloning
(2) fertilization
(3) biological adaptation
(4) DNA production

19 Most cells in the body of a fruit fly contain eight chromosomes. In some cells, only four chromosomes are present, a condition which is a direct result of

(1) mitotic cell division
(2) meiotic cell division
(3) embryonic differentiation
(4) internal fertilization
20 People with AIDS are unable to fight multiple infections because the virus that causes AIDS
(1) weakens their immune systems
(2) produces antibodies in their blood
(3) attacks muscle tissue
(4) kills pathogens

21 Feedback mechanisms are best described as processes that help
(1) reduce hormone levels to below normal in the blood
(2) destroy hormones in the blood
(3) directly control muscle contraction in the leg
(4) keep body conditions near a normal, steady state

22 A pond ecosystem is represented in the diagram below.

Energy for this ecosystem originally comes from
(1) water
(2) consumers
(3) sunlight
(4) plants

23 Which type of model provides the most complete representation of the feeding relationships within a community?
(1) a material cycle
(2) a predator-prey association
(3) a food chain
(4) a food web

24 An ecosystem will most likely remain stable if
(1) it has more predators than prey
(2) it has a high level of biodiversity
(3) biotic factors decrease
(4) finite resources decrease

25 Heavy cigarette smoking and the use of alcohol throughout pregnancy usually increase the likelihood of
(1) the birth of twins
(2) the birth of a male baby
(3) a baby being born with a viral infection
(4) a baby being born with medical problems

26 The mass of some corn plants at the end of their growth period was 6 tons per acre. Most of this mass was produced from
(1) water and organic compounds absorbed from the soil
(2) minerals from the soil and oxygen from the air
(3) minerals and organic materials absorbed from the soil
(4) water from the soil and carbon dioxide from the air

27 The gene for the production of human insulin is inserted into certain bacterial cells. The offspring of these bacterial cells will most likely be able to
(1) destroy pathogens
(2) reproduce sexually
(3) synthesize this hormone
(4) form human tissue

28 A characteristic of hormones and enzymes that allows them to work effectively with other organic molecules is their
(1) specific shape
(2) small size
(3) concentration of carbon and hydrogen atoms
(4) high-energy bonds

29 Both a deer and a tree react to changes in their external surroundings, helping them to maintain a constant internal environment. This statement describes
(1) predation
(2) homeostasis
(3) antibiotic resistance
(4) autotrophic nutrition
30 Which sequence best represents the flow of energy in the cartoon below?

(1) prey \rightarrow predator
(2) host \rightarrow parasite
(3) producer \rightarrow herbivore
(4) autotroph \rightarrow carnivore

31 What would most likely occur after an ecosystem is disrupted by fire?

(1) The ecosystem would eventually return to its original state.
(2) The ecosystem would return to its previous state immediately.
(3) The ecosystem would evolve into a new ecosystem that is totally different from the original.
(4) The ecosystem would become an ever-changing environment with no stability.

32 Car exhaust has been blamed for increasing the amount of carbon dioxide in the air. Some scientists believe this additional carbon dioxide in the air may cause

(1) global warming
(2) increased biodiversity
(3) habitat preservation
(4) ozone destruction

33 Which statement illustrates how human activities can most directly change the dynamic equilibrium of an ecosystem?

(1) A hurricane causes a stream to overflow its banks.
(2) Increased wind increases water evaporation from a plant.
(3) Water pollution causes a decrease in fish populations in a river.
(4) The ozone shield helps prevent harmful radiation from reaching the surface of Earth.

34 Some factories have a negative impact on Earth’s ecosystems because they

(1) have high energy demands that require the use of fossil fuels and nuclear fuels
(2) utilize agricultural technology that decreases soil erosion
(3) decrease the need for finite resources
(4) limit the amount of emissions produced each year

35 For a natural ecosystem to be self-sustaining, many essential chemical elements must be

(1) converted to energy
(2) changed into fossil fuels such as oil and coal
(3) permanently removed from the environment
(4) cycled between organisms and the environment
An insect known as a sawfly is found in evergreen forests in North America. Sawfly cocoons are the main source of food for shrews (small mammals) and some bird species. Scientists studied 1-acre plots in various parts of a state to determine the average number of sawfly cocoons, shrews, and robins. The data collected are shown in the table below.

<table>
<thead>
<tr>
<th>Average Number of Sawfly Cocoons per Acre (in thousands)</th>
<th>Average Number of Shrews per Acre</th>
<th>Average Number of Robins per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>5.0</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>7.5</td>
<td>0.5</td>
</tr>
<tr>
<td>600</td>
<td>19.0</td>
<td>0.8</td>
</tr>
<tr>
<td>900</td>
<td>23.5</td>
<td>1.0</td>
</tr>
<tr>
<td>1200</td>
<td>23.5</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Directions (36–38): Using the information in the data table, construct a line graph on the grid provided on the next page, following the directions below. You may use pen or pencil for your answer.

36 Mark an appropriate scale on each axis. [1]

37 Plot the data for shrews. Surround each point with a small circle and connect the points. [1]

Example:
38 Plot the data for robins. Surround each point with a small triangle and connect the points.

Example:

![Diagram of plotted data]

39 What is the average number of shrews per acre when the average number of sawfly cocoons is 500,000?

38 State what would most likely happen to the number of sawfly cocoons per acre if the shrews and robins were removed from the area.
Base your answers to questions 41 through 43 on the information and graph below and on your knowledge of biology.

A Closer Look at Cycles in Predator and Prey Populations

Scientists have hypothesized that the populations of both lynx and snowshoe hares should show cyclic changes with increases in the predator population size lagging behind increases in prey population size, if the assumption is made that snowshoe hares are eaten only by lynx.

Does this out-of-phase population cycle of predators and prey actually occur in nature? A classic example of such a cycle was observed by counting all the fur pelts (skins) from northern Canada lynx and snowshoe hares purchased by the Hudson Bay Company between 1845 and 1935. Population cycles of snowshoe hares and their lynx predators, based on the number of pelts received by the Hudson Bay Company, are shown in the graph below.

As with any field investigation, many variables could influence the relationship between hare and lynx. One problem is that hare populations have been shown to fluctuate even without lynx present, possibly because the carrying capacity of their environment had been exceeded.

To test this hypothesis about population cycles more scientifically, investigators turned to controlled laboratory studies on populations of small predators and their prey.

41 Identify two variables other than the size of the lynx population that can affect the size of the hare population. [2]

1. ________________________________

2. ________________________________
42 The phrase “carrying capacity” refers to

(1) storing extra food for the winter
(2) the number of organisms a habitat can support
(3) transporting food to organisms in an area
(4) the maximum possible weight of an individual organism

43 Why would scientists want to have a laboratory study on populations of different predators and their prey? [1]
Base your answers to questions 44 and 45 on the diagram below, which provides information related to heredity, and on your knowledge of biology.

44 The type of molecule in box A serves as a template. Explain what this means.

45 Which molecules are represented by box B?

(1) bases
(2) proteins
(3) amino acids
(4) simple sugars
Base your answers to questions 46 through 49 on the energy pyramid below and on your knowledge of biology.

46 Energy from nutrients is transferred to ATP in

(1) level A, only
(2) levels B and C, only
(3) levels B, C, and D, only
(4) levels A, B, C, and D

47 The greatest amount of available energy is transferred from level

(1) A to level B
(2) A to level C
(3) B to level A
(4) D to level A

48 Which energy levels could contain carnivores?

(1) A and B
(2) B and C
(3) C and D
(4) D and A

49 In a community where grass, cats, insects, and mice are found, which of these organisms would fill level A? [1]
A student designed an investigation to determine the effect of temperature on the rate of seed germination. The student placed moist filter paper in each of four culture dishes. Ten bean seeds were placed on the filter paper in each dish. The four dishes were numbered and placed in the dark at different temperatures as follows: Dish 1: 10°C, Dish 2: 15°C, Dish 3: 20°C, Dish 4: 25°C. The total number of germinated seeds in each culture dish was counted each day for two weeks.

Which data table is best for recording the results of this investigation?

<table>
<thead>
<tr>
<th>Petri Dish</th>
<th>Day</th>
<th>Temperature</th>
<th>Amount of Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1)

<table>
<thead>
<tr>
<th>Day</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dish 1</td>
</tr>
</tbody>
</table>

(3)

<table>
<thead>
<tr>
<th>Petri Dish</th>
<th>Amount of Water</th>
<th>Number of Germinated Seeds</th>
<th>Amount of Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2)

<table>
<thead>
<tr>
<th>Day</th>
<th>Number of Germinated Seeds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10°C</td>
</tr>
</tbody>
</table>

(4)

The Pine Barrens is a government-protected environment located on the eastern end of Long Island. A proposal has been made to allow a shopping mall to be built in the middle of the Pine Barrens. Although the developer has promised jobs for people in the surrounding communities, some community members oppose the building of the mall due to the negative effects it would have on this fragile ecosystem.

Identify two negative effects this mall would most likely have on the Pine Barrens. [2]

1.
2.

50 51
52 In an investigation to determine the change in heart rate with increased activity, a biology teacher asked students to take their pulses immediately before and immediately after exercising for 2 minutes. The data showed an average heart rate of 72 beats per minute before exercising and 90 beats per minute after exercising. If a valid conclusion is to be made from the results of this investigation, which assumption must be made?

(1) In most students, the average heart rate is not affected by exercise.

(2) Exercise causes the heart rate to slow down.

(3) Each student exercised with the same intensity.

(4) The heart rate of each student goes up 18 beats after jogging for 2 minutes.

Base your answers to questions 53 and 54 on the word equation below and on your knowledge of biology.

\[\text{glucose + oxygen} \xrightarrow{\text{enzymes}} \text{energy} \rightarrow \text{carbon dioxide + water + X} \]

53 Name the process represented by the equation. [1]

54 Name the molecule represented by letter X. [1]
Base your answers to questions 55 and 56 on the data table below and on your knowledge of biology. The data table shows the amount of oxygen that will dissolve in freshwater and seawater at different temperatures. The amount of oxygen is expressed in parts per million (ppm).

Data Table

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Freshwater Oxygen Content (ppm)</th>
<th>Seawater Oxygen Content (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.24</td>
<td>11.15</td>
</tr>
<tr>
<td>10</td>
<td>11.29</td>
<td>9.00</td>
</tr>
<tr>
<td>15</td>
<td>10.10</td>
<td>8.09</td>
</tr>
<tr>
<td>20</td>
<td>9.11</td>
<td>7.36</td>
</tr>
<tr>
<td>25</td>
<td>8.27</td>
<td>6.75</td>
</tr>
<tr>
<td>30</td>
<td>7.56</td>
<td>6.19</td>
</tr>
</tbody>
</table>

55 Write a statement comparing the oxygen-holding ability of freshwater with the oxygen-holding ability of seawater in the temperature range shown. [1]

__

56 State how the oxygen-holding ability of freshwater varies with changes in temperature. [1]

__
Base your answers to questions 57 and 58 on the information below and on your knowledge of biology.

A student completed a series of experiments and found that a protein-digesting enzyme (intestinal protease) functions best when the pH is 8.0 and the temperature is 37°C. During an experiment, the student used some of the procedures listed below.

Procedures
(A) Adding more protease
(B) Adding more protein
(C) Decreasing the pH to 6.0
(D) Increasing the temperature to 45°C
(E) Decreasing the amount of light

57 Which procedure would have the least effect on the rate of protein digestion?

(1) A
(2) E
(3) C
(4) D

58 Which two procedures would most likely cause a decrease in the rate of protein digestion?

(1) A and D
(2) B and C
(3) C and D
(4) A and E
An investigation was performed to determine the resistance of two species of *Anopheles* mosquito to the insecticides malathion and dieldrin. In May, two groups of 10,000 insects of each species were sprayed with insecticide. One group was sprayed with malathion, the second group with dieldrin. The number of surviving insects was recorded after the first spraying. The surviving insects were then allowed to reproduce. Several generations of new offspring were produced over the following three months. On the first day of each month they were sprayed, and the number of survivors was recorded in the table below.

<table>
<thead>
<tr>
<th>Species</th>
<th>Insecticide</th>
<th>Number Before First Spraying</th>
<th>Number of Survivors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>May</td>
</tr>
<tr>
<td>Anopheles culifacies</td>
<td>malathion</td>
<td>10,000</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>dieldrin</td>
<td>10,000</td>
<td>78</td>
</tr>
<tr>
<td>Anopheles strephensi</td>
<td>malathion</td>
<td>10,000</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>dieldrin</td>
<td>10,000</td>
<td>30</td>
</tr>
</tbody>
</table>

59 State *one* valid conclusion that can be drawn from these data. [1]

60 State *one* negative impact that the use of these two insecticides might have on the environment. [1]
61 Which graph best represents the number of survivors after spraying in the *Anopheles culifacies* population from May to August?

62 To test the effect of hormones on plant growth, six potted plant seedlings of the same species were measured and then sprayed with auxin (a growth hormone). After four weeks of growth under ideal conditions, the plants were measured again. To set up a proper control for this experiment, the investigator should

(1) spray the same plants with different amounts of auxin
(2) spray auxin on six plant seedlings of the same species and grow them in the dark for four weeks
(3) wash the auxin off three of the plants after two weeks
(4) grow another six plant seedlings of the same species under the same conditions, spraying them with distilled water only

63 A student wanted to determine if slugs preferred green leaf lettuce leaves over purple cabbage leaves for food. Pieces of both leaves were cut. One piece of each type of leaf and one slug were placed in each of ten containers. After three days, the surface area of each leaf section was measured and the results were recorded in a data table. State one reason that the results of this experiment might be considered invalid. [1]
Part C

Answer all questions in this part. [20]

Directions (64–71): Record your answers in the spaces provided in this examination booklet.

Base your answers to questions 64 through 66 on the information below and on your knowledge of biology.

Telomere Tales

The number of times a human body cell reproduces is dependent on the length of its special chromosome tips. These tips, which are known as telomeres, act as cell division clocks. With each division, the length of the telomere shortens until a critical length is reached, signaling cell reproduction to stop. Knowledge of telomeres could be used in cancer diagnosis, in understanding diseases of aging, and in providing information that would lead to the survival of transplanted organs.

As most body cells divide, their telomeres shorten and, in turn, the overall chromosome length is reduced. However, tissues such as bone marrow and most cancer cells lengthen their shrinking chromosome tips with the help of an enzyme, telomerase. As a result, the chromosomes of these rapidly dividing cells never reach critical length, and the cells continue to reproduce.

Transplantation speeds up the aging process in donor cells. The telomeres of transplanted cells are shorter than those in normal bone marrow cells. If telomerase is inserted into donor cells, the donor tissues may live longer. This procedure would greatly benefit organ transplants and the treatment of patients who have HIV (the virus that causes AIDS). For example, blood-forming cells could be removed from these patients early in the disease, cultured with telomerase to extend their telomeres, and then returned to the bodies of the patients as their blood cell counts fall.

64 State the relationship between the presence of telomerase, telomere length, and the number of cell divisions. [2]

65 Explain how the knowledge of telomerase may lead to an effective treatment for cancer. [1]
66 State one way telomerase could be used to treat patients who have HIV. [1]

67 Vaccinations play a major role in medicine today. Explain the role of vaccines in the prevention of disease. Your answer must include at least:

- a description of the contents of a vaccine [1]
- a description of how a vaccine protects the body from disease [1]
- one specific reason certain vaccinations are required for students to attend public schools [1]
In the past, a specific antibiotic was effective in killing a certain species of bacteria. Now, most members of this bacterial species are resistant to this antibiotic. Explain how this species of bacteria has become resistant. Your answer must include at least the concepts of:

- overproduction
- variation
- natural selection
- adaptation to the environment
You are the head of the research division of the Leafy Lettuce Company. Your company is experimenting with hydroponic technology. Hydroponic technology involves growing plants in containers of growth solution in a greenhouse. No soil is used. Your first experiment used five groups of five plants of the same size and species. Each group was grown in a different growth solution for the same period of time. The results of the experiment are shown in the table below.

<table>
<thead>
<tr>
<th>Group</th>
<th>Growth Solution</th>
<th>Average Growth in Height (cm)</th>
<th>Average Surface Area of Leaves (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H₂O</td>
<td>4.4</td>
<td>7.6</td>
</tr>
<tr>
<td>2</td>
<td>H₂O + N</td>
<td>5.1</td>
<td>10.0</td>
</tr>
<tr>
<td>3</td>
<td>H₂O + N + P</td>
<td>11.5</td>
<td>37.5</td>
</tr>
<tr>
<td>4</td>
<td>H₂O + N + P + Mg</td>
<td>13.0</td>
<td>125.0</td>
</tr>
<tr>
<td>5</td>
<td>H₂O + N + P + Mg + K</td>
<td>20.3</td>
<td>306.5</td>
</tr>
</tbody>
</table>

69 Prepare a brief report to the president of the Leafy Lettuce Company summarizing the results of your experiment and identifying another possible variable that could be investigated to improve the growth of the lettuce. In your report, be sure to include:

- a recommendation of the best growth solution to use for hydroponic lettuce [Support your recommendation.] [2]
- another possible variable (besides the growth solution) that might be investigated to improve the growth of the hydroponic lettuce [1]
- a recommendation for an extension of this investigation to make it more valid [1]
70 Could the results of this investigation be used to select the best growth solution for other species of plants? Justify your answer. [1]

71 Just like complex organisms, cells are able to survive by coordinating various activities. Complex organisms have a variety of systems, and cells have a variety of organelles that work together for survival. Describe the roles of two organelles. In your answer be sure to include:
- the names of two organelles and the function of each [2]
- an explanation of how these two organelles work together [1]
- the name of an organelle and the name of a system in the human body that have similar functions [1]
The University of the State of New York
REGENTS HIGH SCHOOL EXAMINATION

LIVING ENVIRONMENT

Wednesday, January 23, 2002 — 1:15 to 4:15 p.m., only

ANSWER SHEET

Student ... Sex: □ Female □ Male
Teacher ... School Grade

Record your answers to Part A on this answer sheet.

Part A

1 13 25
2 14 26
3 15 27
4 16 28
5 17 29
6 18 30
7 19 31
8 20 32
9 21 33
10 22 34
11 23 35
12 24

The declaration below must be signed when you have completed the examination.

I do hereby affirm, at the close of this examination, that I had no unlawful knowledge of the questions or answers prior to the examination and that I have neither given nor received assistance in answering any of the questions during the examination.

Signature

Maximum
Score

Part

35

30

20

Total Raw Score
(maximum Raw Score: 85)

Final Score
(from conversion chart)

Raters’ Initials
Rater 1 Rater 2
FOR TEACHERS ONLY

The University of the State of New York

REGENTS HIGH SCHOOL EXAMINATION

LIVING ENVIRONMENT

Wednesday, January 23, 2002 — 1:15 to 4:15 p.m., only

SCORING KEY AND RATING GUIDE

Directions to the Teacher:
Refer to the directions on page 3 before rating student papers.

Part A (35 credits)

Allow a total of 35 credits for Part A, one credit for each correct answer.

(1) 3 (13) 2 (25) 4
(2) 4 (14) 2 (26) 4
(3) 3 (15) 1 (27) 3
(4) 3 (16) 3 (28) 1
(5) 3 (17) 3 (29) 2
(6) 2 (18) 1 (30) 3
(7) 1 (19) 2 (31) 1
(8) 4 (20) 1 (32) 1
(9) 2 (21) 4 (33) 3
(10) 2 (22) 3 (34) 1
(11) 1 (23) 4 (35) 4
(12) 4 (24) 2
Directions to the Teachers

Follow the procedures below for scoring student answer papers for the Regents Examination in Living Environment. Additional information about scoring is provided in the publication Information Booklet for Administering and Scoring Regents Examinations in Living Environment and Physical Setting/Earth Science.

Use only red ink or red pencil in rating Regents papers. Do not attempt to correct the student’s work by making insertions or changes of any kind.

Allow 1 credit for each correct response for multiple-choice questions in Part A and Part B.

On the detachable answer sheet for Part A, indicate by means of a checkmark each incorrect or omitted answer to multiple-choice questions. In the box provided in the upper right corner of the answer sheet, record the number of questions the student answered correctly for that part.

At least two science teachers must participate in the scoring of the Part B and Part C open-ended questions on a student’s paper. Each of these teachers should be responsible for scoring a selected number of the open-ended questions on each answer paper. No one teacher is to score all the open-ended questions on a student’s answer paper.

Students’ responses must be scored strictly according to the Scoring Key and Rating Guide. For open-ended questions, credit may be allowed for responses other than those given in the rating guide if the response is a scientifically accurate answer to the question and demonstrates adequate knowledge as indicated by the examples in the rating guide. In the student's examination booklet, record the number of credits earned for each answer in the box printed to the right of the answer lines or spaces for that question.

Fractional credit is not allowed. Only whole-number credit may be given to a response. If the student gives more than one answer to a question, only the first answer should be rated. Units need not be given when the wording of the questions allows such omissions.

Raters should enter the scores earned for Part A, Part B, and Part C on the appropriate lines in the box printed on the answer sheet and should add these 3 scores and enter the total in the box labeled “Total Raw Score.” Then the student’s raw score should be converted to a scaled score by using the conversion chart printed at the end of this Scoring Key and Rating Guide. The student’s scaled score should be entered in the labeled box on the student’s answer booklet. The scaled score is the student’s final examination score.
Part B

(36) Allow 1 credit for marking an appropriate scale on both axes.

(37) Allow 1 credit for plotting the data for shrews correctly (based on the student’s axes), surrounding each point with a small circle, and connecting the points.

(38) Allow 1 credit for plotting the data for robins correctly (based on the student’s axes), surrounding each point with a small triangle, and connecting the points.

Example of an appropriate graph:

![Graph example](image-url)
LIVING ENVIRONMENT – continued

(39) 15 ± 1

(40) Allow 1 credit for indicating that the number of sawfly cocoons per acre would increase if
the shrews and robins were removed from the area.

(41) Allow a total of 2 credits, 1 credit for each of two variables other than the size of the lynx
population that can affect the size of the hare population. Appropriate responses include,
but are not limited to:

— food supply
— humans
— habitat
— diseases
— competition
— environmental factors
— carrying capacity

(42) 2

(43) Allow 1 credit for indicating that scientists would want to have a laboratory study on
populations of different predators and their prey in order to eliminate unwanted variables
or to generalize about the relationship between predators and prey.

(44) Allow 1 credit for explaining the meaning of the word template as used here. Appropriate
responses include, but are not limited to:

— The template serves as a pattern.
— The sequence of bases in a DNA molecule serves as a pattern for the replication of
that DNA molecule.
— The molecule in box A (DNA) serves as a pattern for the production of other DNA
molecules.
— The template serves as a pattern for the eventual production of protein.
— The template serves as a pattern for the formation of RNA.

(45) 2

(46) 4

(47) 1

(48) 3

(49) Allow 1 credit for grass.

(50) 4
Allow a total of 2 credits, 1 credit for each of two negative effects the shopping mall would have on the Pine Barrens. Appropriate responses include, but are not limited to:

— Clearing the land for the mall would cause a decrease in the amount of plant life.
— Destroying the plants would reduce the habitat available for some animals.
— The mall will attract more automobile traffic to the area, increasing the amount of air pollution.

Allow 1 credit for identifying the process as respiration or cell respiration or aerobic respiration or oxidation.

Allow 1 credit for ATP or adenosine triphosphate.

Allow 1 credit for indicating, either as a general statement or by citing numerical data from the table, that the oxygen-holding ability of freshwater is greater than the oxygen-holding ability of seawater in the temperature range shown. Appropriate responses include, but are not limited to:

— Freshwater can hold more oxygen than seawater.
— Seawater cannot hold as much oxygen as freshwater.

Allow 1 credit for indicating, either as a general statement or by citing numerical data from the table, that the oxygen-holding ability of freshwater decreases as the temperature increases or increases as the temperature decreases. Appropriate responses include, but are not limited to:

— As temperature increases the oxygen carrying capacity of freshwater decreases.
— As the temperature decreases the oxygen carrying capacity of freshwater increases.
— Within the range shown, as the temperature increases freshwater can hold less oxygen.
— At 10°C, freshwater can hold 11.29 ppm but at 15°C it can only hold 10.10 ppm.
Allow 1 credit for stating one negative impact that the use of malathion and dieldrin might have on the environment. Appropriate responses include, but are not limited to:

— Malathion and dieldrin may kill beneficial insects.
— The malathion and dieldrin may pollute water supplies.
— Malathion and dieldrin adversely affect other organisms.

Allow 1 credit for stating one reason why the results of the experiment might be considered invalid. Appropriate responses include but are not limited to:

— The surface area of each leaf was not measured at the beginning of the investigation so they may not have been equal.
— The pieces of each leaf may not have been the same thickness and so the masses of the pieces may have been unequal.
— The sample size is too small.
— The sample size of leaf specimens was not noted.
Part C

(64) Allow a total of 2 credits for stating the relationship between the presence of telomerase, telomere length, and the number of cell divisions. Appropriate responses include, but are not limited to:

— telomerase lengthens telomeres [1]
— so that cells continue to divide [1]

(65) Allow 1 credit for stating how the knowledge of telomerase may lead to an effective treatment for cancer. Appropriate responses include, but are not limited to:

— Introducing a substance that destroys or counteracts telomerase in cancer cells would result in cell division of the cancer cells stopping and the tumor no longer growing.

(66) Allow 1 credit for stating how the knowledge of telomerase could be used to treat patients who have HIV. Appropriate responses include, but are not limited to:

— Blood-forming cells could be removed from HIV patients early in the disease, cultured with telomerase, and then returned to the bodies of the patients as their blood cell count falls.
— The telomerase-treated blood cells of the HIV patient would be able to divide more often and form more blood cells than if they were not treated.

(67) Allow a total of 3 credits for explaining the role of vaccines in the prevention of disease. The response must include:

- a description of the contents of a vaccine (e.g., weakened, altered, or dead microbes, or parts of weakened microbes) [1]
- a description of how a vaccine protects the body from disease (e.g., by stimulating the immune system to react, by causing the immune system to produce antibodies, by having the body make antibodies) [1]
- one specific reason certain vaccinations are required for students to attend public schools (e.g., to prevent the spread of disease, to keep schoolchildren protected from a disease, to prevent an epidemic in school, to protect children from diseases brought in by a classmate) [1]

Example of a 3-credit response:

A vaccine is a substance that contains dead or weakened bacteria that causes the body to make antibodies. These antibodies will then protect the body if it is exposed to these bacteria in the future. Schoolchildren need vaccinations so that they do not get sick from common illnesses and miss a lot of school.
(68) Allow a total of 4 credits for explaining how a certain species of bacteria has become resistant to an antibiotic. The explanation must include the following concepts:

- overproduction [1]
- variation [1]
- natural selection [1]
- adaptation to the environment [1]

Example of a 4-credit response:

Due to their rapid rate of reproduction, more bacteria than can possibly survive (overproduction) were produced. Due to genetic differences (variation), some bacteria had genes making them resistant to the antibiotic and so were better adapted to an environment containing the antibiotic. They were the ones most likely to survive and produce the next generation (natural selection). Over several generations, a greater percentage of the population was resistant (adaptation to the environment).

(69) Allow a total of 4 credits for summarizing the results of the experiment, for identifying another possible variable that could be investigated to improve the growth of lettuce, and for a recommendation of an extension of the investigation to make it more valid. The response must include:

- a recommendation for the best growth solution to use for hydroponic lettuce and support for this recommendation (e.g., the growth solution used for group 5 was best since in this solution, the plants grew to the greatest height or the growth solution that included H₂O + N + P + Mg + K was best, since in this solution the average surface area of the leaves was the greatest) [2]
- a variable (besides the growth solution) that might be investigated to improve growth of hydroponic lettuce (e.g., the light intensity or the number of hours of light received each day or the color of the light) Adding soil as a variable is not acceptable. [1]
- a recommendation for an extension of this investigation to make it more valid (e.g., the validity of the investigation could be improved by repeating it or by using more than five plants in each group) Adding to or changing the growth solution is not acceptable. [1]

(70) Allow 1 credit for stating whether the results of this investigation could be used to select the best growth solution for other species of plants. Appropriate responses include, but are not limited to:

- No. A growth solution that provides the necessary chemicals for one species of plant may not provide the necessary chemicals for other species.
- No. The results of an investigation involving one species of plant would not necessarily apply to other species of plants.
- Yes. The investigation could aid in the selection of a growth solution for other species of plants if these plants are closely related to the species used in the experiment.
Allow a total of 4 credits for describing two organelles. The response must include:

— the name of two organelles and the function of each (e.g., the cell membrane allows oxygen, carbon dioxide, and water to enter a cell or a chloroplast uses water and carbon dioxide to make glucose or mitochondria use food and oxygen to release energy) [2]

— an explanation of how the two organelles work together (e.g., The cell membrane allows carbon dioxide to enter a plant cell to be used by chloroplasts.) [1]

— the name of an organelle and a human body system that have similar functions (e.g., food vacuole and digestive system or cell membrane and respiratory system or nucleus and nervous system) [1]
To determine the student's final examination score, find the student's total test raw score in the column labeled “Raw Score” and then locate the scaled score that corresponds to that raw score. The scaled score is the student's final examination score. Enter this score in the space labeled “Final Score” on the student's answer sheet.

All student answer papers that receive a scaled score of 60 through 64 must be scored a second time. For the second scoring, a different committee of teachers may score the student's paper or the original committee may score the paper, except that no teacher may score the same open-ended questions that he/she scored in the first rating of the paper. The school principal is responsible for assuring that the student's final examination score is based on a fair, accurate, and reliable scoring of the student's answer paper.

Because scaled scores corresponding to raw scores in the conversion chart may change from one examination to another, it is crucial that for each administration, the conversion chart provided in the scoring key for the administration be used to determine the student's final score. The chart above is usable only for this administration of the living environment examination.
Map to Core Curriculum

<table>
<thead>
<tr>
<th>Standards</th>
<th>Question Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1—Analysis, Inquiry,</td>
<td></td>
</tr>
<tr>
<td>and Design</td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td>43</td>
</tr>
<tr>
<td>Key Idea 2</td>
<td>5</td>
</tr>
<tr>
<td>Key Idea 3</td>
<td></td>
</tr>
<tr>
<td>Appendix A (Laboratory Checklist)</td>
<td></td>
</tr>
<tr>
<td>Standard 4</td>
<td></td>
</tr>
<tr>
<td>Key Idea 1</td>
<td>1,2,4,6,7,29</td>
</tr>
<tr>
<td>Key Idea 2</td>
<td>8,9,13,15,27</td>
</tr>
<tr>
<td>Key Idea 3</td>
<td>10,11,12,14,16</td>
</tr>
<tr>
<td>Key Idea 4</td>
<td>17,18,19,25</td>
</tr>
<tr>
<td>Key Idea 5</td>
<td>3,20,21,26,28,</td>
</tr>
<tr>
<td>Key Idea 6</td>
<td>22,23,24,30,31,35</td>
</tr>
<tr>
<td>Key Idea 7</td>
<td>32,33,34</td>
</tr>
</tbody>
</table>