JMAP
 REGENTS BY STATE STANDARD: TOPIC

NY Geometry Regents Exam Questions from Spring 2014 to January 2018 Sorted by State Standard: Topic
www.jmap.org

TABLE OF CONTENTS

TOPIC	P.I.: SUBTOPIC QUESTION NUMBER
TOOLS OF GEOMETRY	G.GMD.B.4: Rotations of Two-Dimensions Objects1-7 G.GMD.B.4: Cross-Sections of Three-Dimensional Objects8-13 G.CO.D.12-13: Constructions ...14-26
LINES AND ANGLES	
TRIANGLES	
POLYGONS	G.CO.C.10: Interior and Exterior Angles of Polygons.........................8-80 G.CO.C.11: Parallelograms ...81-84 G.CO.C.11: Special Quadrilaterals............................... G.GPE.B.4: Quadrilaterals in the Coordinate Plane93-100 G.GPE.B.4, 7: Polygons in the Coordinate Plane................. $101-105$
CONICS	
MEASURING IN THE PLANE AND SPACE	
TRANSFORMATIONS	
TRIGONOMETRY	
LOGIC	

Geometry Regents Exam Questions by Common Core State Standard: Topic

TOOLS OF GEOMETRY

G.GMD.B.4: ROTATIONS OF

TWO-DIMENSIONAL OBJECTS
1 Which object is formed when right triangle RST shown below is rotated around leg $R S$?

1) a pyramid with a square base
2) an isosceles triangle
3) a right triangle
4) a cone

2 If the rectangle below is continuously rotated about side w, which solid figure is formed?

1) pyramid
2) rectangular prism
3) cone
4) cylinder

3 A student has a rectangular postcard that he folds in half lengthwise. Next, he rotates it continuously about the folded edge. Which three-dimensional object below is generated by this rotation?
1)

2)

3)

4 If an equilateral triangle is continuously rotated around one of its medians, which 3-dimensional object is generated?

1) cone
2) pyramid
3) prism
4) sphere

5 In the diagram below, right triangle $A B C$ has legs whose lengths are 4 and 6.

What is the volume of the three-dimensional object formed by continuously rotating the right triangle around $\overline{A B}$?

1) 32π
2) 48π
3) 96π
4) 144π

6 A rectangle whose length and width are 10 and 6, respectively, is shown below. The rectangle is continuously rotated around a straight line to form an object whose volume is 150π.

Which line could the rectangle be rotated around?

1) a long side
2) a short side
3) the vertical line of symmetry
4) the horizontal line of symmetry

7 Circle O is centered at the origin. In the diagram below, a quarter of circle O is graphed.

Which three-dimensional figure is generated when the quarter circle is continuously rotated about the y-axis?

1) cone
2) sphere
3) cylinder
4) hemisphere

G.GMD.B.4: CROSS-SECTIONS OF

THREE-DIMENSIONAL OBJECTS

8 Which figure can have the same cross section as a sphere?
1)

9 William is drawing pictures of cross sections of the right circular cone below.

Which drawing can not be a cross section of a cone?
1)

2)

3)

4)

10 The cross section of a regular pyramid contains the altitude of the pyramid. The shape of this cross section is a

1) circle
2) square
3) triangle
4) rectangle

11 A plane intersects a hexagonal prism. The plane is perpendicular to the base of the prism. Which two-dimensional figure is the cross section of the plane intersecting the prism?

1) triangle
2) trapezoid
3) hexagon
4) rectangle

12 A two-dimensional cross section is taken of a three-dimensional object. If this cross section is a triangle, what can not be the three-dimensional object?

1) cone
2) cylinder
3) pyramid
4) rectangular prism

13 A right hexagonal prism is shown below. A two-dimensional cross section that is perpendicular to the base is taken from the prism.

Which figure describes the two-dimensional cross section?

1) triangle
2) rectangle
3) pentagon
4) hexagon

G.CO.D.12-13: CONSTRUCTIONS

14 Using a compass and straightedge, construct an altitude of triangle $A B C$ below. [Leave all construction marks.]

15 In the diagram below, radius $\overline{O A}$ is drawn in circle O. Using a compass and a straightedge, construct a line tangent to circle O at point A. [Leave all construction marks.]

16 Triangle $X Y Z$ is shown below. Using a compass and straightedge, on the line below, construct and label $\triangle A B C$, such that $\triangle A B C \cong \triangle X Y Z$. [Leave all construction marks.] Based on your construction, state the theorem that justifies why $\triangle A B C$ is congruent to $\triangle X Y Z$.

17 In the diagram of $\triangle A B C$ shown below, use a compass and straightedge to construct the median to $\overline{A B}$. [Leave all construction marks.]

18 Using a compass and straightedge, construct and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation with a scale factor of 2 and centered at B. [Leave all construction marks.] Describe the relationship between the lengths of $\overline{A C}$ and $\overline{A^{\prime} C^{\prime}}$.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

19 Using a compass and straightedge, construct the line of reflection over which triangle $R S T$ reflects onto triangle $R^{\prime} S^{\prime} T^{\prime}$. [Leave all construction marks.]

20 Given: Trapezoid $J K L M$ with $\overline{J K} \| \overline{M L}$ Using a compass and straightedge, construct the altitude from vertex J to $\overline{M L}$. [Leave all construction marks.]

21 Using a straightedge and compass, construct a square inscribed in circle O below. [Leave all construction marks.]

Determine the measure of the arc intercepted by two adjacent sides of the constructed square. Explain your reasoning.

22 Use a compass and straightedge to construct an inscribed square in circle T shown below. [Leave all construction marks.]

23 Construct an equilateral triangle inscribed in circle T shown below. [Leave all construction marks.]

24 Using a compass and straightedge, construct a regular hexagon inscribed in circle O below. Label it $A B C D E F$. [Leave all construction marks.]

If chords $\overline{F B}$ and $\overline{F C}$ are drawn, which type of triangle, according to its angles, would $\triangle F B C$ be? Explain your answer.

25 Using a compass and straightedge, construct a regular hexagon inscribed in circle O. [Leave all construction marks.]

26 The diagram below shows circle O with diameter $\overline{A B}$. Using a compass and straightedge, construct a square that is inscribed in circle O. [Leave all construction marks.]

LINES AND ANGLES

G.GPE.B.6: DIRECTED LINE SEGMENTS

27 What are the coordinates of the point on the directed line segment from $K(-5,-4)$ to $L(5,1)$ that partitions the segment into a ratio of 3 to 2 ?

1) $(-3,-3)$
2) $(-1,-2)$
3) $\left(0,-\frac{3}{2}\right)$
4) $(1,-1)$

28 Point P is on segment $A B$ such that $A P: P B$ is $4: 5$. If A has coordinates $(4,2)$, and B has coordinates $(22,2)$, determine and state the coordinates of P.

29 The endpoints of $\overline{D E F}$ are $D(1,4)$ and $F(16,14)$. Determine and state the coordinates of point E, if $D E: E F=2: 3$.

30 The coordinates of the endpoints of $\overline{A B}$ are $A(-6,-5)$ and $B(4,0)$. Point P is on $\overline{A B}$. Determine and state the coordinates of point P, such that $A P: P B$ is $2: 3$. [The use of the set of axes below is optional.]

31 Point Q is on $\overline{M N}$ such that $M Q: Q N=2: 3$. If M has coordinates $(3,5)$ and N has coordinates $(8,-5)$, the coordinates of Q are

1) $(5,1)$
2) $(5,0)$
3) $(6,-1)$
4) $(6,0)$

32 Point P is on the directed line segment from point $X(-6,-2)$ to point $Y(6,7)$ and divides the segment in the ratio 1:5. What are the coordinates of point P ?

1) $\left(4,5 \frac{1}{2}\right)$
2) $\left(-\frac{1}{2},-4\right)$
3) $\left(-4 \frac{1}{2}, 0\right)$
4) $\left(-4,-\frac{1}{2}\right)$

33 Directed line segment $P T$ has endpoints whose coordinates are $P(-2,1)$ and $T(4,7)$. Determine the coordinates of point J that divides the segment in the ratio 2 to 1 . [The use of the set of axes below is optional.]

34 In the diagram below, $\overline{A C}$ has endpoints with coordinates $A(-5,2)$ and $C(4,-10)$.

If B is a point on $\overline{A C}$ and $A B: B C=1: 2$, what are the coordinates of B ?

1) $(-2,-2)$
2) $\left(-\frac{1}{2},-4\right)$
3) $\left(0,-\frac{14}{3}\right)$
4) $(1,-6)$

35 Line segment $R W$ has endpoints $R(-4,5)$ and $W(6,20)$. Point P is on $\overline{R W}$ such that $R P \cdot P W$ is
2:3. What are the coordinates of point P ?

1) $(2,9)$
2) $(0,11)$
3) $(2,14)$
4) $(10,2)$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

36 The coordinates of the endpoints of $\overline{A B}$ are $A(-8,-2)$ and $B(16,6)$. Point P is on $\overline{A B}$. What are the coordinates of point P, such that $A P: P B$ is $3: 5$?

1) $(1,1)$
2) $(7,3)$
3) $(9.6,3.6)$
4) $(6.4,2.8)$

G.CO.C.9: LINES \& ANGLES

37 In the diagram below, $\overline{E F}$ intersects $\overline{A B}$ and $\overline{C D}$ at \underline{G} and H, respectively, and $\overline{G I}$ is drawn such that $\overline{G H} \cong \overline{I H}$.

If $\mathrm{m} \angle E G B=50^{\circ}$ and $\mathrm{m} \angle D I G=115^{\circ}$, explain why $\overline{A B} \| \overline{C D}$.

38 Steve drew line segments $A B C D, E F G, B F$, and $C F$ as shown in the diagram below. Scalene $\triangle B F C$ is formed.

Which statement will allow Steve to prove
$\overline{A B C D} \| \overline{E F G}$?

1) $\angle C F G \cong \angle F C B$
2) $\angle A B F \cong \angle B F C$
3) $\angle E F B \cong \angle C F B$
4) $\angle C B F \cong \angle G F C$

39 In the diagram below, $\overleftrightarrow{F E}$ bisects $\overline{A C}$ at B, and $\overleftrightarrow{G E}$ bisects $\overline{B D}$ at C.

Which statement is always true?

1) $\overline{A B} \cong \overline{D C}$
2) $\overline{F B} \cong \overline{E B}$
3) $\overleftrightarrow{B D}$ bisects $\overline{G E}$ at C.
4) $\overleftrightarrow{A C}$ bisects $\overline{F E}$ at B.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

40 In the diagram below, $\overline{D B}$ and $\overline{A F}$ intersect at point C, and $\overline{A D}$ and $\overline{F B E}$ are drawn.

If $A C=6, D C=4, F C=15, \mathrm{~m} \angle D=65^{\circ}$, and $\mathrm{m} \angle C B E=115^{\circ}$, what is the length of $\overline{C B}$?

1) 10
2) 12
3) 17
4) 22.5

41 Segment $C D$ is the perpendicular bisector of $\overline{A B}$ at E. Which pair of segments does not have to be congruent?

1) $\overline{A D}, \overline{B D}$
2) $\overline{A C}, \overline{B C}$
3) $\overline{A E}, \overline{B E}$
4) $\overline{D E}, \overline{C E}$

42 In the diagram below, lines ℓ, m, n, and p intersect line r.

Which statement is true?

1) $\ell \| n$
2) $\ell \| p$
3) $m \| p$
4) $m \| n$

43 As shown in the diagram below, $\overleftrightarrow{A B C} \| \overleftrightarrow{E F G}$ and $\overline{B F} \cong \overline{E F}$.

If $\mathrm{m} \angle C B F=42.5^{\circ}$, then $\mathrm{m} \angle E B F$ is

1) 42.5°
2) 68.75°
3) 95°
4) 137.5°

G.GPE.B.5: PARALLEL AND

 PERPENDICULAR LINES44 Which equation represents a line that is perpendicular to the line represented by $2 x-y=7$?

1) $y=-\frac{1}{2} x+6$
2) $y=\frac{1}{2} x+6$
3) $y=-2 x+6$
4) $y=2 x+6$

45 Given $\overline{M N}$ shown below, with $M(-6,1)$ and $N(3,-5)$, what is an equation of the line that passes through point $P(6,1)$ and is parallel to $\overline{M N}$?

1) $y=-\frac{2}{3} x+5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{3}{2} x+7$
4) $y=\frac{3}{2} x-8$

46 An equation of a line perpendicular to the line represented by the equation $y=-\frac{1}{2} x-5$ and passing through $(6,-4)$ is

1) $y=-\frac{1}{2} x+4$
2) $y=-\frac{1}{2} x-1$
3) $y=2 x+14$
4) $y=2 x-16$

47 Line segment $N Y$ has endpoints $N(-11,5)$ and $Y(5,-7)$. What is the equation of the perpendicular bisector of $\overline{N Y}$?

1) $y+1=\frac{4}{3}(x+3)$
2) $y+1=-\frac{3}{4}(x+3)$
3) $y-6=\frac{4}{3}(x-8)$
4) $y-6=-\frac{3}{4}(x-8)$

48 What is an equation of a line which passes through $(6,9)$ and is perpendicular to the line whose equation is $4 x-6 y=15$?

1) $y-9=-\frac{3}{2}(x-6)$
2) $y-9=\frac{2}{3}(x-6)$
3) $y+9=-\frac{3}{2}(x+6)$
4) $y+9=\frac{2}{3}(x+6)$

49 In the diagram below, $\triangle A B C$ has vertices $A(4,5)$, $B(2,1)$, and $C(7,3)$.

What is the slope of the altitude drawn from A to $\overline{B C}$?

1) $\frac{2}{5}$
2) $\frac{3}{2}$
3) $-\frac{1}{2}$
4) $-\frac{5}{2}$

50 Which equation represents the line that passes through the point $(-2,2)$ and is parallel to
$y=\frac{1}{2} x+8$?

1) $y=\frac{1}{2} x$
2) $y=-2 x-3$
3) $y=\frac{1}{2} x+3$
4) $y=-2 x+3$

51 What is an equation of a line that is perpendicular to the line whose equation is $2 y=3 x-10$ and passes through $(-6,1)$?

1) $y=-\frac{2}{3} x-5$
2) $y=-\frac{2}{3} x-3$
3) $y=\frac{2}{3} x+1$
4) $y=\frac{2}{3} x+10$

52 What is an equation of the perpendicular bisector of the line segment shown in the diagram below?

1) $y+2 x=0$
2) $y-2 x=0$
3) $2 y+x=0$
4) $2 y-x=0$

TRIANGLES

G.SRT.C.8: PYTHAGOREAN THEOREM, 30-60-90 TRIANGLES

53 Linda is designing a circular piece of stained glass with a diameter of 7 inches. She is going to sketch a square inside the circular region. To the nearest tenth of an inch, the largest possible length of a side of the square is

1) 3.5
2) 4.9
3) 5.0
4) 6.9

54 The aspect ratio (the ratio of screen width to height) of a rectangular flat-screen television is 16:9. The length of the diagonal of the screen is the television's screen size. Determine and state, to the nearest inch, the screen size (diagonal) of this flat-screen television with a screen height of 20.6 inches.

55 An equilateral triangle has sides of length 20. To the nearest tenth, what is the height of the equilateral triangle?

1) 10.0
2) 11.5
3) 17.3
4) 23.1

56 The diagram shows rectangle $A B C D$, with diagonal $\overline{B D}$.

What is the perimeter of rectangle $A B C D$, to the nearest tenth?

1) 28.4
2) 32.8
3) 48.0
4) 62.4
G.SRT.B.5: ISOSCELES TRIANGLE THEOREM

57 In isosceles $\triangle M N P$, line segment $N O$ bisects vertex $\angle M N P$, as shown below. If $M P=16$, find the length of $\overline{M O}$ and explain your answer.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

58 In the diagram below of isosceles triangle $A B C$, $\overline{A B} \cong \overline{C B}$ and angle bisectors $\overline{A D}, \overline{B F}$, and $\overline{C E}$ are drawn and intersect at X.

If $\mathrm{m} \angle B A C=50^{\circ}$, find $\mathrm{m} \angle A X C$.

G.SRT.B.5: SIDE SPLITTER THEOREM

59 In the diagram of $\triangle A D C$ below, $\overline{E B} \| \overline{D C}, A E=9$, $E D=5$, and $A B=9.2$.

What is the length of $\overline{A C}$, to the nearest tenth?

1) 5.1
2) 5.2
3) 14.3
4) 14.4

60 In the diagram below, $\triangle A B C \sim \triangle A D E$.

Which measurements are justified by this similarity?

1) $A D=3, A B=6, A E=4$, and $A C=12$
2) $A D=5, A B=8, A E=7$, and $A C=10$
3) $A D=3, A B=9, A E=5$, and $A C=10$
4) $A D=2, A B=6, A E=5$, and $A C=15$

61 In the diagram of $\triangle A B C$, points D and E are on $\overline{A B}$ and $\overline{C B}$, respectively, such that $\overline{A C} \| \overline{D E}$.

If $A D=24, D B=12$, and $D E=4$, what is the length of $\overline{A C}$?

1) 8
2) 12
3) 16
4) 72

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

62 In $\triangle C E D$ as shown below, points A and B are located on sides $\overline{C E}$ and $\overline{E D}$, respectively. Line segment $A B$ is drawn such that $A E=3.75, A C=5$, $E B=4.5$, and $B D=6$.

Explain why $\overline{A B}$ is parallel to $\overline{C D}$.

63 Given $\triangle M R O$ shown below, with trapezoid PTRO, $M R=9, M P=2$, and $P O=4$.

What is the length of $\overline{T R}$?

1) 4.5
2) 5
3) 3
4) 6

64 In the diagram below, triangle $A C D$ has points B and E on sides $\overline{A C}$ and $\overline{A D}$, respectively, such that $\overline{B E} \| \overline{C D}, A B=1, B C=3.5$, and $A D=18$.

What is the length of $\overline{A E}$, to the nearest tenth?

1) 14.0
2) 5.1
3) 3.3
4) 4.0

65 In the diagram of $\triangle A B C$ below, $\overline{D E}$ is parallel to $\overline{A B}, C D=15, A D=9$, and $A B=40$.

The length of $\overline{D E}$ is

1) 15
2) 24
3) 25
4) 30

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

G.CO.C.10: INTERIOR AND EXTERIOR

 ANGLES OF TRIANGLES66 In the diagram below, $\mathrm{m} \angle B D C=100^{\circ}$, $\mathrm{m} \angle A=50^{\circ}$, and $\mathrm{m} \angle D B C=30^{\circ}$.

Which statement is true?

1) $\triangle A B D$ is obtuse.
2) $\triangle A B C$ is isosceles.
3) $\mathrm{m} \angle A B D=80^{\circ}$
4) $\triangle A B D$ is scalene.

67 In the diagram below, $\overline{D E}$ divides $\overline{A B}$ and $\overline{A C}$ proportionally, $\mathrm{m} \angle C=26^{\circ}, \mathrm{m} \angle A=82^{\circ}$, and $\overline{D F}$ bisects $\angle B D E$.

The measure of angle $D F B$ is

1) 36°
2) 54°
3) 72°
4) 82°

68 In the diagram below of triangle $M N O, \angle M$ and $\angle O$ are bisected by $\overline{M S}$ and $\overline{O R}$, respectively. Segments MS and $O R$ intersect at T, and $\mathrm{m} \angle N=40^{\circ}$.

If $\mathrm{m} \angle T M R=28^{\circ}$, the measure of angle $O T S$ is

1) 40°
2) 50°
3) 60°
4) 70°
G.CO.C.10: EXTERIOR ANGLE THEOREM

69 Given $\triangle A B C$ with $\mathrm{m} \angle B=62^{\circ}$ and side $\overline{A C}$ extended to D, as shown below.

Which value of x makes $\overline{A B} \cong \overline{C B}$?

1) 59°
2) 62°
3) 118°
4) 121°

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

70 In $\triangle A B C$ shown below, side $\overline{A C}$ is extended to point D with $\mathrm{m} \angle D A B=(180-3 x)^{\circ}$, $\mathrm{m} \angle B=(6 x-40)^{\circ}$, and $\mathrm{m} \angle C=(x+20)^{\circ}$.

What is $\mathrm{m} \angle B A C$?

1) 20°
2) 40°
3) 60°
4) 80°

G.CO.C.10: MIDSEGMENTS

71 In the diagram below, $\overline{D E}, \overline{D F}$, and $\overline{E F}$ are midsegments of $\triangle A B C$.

The perimeter of quadrilateral $A D E F$ is equivalent
to

1) $A B+B C+A C$
2) $\frac{1}{2} A B+\frac{1}{2} A C$
3) $2 A B+2 A C$
4) $A B+A C$

72 In the diagram below of $\triangle A B C, D, E$, and F are the midpoints of $\overline{A B}, \overline{B C}$, and $\overline{C A}$, respectively.

What is the ratio of the area of $\triangle C F E$ to the area of $\triangle C A B$?

1) $1: 1$
2) $1: 2$
3) $1: 3$
4) $1: 4$

G.GPE.B.4: TRIANGLES IN THE COORDINATE PLANE

73 The coordinates of the vertices of $\triangle R S T$ are $R(-2,-3), S(8,2)$, and $T(4,5)$. Which type of triangle is $\triangle R S T$?

1) right
2) acute
3) obtuse
4) equiangular

74 Triangle $A B C$ has vertices with $A(x, 3), B(-3,-1)$, and $C(-1,-4)$. Determine and state a value of x that would make triangle $A B C$ a right triangle. Justify why $\triangle A B C$ is a right triangle. [The use of the set of axes below is optional.]

75 Triangle $P Q R$ has vertices $P(-3,-1), Q(-1,7)$, and $R(3,3)$, and points A and B are midpoints of $\overline{P Q}$ and $\overline{R Q}$, respectively. Use coordinate geometry to prove that $\overline{A B}$ is parallel to $\overline{P R}$ and is half the length of $\overline{P R}$. [The use of the set of axes below is optional.]

POLYGONS

G.CO.C.11: INTERIOR AND EXTERIOR ANGLES OF POLYGONS

76 The diagram below shows parallelogram $L M N O$ with diagonal $\overline{L N}, \mathrm{~m} \angle M=118^{\circ}$, and $\mathrm{m} \angle L N O=22^{\circ}$.

Explain why $\mathrm{m} \angle N L O$ is 40 degrees.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

77 In the diagram of parallelogram FRED shown below, $\overline{E D}$ is extended to A, and $\overline{A F}$ is drawn such that $\overline{A F} \cong \overline{D F}$.

If $\mathrm{m} \angle R=124^{\circ}$, what is $\mathrm{m} \angle A F D$?

1) 124°
2) 112°
3) 68°
4) 56°

78 In parallelogram $Q R S T$ shown below, diagonal $\overline{T R}$ is drawn, U and V are points on $\overline{T S}$ and $\overline{Q R}$, respectively, and $\overline{U V}$ intersects $\overline{T R}$ at W.

If $\mathrm{m} \angle S=60^{\circ}, \mathrm{m} \angle S R T=83^{\circ}$, and $\mathrm{m} \angle T W U=35^{\circ}$, what is $\mathrm{m} \angle W V Q$?

1) 37°
2) 60°
3) 72°
4) 83°

79 In the diagram below, $A B C D$ is a parallelogram, $\overline{A B}$ is extended through B to E, and $\overline{C E}$ is drawn.

If $\overline{C E} \cong \overline{B E}$ and $\mathrm{m} \angle D=112^{\circ}$, what is $\mathrm{m} \angle E$?

1) 44°
2) 56°
3) 68°
4) 112°

80 In the diagram below of parallelogram ROCK, $\mathrm{m} \angle C$ is 70° and $\mathrm{m} \angle R O S$ is 65°.

What is $\mathrm{m} \angle K S O$?

1) 45°
2) 110°
3) 115°
4) 135°

G.CO.C.11: PARALLELOGRAMS

81 Quadrilateral $A B C D$ has diagonals $\overline{A C}$ and $\overline{B D}$. Which information is not sufficient to prove $A B C D$ is a parallelogram?

1) $\overline{A C}$ and $\overline{B D}$ bisect each other.
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{A D}$
3) $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$
4) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$

82 Parallelogram HAND is drawn below with diagonals $\overline{H N}$ and $\overline{A D}$ intersecting at S.

Which statement is always true?

1) $A N=\frac{1}{2} A D$
2) $A S=\frac{1}{2} A D$
3) $\angle A H S \cong \angle A N S$
4) $\angle H D S \cong \angle N D S$

83 Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ is shown in the diagram below.

Which information is not enough to prove $A B C D$ is a parallelogram?

1) $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{D C}$
2) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$
3) $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \| \overline{A D}$
4) $\overline{A B} \| \overline{D C}$ and $\overline{B C} \| \overline{A D}$

84 In quadrilateral $B L U E$ shown below, $\overline{B E} \cong \overline{U L}$.

Which information would be sufficient to prove quadrilateral $B L U E$ is a parallelogram?

1) $\overline{B L} \| \overline{E U}$
2) $\overline{L U} \| \overline{B E}$
3) $\overline{B E} \cong \overline{B L}$
4) $\overline{L U} \cong \overline{E U}$

G.CO.C.11: SPECIAL QUADRILATERALS

85 A parallelogram must be a rectangle when its

1) diagonals are perpendicular
2) diagonals are congruent
3) opposite sides are parallel
4) opposite sides are congruent

86 In parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. Which statement does not prove parallelogram $A B C D$ is a rhombus?

1) $\overline{A C} \cong \overline{D B}$
2) $\overline{A B} \cong \overline{B C}$
3) $\overline{A C} \perp \overline{D B}$
4) $\overline{A C}$ bisects $\angle D C B$

87 In the diagram below, if $\triangle A B E \cong \triangle C D F$ and $\overline{A E F C}$ is drawn, then it could be proven that quadrilateral $A B C D$ is a

1) square
2) rhombus
3) rectangle
4) parallelogram

88 A parallelogram is always a rectangle if

1) the diagonals are congruent
2) the diagonals bisect each other
3) the diagonals intersect at right angles
4) the opposite angles are congruent

89 If $A B C D$ is a parallelogram, which statement would prove that $A B C D$ is a rhombus?

1) $\angle A B C \cong \angle C D A$
2) $\overline{A C} \cong \overline{B D}$
3) $\overline{A C} \perp \overline{B D}$
4) $\overline{A B} \perp \overline{C D}$

90 Which set of statements would describe a parallelogram that can always be classified as a rhombus?
I. Diagonals are perpendicular bisectors of each other.
II. Diagonals bisect the angles from which they are drawn.
III. Diagonals form four congruent isosceles right triangles.

1) I and II
2) I and III
3) II and III
4) I, II, and III

91 In the diagram of rhombus $P Q R S$ below, the diagonals $\overline{P R}$ and $\overline{Q S}$ intersect at point $T, P R=16$, and $Q S=30$. Determine and state the perimeter of PQRS.

92 A parallelogram must be a rhombus if its diagonals

1) are congruent
2) bisect each other
3) do not bisect its angles
4) are perpendicular to each other

G.GPE.B.4: QUADRILATERALS IN THE COORDINATE PLANE

93 In rhombus MATH, the coordinates of the endpoints of the diagonal $\overline{M T}$ are $M(0,-1)$ and $T(4,6)$. Write an equation of the line that contains diagonal $\overline{A H}$. [Use of the set of axes below is optional.] Using the given information, explain how you know that your line contains diagonal $\overline{A H}$.

94 A quadrilateral has vertices with coordinates $(-3,1),(0,3),(5,2)$, and $(-1,-2)$. Which type of quadrilateral is this?

1) rhombus
2) rectangle
3) square
4) trapezoid

95 In the coordinate plane, the vertices of $\triangle R S T$ are $R(6,-1), S(1,-4)$, and $T(-5,6)$. Prove that $\triangle R S T$ is a right triangle. State the coordinates of point P such that quadrilateral $R S T P$ is a rectangle. Prove that your quadrilateral RSTP is a rectangle. [The use of the set of axes below is optional.]

96 The diagonals of rhombus TEAM intersect at $P(2,1)$. If the equation of the line that contains diagonal $\overline{T A}$ is $y=-x+3$, what is the equation of a line that contains diagonal $E M$?

1) $y=x-1$
2) $y=x-3$
3) $y=-x-1$
4) $y=-x-3$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

97 Parallelogram $A B C D$ has coordinates $A(0,7)$ and $C(2,1)$. Which statement would prove that $A B C D$ is a rhombus?

1) The midpoint of $\overline{A C}$ is $(1,4)$.
2) The length of $\overline{B D}$ is $\sqrt{40}$.
3) The slope of $\overline{B D}$ is $\frac{1}{3}$.
4) The slope of $\overline{A B}$ is $\frac{1}{3}$.

98 In square $G E O M$, the coordinates of G are $(2,-2)$ and the coordinates of O are $(-4,2)$. Determine and state the coordinates of vertices E and M. [The use of the set of axes below is optional.]

99 Quadrilateral $P Q R S$ has vertices $P(-2,3), Q(3,8)$, $R(4,1)$, and $S(-1,-4)$. Prove that $P Q R S$ is a rhombus. Prove that $P Q R S$ is not a square. [The use of the set of axes below is optional.]

100 In the coordinate plane, the vertices of triangle PAT are $P(-1,-6), A(-4,5)$, and $T(5,-2)$. Prove that $\triangle P A T$ is an isosceles triangle. [The use of the set of axes below is optional.] State the coordinates of R so that quadrilateral $P A R T$ is a parallelogram. Prove that quadrilateral PART is a parallelogram.

G.GPE.B.7: POLYGONS IN THE COORDINATE PLANE

101 The endpoints of one side of a regular pentagon are $(-1,4)$ and $(2,3)$. What is the perimeter of the pentagon?

1) $\sqrt{10}$
2) $5 \sqrt{10}$
3) $5 \sqrt{2}$
4) $25 \sqrt{2}$

102 Triangle RST is graphed on the set of axes below.

How many square units are in the area of $\triangle R S T$?

1) $9 \sqrt{3}+15$
2) $9 \sqrt{5}+15$
3) 45
4) 90

103 The coordinates of vertices A and B of $\triangle A B C$ are $A(3,4)$ and $B(3,12)$. If the area of $\triangle A B C$ is 24 square units, what could be the coordinates of point C?

1) $(3,6)$
2) $(8,-3)$
3) $(-3,8)$
4) $(6,3)$

104 The vertices of square RSTV have coordinates $R(-1,5), S(-3,1), T(-7,3)$, and $V(-5,7)$. What is the perimeter of RSTV?

1) $\sqrt{20}$
2) $\sqrt{40}$
3) $4 \sqrt{20}$
4) $4 \sqrt{40}$

105 On the set of axes below, the vertices of $\triangle P Q R$ have coordinates $P(-6,7), Q(2,1)$, and $R(-1,-3)$.

What is the area of $\triangle P Q R$?

1) 10
2) 20
3) 25
4) 50

CONICS

G.C.A.2: CHORDS, SECANTS AND TANGENTS

106 In circle O shown below, diameter $\overline{A C}$ is perpendicular to $\overline{C D}$ at point C, and chords $\overline{A B}$, $\overline{B C}, \overline{A E}$, and $\overline{C E}$ are drawn.

Which statement is not always true?

1) $\angle A C B \cong \angle B C D$
2) $\angle A B C \cong \angle A C D$
3) $\angle B A C \cong \angle D C B$
4) $\angle C B A \cong \angle A E C$

107 In the diagram of circle A shown below, chords $\overline{C D}$ and $\overline{E F}$ intersect at G, and chords $\overline{C E}$ and $\overline{F D}$ are drawn.

Which statement is not always true?

1) $\overline{C G} \cong \overline{F G}$
2) $\angle C E G \cong \angle F D G$
3) $\frac{C E}{E G}=\frac{F D}{D G}$
4) $\triangle C E G \sim \triangle F D G$

108 In the diagram shown below, $\overline{A C}$ is tangent to circle O at A and to circle P at $C, \overline{O P}$ intersects $\overline{A C}$ at $B, O A=4, A B=5$, and $P C=10$.

What is the length of $\overline{B C}$?

1) 6.4
2) 8
3) 12.5
4) 16

109 In the diagram below, $\overline{D C}, \overline{A C}, \overline{D O B}, \overline{C B}$, and $\overline{A B}$ are chords of circle $O, \overleftrightarrow{F D E}$ is tangent at point D, and radius $\overline{A O}$ is drawn. Sam decides to apply this theorem to the diagram: "An angle inscribed in a semi-circle is a right angle."

Which angle is Sam referring to?

1) $\angle A O B$
2) $\angle B A C$
3) $\angle D C B$
4) $\angle F D B$

110 In the diagram below of circle O with diameter $\overline{B C}$ and radius $\overline{O A}$, chord $\overline{D C}$ is parallel to chord $\overline{B A}$.

If $\mathrm{m} \angle B C D=30^{\circ}$, determine and state $\mathrm{m} \angle A O B$.

111 In the diagram below of circle $\underline{O,} \overline{O B}$ and $\overline{O C}$ are radii, and chords $\overline{A B}, \overline{B C}$, and $\overline{A C}$ are drawn.

Which statement must always be true?

1) $\angle B A C \cong \angle B O C$
2) $\mathrm{m} \angle B A C=\frac{1}{2} \mathrm{~m} \angle B O C$
3) $\triangle B A C$ and $\triangle B O C$ are isosceles.
4) The area of $\triangle B A C$ is twice the area of $\triangle B O C$.

112 In the diagram below, $\overline{B C}$ is the diameter of circle A.

Point D, which is unique from points B and C, is plotted on circle A. Which statement must always be true?

1) $\triangle B C D$ is a right triangle.
2) $\triangle B C D$ is an isosceles triangle.
3) $\triangle B A D$ and $\triangle C B D$ are similar triangles.
4) $\triangle B A D$ and $\triangle C A D$ are congruent triangles.

113 Lines $A E$ and $B D$ are tangent to circles O and P at A, E, B, and D, as shown in the diagram below. If $A C: C E=5: 3$, and $B D=56$, determine and state the length of $\overline{C D}$.

114 In circle O, secants $\overline{A D B}$ and $\overline{A E C}$ are drawn from external point A such that points D, B, E, and C are on circle O. If $A D=8, A E=6$, and $E C$ is 12 more than $B D$, the length of $\overline{B D}$ is

1) 6
2) 22
3) 36
4) 48

115 In the diagram below, tangent $\overline{D A}$ and secant $\overline{D B C}$ are drawn to circle O from external point D, such that $\overparen{A C} \cong \overparen{B C}$.

If $\mathrm{m} \overparen{B C}=152^{\circ}$, determine and state $\mathrm{m} \angle D$.

116 In the diagram below, $\mathrm{m} \widehat{A B C}=268^{\circ}$.

What is the number of degrees in the measure of $\angle A B C$?

1) 134°
2) 92°
3) 68°
4) 46°

117 In the diagram below of circle O, chord $\overline{D F}$ bisects chord $\overline{B C}$ at E.

If $B C=12$ and $F E$ is 5 more than $D E$, then $F E$ is

1) 13
2) 9
3) 6
4) 4

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

118 In the diagram below of circle O, chord $\overline{C D}$ is parallel to diameter $\overline{A O B}$ and $\mathrm{mCD}=130$.

What is $\mathrm{m} \overparen{A C}$?

1) 25
2) 50
3) 65
4) 115

119 In the diagram shown below, $\overline{P A}$ is tangent to circle T at A, and secant $\overline{P B C}$ is drawn where point B is on circle T.

If $P B=3$ and $B C=15$, what is the length of $\overline{P A}$?

1) $3 \sqrt{5}$
2) $3 \sqrt{6}$
3) 3
4) 9

120 In circle M below, diameter $\overline{A C}$, chords $\overline{A B}$ and $\overline{B C}$, and radius $\overline{M B}$ are drawn.

Which statement is not true?

1) $\triangle A B C$ is a right triangle.
2) $\triangle A B M$ is isosceles.
3) $\mathrm{m} \overparen{B C}=\mathrm{m} \angle B M C$
4) $\mathrm{m} \overparen{A B}=\frac{1}{2} \mathrm{~m} \angle A C B$

G.C.A.3: INSCRIBED QUADRILATERALS

121 In the diagram below, quadrilateral $A B C D$ is inscribed in circle P.

What is $\mathrm{m} \angle A D C$?

1) 70°
2) 72°
3) 108°
4) 110°

122 Quadrilateral $A B C D$ is inscribed in circle O, as shown below.

If $\mathrm{m} \angle A=80^{\circ}, \mathrm{m} \angle B=75^{\circ}, \mathrm{m} \angle C=(y+30)^{\circ}$, and $\mathrm{m} \angle D=(x-10)^{\circ}$, which statement is true?

1) $x=85$ and $y=50$
2) $x=90$ and $y=45$
3) $x=110$ and $y=75$
4) $x=115$ and $y=70$

G.GPE.A.1: EQUATIONS OF CIRCLES

123 The equation of a circle is $x^{2}+y^{2}+6 y=7$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(0,3)$ and radius 4
2) center ($0,-3$) and radius 4
3) center $(0,3)$ and radius 16
4) center $(0,-3)$ and radius 16

124 If $x^{2}+4 x+y^{2}-6 y-12=0$ is the equation of a circle, the length of the radius is

1) 25
2) 16
3) 5
4) 4

125 What are the coordinates of the center and length of the radius of the circle whose equation is $x^{2}+6 x+y^{2}-4 y=23$?

1) $(3,-2)$ and 36
2) $(3,-2)$ and 6
3) $(-3,2)$ and 36
4) $(-3,2)$ and 6

126 The graph below shows $\overline{A B}$, which is a chord of circle O. The coordinates of the endpoints of $\overline{A B}$ are $A(3,3)$ and $B(3,-7)$. The distance from the midpoint of $\overline{A B}$ to the center of circle O is 2 units.

What could be a correct equation for circle O ?

1) $(x-1)^{2}+(y+2)^{2}=29$
2) $(x+5)^{2}+(y-2)^{2}=29$
3) $(x-1)^{2}+(y-2)^{2}=25$
4) $(x-5)^{2}+(y+2)^{2}=25$

127 What are the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+y^{2}-4 x+8 y+11=0$?

1) center (2,-4) and radius 3
2) center $(-2,4)$ and radius 3
3) center $(2,-4)$ and radius 9
4) center $(-2,4)$ and radius 9

128 Kevin's work for deriving the equation of a circle is shown below.

$$
x^{2}+4 x=-\left(y^{2}-20\right)
$$

STEP $1 \quad x^{2}+4 x=-y^{2}+20$
STEP $2 x^{2}+4 x+4=-y^{2}+20-4$
STEP $3(x+2)^{2}=-y^{2}+20-4$
STEP $4(x+2)^{2}+y^{2}=16$
In which step did he make an error in his work?

1) Step 1
2) Step 2
3) Step 3
4) $\operatorname{Step} 4$

129 The equation of a circle is $x^{2}+y^{2}-6 y+1=0$. What are the coordinates of the center and the length of the radius of this circle?

1) center $(0,3)$ and radius $=2 \sqrt{2}$
2) center $(0,-3)$ and radius $=2 \sqrt{2}$
3) \quad center $(0,6)$ and radius $=\sqrt{35}$
4) center $(0,-6)$ and radius $=\sqrt{35}$

130 The equation of a circle is $x^{2}+y^{2}-12 y+20=0$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(0,6)$ and radius 4
2) center ($0,-6$) and radius 4
3) center $(0,6)$ and radius 16
4) center ($0,-6$) and radius 16

131 Determine and state the coordinates of the center and the length of the radius of a circle whose equation is $x^{2}+y^{2}-6 x=56-8 y$.

132 The equation of a circle is $x^{2}+y^{2}-6 x+2 y=6$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(-3,1)$ and radius 4
2) center $(3,-1)$ and radius 4
3) center ($-3,1$) and radius 16
4) center ($3,-1$) and radius 16

G.GPE.B.4: CIRCLES IN THE COORDINATE PLANE

133 The center of circle Q has coordinates (3,-2). If circle Q passes through $R(7,1)$, what is the length of its diameter?

1) 50
2) 25
3) 10
4) 5

134 A circle has a center at $(1,-2)$ and radius of 4 .
Does the point $(3.4,1.2)$ lie on the circle? Justify your answer.

135 A circle whose center is the origin passes through the point $(-5,12)$. Which point also lies on this circle?

1) $(10,3)$
2) $(-12,13)$
3) $(11,2 \sqrt{12})$
4) $(-8,5 \sqrt{21})$

MEASURING IN THE PLANE AND SPACE

G.MG.A.3: AREA OF POLYGONS, SURFACE AREA AND LATERAL AREA

136 A farmer has 64 feet of fence to enclose a rectangular vegetable garden. Which dimensions would result in the biggest area for this garden?

1) the length and the width are equal
2) the length is 2 more than the width
3) the length is 4 more than the width
4) the length is 6 more than the width

137 Keira has a square poster that she is framing and placing on her wall. The poster has a diagonal 58 cm long and fits exactly inside the frame. The width of the frame around the picture is 4 cm .

Determine and state the total area of the poster and frame to the nearest tenth of a square centimeter.

138 A gallon of paint will cover approximately 450 square feet. An artist wants to paint all the outside surfaces of a cube measuring 12 feet on each edge. What is the least number of gallons of paint he must buy to paint the cube?

1) 1
2) 2
3) 3
4) 4

G.GMD.A.1: CIRCUMFERENCE

139 A circle with a radius of 5 was divided into 24 congruent sectors. The sectors were then rearranged, as shown in the diagram below.

To the nearest integer, the value of x is

1) 31
2) 16
3) 12
4) 10

140 A designer needs to create perfectly circular necklaces. The necklaces each need to have a radius of 10 cm . What is the largest number of necklaces that can be made from 1000 cm of wire?

1) 15
2) 16
3) 31
4) 32

G.C.B.5: ARC LENGTH

141 In the diagram below, the circle shown has radius 10. Angle B intercepts an arc with a length of 2π.

What is the measure of angle B, in radians?

1) $10+2 \pi$
2) 20π
3) $\frac{\pi}{5}$
4) $\frac{5}{\pi}$

142 In the diagram below, Circle 1 has radius 4, while Circle 2 has radius 6.5. Angle A intercepts an arc of length π, and angle B intercepts an arc of length $\frac{13 \pi}{8}$.

Dominic thinks that angles A and B have the same radian measure. State whether Dominic is correct or not. Explain why.

143 In the diagram below, two concentric circles with center O, and radii $\overline{O C}, \overline{O D}, \overline{O G E}$, and $\overline{O D F}$ are drawn.

If $O C=4$ and $O E=6$, which relationship between the length of arc $E F$ and the length of arc $C D$ is always true?

1) The length of arc $E F$ is 2 units longer than the length of arc $C D$.
2) The length of arc $E F$ is 4 units longer than the length of arc $C D$.
3) The length of arc $E F$ is 1.5 times the length of arc CD.
4) The length of arc $E F$ is 2.0 times the length of arc $C D$.

G.C.B.5: SECTORS

144 Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5.

145 In the diagram below of circle O, diameter $\overline{A B}$ and radii $\overline{O C}$ and $\overline{O D}$ are drawn. The length of $\overline{A B}$ is 12 and the measure of $\angle C O D$ is 20 degrees.

If $\overparen{A C} \cong \overparen{B D}$, find the area of sector $B O D$ in terms of π.

146 In the diagram below of circle O, the area of the shaded sector $A O C$ is 12π in 2 and the length of $\overline{O A}$ is 6 inches. Determine and state $\mathrm{m} \angle A O C$.

147 Triangle $F G H$ is inscribed in circle O, the length of radius $\overline{O H}$ is 6 , and $\overline{F H} \cong \overline{O G}$.

What is the area of the sector formed by angle FOH ?

1) 2π
2) $\frac{3}{2} \pi$
3) 6π
4) 24π

148 In the diagram below of circle O, the area of the shaded sector $L O M$ is $2 \pi \mathrm{~cm}^{2}$.

If the length of $\overline{N L}$ is 6 cm , what is $\mathrm{m} \angle N$?

1) 10°
2) 20°
3) 40°
4) 80°

149 What is the area of a sector of a circle with a radius of 8 inches and formed by a central angle that measures 60° ?

1) $\frac{8 \pi}{3}$
2) $\frac{16 \pi}{3}$
3) $\frac{32 \pi}{3}$
4) $\frac{64 \pi}{3}$

150 In circle O, diameter $\overline{A B}$, chord $\overline{B C}$, and radius $\overline{O C}$ are drawn, and the measure of arc $B C$ is 108°.

Some students wrote these formulas to find the area of sector COB:

$$
\text { Amy } \quad \frac{3}{10} \cdot \pi \cdot(B C)^{2}
$$

Beth $\frac{108}{360} \cdot \pi \cdot(O C)^{2}$
Carl $\quad \frac{3}{10} \cdot \pi \cdot\left(\frac{1}{2} A B\right)^{2}$
Dex $\frac{108}{360} \cdot \pi \cdot \frac{1}{2}(A B)^{2}$
Which students wrote correct formulas?

1) Amy and Dex
2) Beth and Carl
3) Carl and Amy
4) Dex and Beth

151 In the diagram below of circle $O, G O=8$ and $\mathrm{m} \angle G O J=60^{\circ}$.

What is the area, in terms of π, of the shaded region?

1) $\frac{4 \pi}{3}$
2) $\frac{20 \pi}{3}$
3) $\frac{32 \pi}{3}$
4) $\frac{160 \pi}{3}$

152 In a circle with a diameter of 32 , the area of a sector is $\frac{512 \pi}{3}$. The measure of the angle of the sector, in radians, is

1) $\frac{\pi}{3}$
2) $\frac{4 \pi}{3}$
3) $\frac{16 \pi}{3}$
4) $\frac{64 \pi}{3}$

153 In the diagram below, the circle has a radius of 25 inches. The area of the unshaded sector is 500π in 2.

Determine and state the degree measure of angle Q, the central angle of the shaded sector.

G.GMD.A.1, 3: VOLUME

154 Two stacks of 23 quarters each are shown below. One stack forms a cylinder but the other stack does not form a cylinder.

Use Cavelieri's principle to explain why the volumes of these two stacks of quarters are equal.

155 Sue believes that the two cylinders shown in the diagram below have equal volumes.

Is Sue correct? Explain why.

156 The diagram below shows two figures. Figure A is a right triangular prism and figure B is an oblique triangular prism. The base of figure A has a height of 5 and a length of 8 and the height of prism A is 14. The base of figure B has a height of 8 and a length of 5 and the height of prism B is 14 .

Figure A

Figure \mathbf{B}

Use Cavalieri's Principle to explain why the volumes of these two triangular prisms are equal.

157 The Great Pyramid of Giza was constructed as a regular pyramid with a square base. It was built with an approximate volume of $2,592,276$ cubic meters and a height of 146.5 meters. What was the length of one side of its base, to the nearest meter?

1) 73
2) 77
3) 133
4) 230

158 A fish tank in the shape of a rectangular prism has dimensions of 14 inches, 16 inches, and 10 inches. The tank contains 1680 cubic inches of water. What percent of the fish tank is empty?

1) 10
2) 25
3) 50
4) 75

159 As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is

1) 72
2) 144
3) 288
4) 432

160 A storage tank is in the shape of a cylinder with a hemisphere on the top. The highest point on the inside of the storage tank is 13 meters above the floor of the storage tank, and the diameter inside the cylinder is 8 meters. Determine and state, to the nearest cubic meter, the total volume inside the storage tank.

161 A company is creating an object from a wooden cube with an edge length of 8.5 cm . A right circular cone with a diameter of 8 cm and an altitude of 8 cm will be cut out of the cube. Which expression represents the volume of the remaining wood?

1) $(8.5)^{3}-\pi(8)^{2}(8)$
2) $(8.5)^{3}-\pi(4)^{2}(8)$
3) $(8.5)^{3}-\frac{1}{3} \pi(8)^{2}(8)$
4) $(8.5)^{3}-\frac{1}{3} \pi(4)^{2}(8)$

162 The diameter of a basketball is approximately 9.5 inches and the diameter of a tennis ball is approximately 2.5 inches. The volume of the basketball is about how many times greater than the volume of the tennis ball?

1) 3591
2) 65
3) 55
4) 4

163 Tennis balls are sold in cylindrical cans with the balls stacked one on top of the other. A tennis ball has a diameter of 6.7 cm . To the nearest cubic centimeter, what is the minimum volume of the can that holds a stack of 4 tennis balls?

1) 236
2) 282
3) 564
4) 945

164
A barrel of fuel oil is a right circular cylinder where the inside measurements of the barrel are a diameter of 22.5 inches and a height of 33.5 inches. There are 231 cubic inches in a liquid gallon. Determine and state, to the nearest tenth, the gallons of fuel that are in a barrel of fuel oil.

When volleyballs are purchased, they are not fully inflated. A partially inflated volleyball can be modeled by a sphere whose volume is approximately $180 \mathrm{in}^{3}$. After being fully inflated, its volume is approximately $294 \mathrm{in}^{3}$. To the nearest tenth of an inch, how much does the radius increase when the volleyball is fully inflated?

166 A water glass can be modeled by a truncated right cone (a cone which is cut parallel to its base) as shown below.

The diameter of the top of the glass is 3 inches, the diameter at the bottom of the glass is 2 inches, and the height of the glass is 5 inches. The base with a diameter of 2 inches must be parallel to the base with a diameter of 3 inches in order to find the height of the cone. Explain why. Determine and state, in inches, the height of the larger cone. Determine and state, to the nearest tenth of a cubic inch, the volume of the water glass.

167 A water cup in the shape of a cone has a height of 4 inches and a maximum diameter of 3 inches. What is the volume of the water in the cup, to the nearest tenth of a cubic inch, when the cup is filled to half its height?

1) 1.2
2) 3.5
3) 4.7
4) 14.1

168 A solid metal prism has a rectangular base with sides of 4 inches and 6 inches, and a height of 4 inches. A hole in the shape of a cylinder, with a radius of 1 inch, is drilled through the entire length of the rectangular prism.

What is the approximate volume of the remaining solid, in cubic inches?

1) 19
2) 77
3) 93
4) 96

169 A candle maker uses a mold to make candles like the one shown below.

The height of the candle is 13 cm and the circumference of the candle at its widest measure is 31.416 cm . Use modeling to approximate how much wax, to the nearest cubic centimeter, is needed to make this candle. Justify your answer.

170 The pyramid shown below has a square base, a height of 7 , and a volume of 84 .

What is the length of the side of the base?

1) 6
2) 12
3) 18
4) 36

171 A fabricator is hired to make a 27-foot-long solid metal railing for the stairs at the local library. The railing is modeled by the diagram below. The railing is 2.5 inches high and 2.5 inches wide and is comprised of a rectangular prism and a half-cylinder.

How much metal, to the nearest cubic inch, will the railing contain?

1) 151
2) 795
3) 1808
4) 2025

172 A rectangular in-ground pool is modeled by the prism below. The inside of the pool is 16 feet wide and 35 feet long. The pool has a shallow end and a deep end, with a sloped floor connecting the two ends. Without water, the shallow end is 9 feet long and 4.5 feet deep, and the deep end of the pool is 12.5 feet long.

If the sloped floor has an angle of depression of 16.5 degrees, what is the depth of the pool at the deep end, to the nearest tenth of a foot? Find the volume of the inside of the pool to the nearest cubic foot. A garden hose is used to fill the pool. Water comes out of the hose at a rate of 10.5 gallons per minute. How much time, to the nearest hour, will it take to fill the pool 6 inches from the top? [$1 \mathrm{ft}^{3}=7.48$ gallons]

173 A gas station has a cylindrical fueling tank that holds the gasoline for its pumps, as modeled below. The tank holds a maximum of 20,000 gallons of gasoline and has a length of 34.5 feet.

A metal pole is used to measure how much gas is in the tank. To the nearest tenth of a foot, how long does the pole need to be in order to reach the bottom of the tank and still extend one foot outside the tank? Justify your answer. [$1 \mathrm{ft}^{3}=7.48$ gallons]

174 An ice cream waffle cone can be modeled by a right circular cone with a base diameter of 6.6 centimeters and a volume of 54.45π cubic centimeters. What is the number of centimeters in the height of the waffle cone?

1) $3 \frac{3}{4}$
2) 5
3) 15
4) $24 \frac{3}{4}$

175 A regular pyramid has a square base. The perimeter of the base is 36 inches and the height of the pyramid is 15 inches. What is the volume of the pyramid in cubic inches?

1) 180
2) 405
3) 540
4) 1215

G.MG.A.2: DENSITY

176 The water tower in the picture below is modeled by the two-dimensional figure beside it. The water tower is composed of a hemisphere, a cylinder, and a cone. Let C be the center of the hemisphere and let D be the center of the base of the cone.

If $A C=8.5$ feet, $B F=25$ feet, and $\mathrm{m} \angle E F D=47^{\circ}$, determine and state, to the nearest cubic foot, the volume of the water tower. The water tower was constructed to hold a maximum of 400,000 pounds of water. If water weighs 62.4 pounds per cubic foot, can the water tower be filled to 85% of its volume and not exceed the weight limit? Justify your answer.

177 Trees that are cut down and stripped of their branches for timber are approximately cylindrical. A timber company specializes in a certain type of tree that has a typical diameter of 50 cm and a typical height of about 10 meters. The density of the wood is 380 kilograms per cubic meter, and the wood can be sold by mass at a rate of $\$ 4.75$ per kilogram. Determine and state the minimum number of whole trees that must be sold to raise at least \$50,000.

178 A contractor needs to purchase 500 bricks. The dimensions of each brick are 5.1 cm by 10.2 cm by 20.3 cm , and the density of each brick is $1920 \mathrm{~kg} / \mathrm{m}^{3}$. The maximum capacity of the contractor's trailer is 900 kg . Can the trailer hold the weight of 500 bricks? Justify your answer.

179 A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?

1) 1,632
2) 408
3) 102
4) 92

180 A hemispherical tank is filled with water and has a diameter of 10 feet. If water weighs 62.4 pounds per cubic foot, what is the total weight of the water in a full tank, to the nearest pound?

1) 16,336
2) 32,673
3) 130,690
4) 261,381

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

181 A wooden cube has an edge length of 6 centimeters and a mass of 137.8 grams. Determine the density of the cube, to the nearest thousandth. State which type of wood the cube is made of, using the density table below.

Type of Wood	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Pine	0.373
Hemlock	0.431
Elm	0.554
Birch	0.601
Ash	0.638
Maple	0.676
Oak	0.711

182 The 2010 U.S. Census populations and population densities are shown in the table below.

State	Population Density $\left(\frac{\text { people }}{\mathrm{mi}^{2}}\right)$	Population in $\mathbf{2 0 1 0}$
Florida	350.6	$18,801,310$
Illinois	231.1	$12,830,632$
New York	411.2	$19,378,102$
Pennsylvania	283.9	$12,702,379$

Based on the table above, which list has the states' areas, in square miles, in order from largest to smallest?

1) Illinois, Florida, New York, Pennsylvania
2) New York, Florida, Illinois, Pennsylvania
3) New York, Florida, Pennsylvania, Illinois
4) Pennsylvania, New York, Florida, Illinois

183 Molly wishes to make a lawn ornament in the form of a solid sphere. The clay being used to make the sphere weighs .075 pound per cubic inch. If the sphere's radius is 4 inches, what is the weight of the sphere, to the nearest pound?

1) 34
2) 20
3) 15
4) 4

184 Seawater contains approximately 1.2 ounces of salt per liter on average. How many gallons of seawater, to the nearest tenth of a gallon, would contain 1 pound of salt?

1) 3.3
2) 3.5
3) 4.7
4) 13.3

185 A hemispherical water tank has an inside diameter of 10 feet. If water has a density of 62.4 pounds per cubic foot, what is the weight of the water in a full tank, to the nearest pound?

1) 16,336
2) 32,673
3) 130,690
4) 261,381

186 Walter wants to make 100 candles in the shape of a cone for his new candle business. The mold shown below will be used to make the candles. Each mold will have a height of 8 inches and a diameter of 3 inches. To the nearest cubic inch, what will be the total volume of 100 candles?

Walter goes to a hobby store to buy the wax for his candles. The wax costs $\$ 0.10$ per ounce. If the weight of the wax is 0.52 ounce per cubic inch, how much will it cost Walter to buy the wax for 100 candles? If Walter spent a total of $\$ 37.83$ for the molds and charges $\$ 1.95$ for each candle, what is Walter's profit after selling 100 candles?

187 A machinist creates a solid steel part for a wind turbine engine. The part has a volume of 1015 cubic centimeters. Steel can be purchased for $\$ 0.29$ per kilogram, and has a density of 7.95 $\mathrm{g} / \mathrm{cm}^{3}$. If the machinist makes 500 of these parts, what is the cost of the steel, to the nearest dollar?

188 The density of the American white oak tree is 752 kilograms per cubic meter. If the trunk of an American white oak tree has a circumference of 4.5 meters and the height of the trunk is 8 meters, what is the approximate number of kilograms of the trunk?

1) 13
2) 9694
3) 13,536
4) 30,456

189 During an experiment, the same type of bacteria is grown in two petri dishes. Petri dish A has a diameter of 51 mm and has approximately 40,000 bacteria after 1 hour. Petri dish B has a diameter of 75 mm and has approximately 72,000 bacteria after 1 hour.

Determine and state which petri dish has the greater population density of bacteria at the end of the first hour.

190 A snow cone consists of a paper cone completely filled with shaved ice and topped with a hemisphere of shaved ice, as shown in the diagram below. The inside diameter of both the cone and the hemisphere is 8.3 centimeters. The height of the cone is 10.2 centimeters.

The desired density of the shaved ice is $0.697 \mathrm{~g} / \mathrm{cm}^{3}$, and the cost, per kilogram, of ice is $\$ 3.83$. Determine and state the cost of the ice needed to make 50 snow cones.

191 New streetlights will be installed along a section of the highway. The posts for the streetlights will be 7.5 m tall and made of aluminum. The city can choose to buy the posts shaped like cylinders or the posts shaped like rectangular prisms. The cylindrical posts have a hollow core, with aluminum 2.5 cm thick, and an outer diameter of 53.4 cm . The rectangular-prism posts have a hollow core, with aluminum 2.5 cm thick, and a square base that measures 40 cm on each side. The density of aluminum is $2.7 \mathrm{~g} / \mathrm{cm} 3$, and the cost of aluminum is $\$ 0.38$ per kilogram. If all posts must be the same shape, which post design will cost the town less? How much money will be saved per streetlight post with the less expensive design?

G.SRT.B.5: SIMILARITY

192 Triangles $A B C$ and $D E F$ are drawn below.

If $A B=9, B C=15, D E=6, E F=10$, and $\angle B \cong \angle E$, which statement is true?

1) $\angle C A B \cong \angle D E F$
2) $\frac{A B}{C B}=\frac{F E}{D E}$
3) $\triangle A B C \sim \triangle D E F$
4) $\frac{A B}{D E}=\frac{F E}{C B}$

193 In the diagram below, $\triangle A B C \sim \triangle D E C$.

If $A C=12, D C=7, D E=5$, and the perimeter of $\triangle A B C$ is 30 , what is the perimeter of $\triangle D E C$?

1) 12.5
2) 14.0
3) 14.8
4) 17.5

194 A flagpole casts a shadow 16.60 meters long. Tim stands at a distance of 12.45 meters from the base of the flagpole, such that the end of Tim's shadow meets the end of the flagpole's shadow. If Tim is 1.65 meters tall, determine and state the height of the flagpole to the nearest tenth of a meter.

In the diagram below, the line of sight from the park ranger station, P, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, C, and the first aid station, F. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.

196 The ratio of similarity of $\triangle B O Y$ to $\triangle G R L$ is 1:2. If $B O=x+3$ and $G R=3 x-1$, then the length of $\overline{G R}$ is

1) 5
2) 7
3) 10
4) 20

197 As shown in the diagram below, $\overline{A B}$ and $\overline{C D}$ intersect at E, and $\overline{A C} \| \overline{B D}$.

Given $\triangle A E C \sim \triangle B E D$, which equation is true?

1) $\frac{C E}{D E}=\frac{E B}{E A}$
2) $\frac{A E}{B E}=\frac{A C}{B D}$
3) $\frac{E C}{A E}=\frac{B E}{E D}$
4) $\frac{E D}{E C}=\frac{A C}{B D}$

198 To find the distance across a pond from point B to point C, a surveyor drew the diagram below. The measurements he made are indicated on his diagram.

Use the surveyor's information to determine and state the distance from point B to point C, to the nearest yard.

199 Using the information given below, which set of triangles can not be proven similar?
1)

2)

3)

200 Triangles RST and $X Y Z$ are drawn below. If $R S=6, S T=14, X Y=9, Y Z=21$, and $\angle S \cong \angle Y$, is $\triangle R S T$ similar to $\triangle X Y Z$? Justify your answer.

201 In $\triangle S C U$ shown below, points T and O are on $\overline{S U}$ and $\overline{C U}$, respectively. Segment $O T$ is drawn so that $\angle C \cong \angle O T U$.

If $T U=4, O U=5$, and $O C=7$, what is the length of $\overline{S T}$?

1) 5.6
2) 8.75
3) 11
4) 15

202 In the diagram below, $\triangle A B C \sim \triangle D E F$.

If $A B=6$ and $A C=8$, which statement will justify similarity by SAS?

1) $D E=9, D F=12$, and $\angle A \cong \angle D$
2) $D E=8, D F=10$, and $\angle A \cong \angle D$
3) $D E=36, D F=64$, and $\angle C \cong \angle F$
4) $D E=15, D F=20$, and $\angle C \cong \angle F$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

203 In right triangle $A B C$ shown below, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$. Explain why $\triangle A B C \sim \triangle A C D$.

204 In the diagram below, $\overline{C D}$ is the altitude drawn to the hypotenuse $\overline{A B}$ of right triangle $A B C$.

Which lengths would not produce an altitude that measures $6 \sqrt{2}$?

1) $A D=2$ and $D B=36$
2) $A D=3$ and $A B=24$
3) $A D=6$ and $D B=12$
4) $A D=8$ and $A B=17$

205 In $\triangle R S T$ shown below, altitude $\overline{S U}$ is drawn to $\overline{R T}$ at U.

If $S U=h, U T=12$, and $R T=42$, which value of h will make $\triangle R S T$ a right triangle with $\angle R S T$ as a right angle?

1) $6 \sqrt{3}$
2) $6 \sqrt{10}$
3) $6 \sqrt{14}$
4) $6 \sqrt{35}$

206 In the diagram of right triangle $A B C, \overline{C D}$ intersects hypotenuse $\overline{A B}$ at D.

If $A D=4$ and $D B=6$, which length of $\overline{A C}$ makes $\overline{C D} \perp \overline{A B}$?

1) $2 \sqrt{6}$
2) $2 \sqrt{10}$
3) $2 \sqrt{15}$
4) $4 \sqrt{2}$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

207 In triangle $C H R, O$ is on $\overline{H R}$, and D is on $\overline{C R}$ so that $\angle H \cong \angle R D O$.

If $R D=4, R O=6$, and $O H=4$, what is the length of $\overline{C D}$?

1) $2 \frac{2}{3}$
2) $6 \frac{2}{3}$
3) 11
4) 15

In the diagram below, $A C=7.2$ and $C E=2.4$.

Which statement is not sufficient to prove
$\triangle A B C \sim \triangle E D C$?

1) $\overline{A B} \| \overline{E D}$
2) $D E=2.7$ and $A B=8.1$
3) $C D=3.6$ and $B C=10.8$
4) $D E=3.0, A B=9.0, C D=2.9$, and $B C=8.7$

209 In the diagram below, $\overline{A D}$ intersects $\overline{B E}$ at C, and $\overline{A B} \| \overline{D E}$.

If $C D=6.6 \mathrm{~cm}, D E=3.4 \mathrm{~cm}, C E=4.2 \mathrm{~cm}$, and $B C=5.25 \mathrm{~cm}$, what is the length of $\overline{A C}$, to the nearest hundredth of a centimeter?

1) 2.70
2) 3.34
3) 5.28
4) 8.25

210 Kirstie is testing values that would make triangle KLM a right triangle when $\overline{L N}$ is an altitude, and $K M=16$, as shown below.

Which lengths would make triangle $K L M$ a right triangle?

1) $L M=13$ and $K N=6$
2) $L M=12$ and $N M=9$
3) $K L=11$ and $K N=7$
4) $L N=8$ and $N M=10$

211 In the diagram below, $\overline{X S}$ and $\overline{Y R}$ intersect at Z.
Segments $X Y$ and $R S$ are drawn perpendicular to $\overline{Y R}$ to form triangles $X Y Z$ and $S R Z$.

Which statement is always true?

1) $(X Y)(S R)=(X Z)(R Z)$
2) $\triangle X Y Z \cong \triangle S R Z$
3) $\overline{X S} \cong \overline{Y R}$
4) $\frac{X Y}{S R}=\frac{Y Z}{R Z}$

212 In the diagram below of $\triangle A B C, \angle A B C$ is a right angle, $A C=12, A D=8$, and altitude $\overline{B D}$ is drawn.

What is the length of $\overline{B C}$?

1) $4 \sqrt{2}$
2) $4 \sqrt{3}$
3) $4 \sqrt{5}$
4) $4 \sqrt{6}$

TRANSFORMATIONS

G.SRT.A.1: LINE DILATIONS

213 In the diagram below, $\overline{C D}$ is the image of $\overline{A B}$ after a dilation of scale factor k with center E.

Which ratio is equal to the scale factor k of the dilation?

1) $\frac{E C}{E A}$
2) $\frac{B A}{E A}$
3) $\frac{E A}{B A}$
4) $\frac{E A}{E C}$

214 Line ℓ is mapped onto line m by a dilation centered at the origin with a scale factor of 2 . The equation of line ℓ is $3 x-y=4$. Determine and state an equation for line m.

Geometry Regents Exam Questions by Common Core State Standard: Topic

215 The equation of line h is $2 x+y=1$. Line m is the image of line h after a dilation of scale factor 4 with respect to the origin. What is the equation of the line m ?

1) $y=-2 x+1$
2) $y=-2 x+4$
3) $y=2 x+4$
4) $y=2 x+1$

216 The line $y=2 x-4$ is dilated by a scale factor of $\frac{3}{2}$ and centered at the origin. Which equation represents the image of the line after the dilation?

1) $y=2 x-4$
2) $y=2 x-6$
3) $y=3 x-4$
4) $y=3 x-6$

217 The line $3 y=-2 x+8$ is transformed by a dilation centered at the origin. Which linear equation could be its image?

1) $2 x+3 y=5$
2) $2 x-3 y=5$
3) $3 x+2 y=5$
4) $3 x-2 y=5$

218 Line $y=3 x-1$ is transformed by a dilation with a scale factor of 2 and centered at $(3,8)$. The line's image is

1) $y=3 x-8$
2) $y=3 x-4$
3) $y=3 x-2$
4) $y=3 x-1$

219 On the graph below, point $A(3,4)$ and $\overline{B C}$ with coordinates $B(4,3)$ and $C(2,1)$ are graphed.

What are the coordinates of B^{\prime} and C^{\prime} after $\overline{B C}$ undergoes a dilation centered at point A with a scale factor of 2 ?

1) $B^{\prime}(5,2)$ and $C^{\prime}(1,-2)$
2) $\quad B^{\prime}(6,1)$ and $C^{\prime}(0,-1)$
3) $B^{\prime}(5,0)$ and $C^{\prime}(1,-2)$
4) $B^{\prime}(5,2)$ and $C^{\prime}(3,0)$

220 A line that passes through the points whose coordinates are $(1,1)$ and $(5,7)$ is dilated by a scale factor of 3 and centered at the origin. The image of the line

1) is perpendicular to the original line
2) is parallel to the original line
3) passes through the origin
4) is the original line

221 A three-inch line segment is dilated by a scale factor of 6 and centered at its midpoint. What is the length of its image?

1) 9 inches
2) 2 inches
3) 15 inches
4) 18 inches

222 Line segment $A^{\prime} B^{\prime}$, whose endpoints are $(4,-2)$ and $(16,14)$, is the image of $\overline{A B}$ after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of $\overline{A B}$?

1) 5
2) 10
3) 20
4) 40

223 A line segment is dilated by a scale factor of 2 centered at a point not on the line segment. Which statement regarding the relationship between the given line segment and its image is true?

1) The line segments are perpendicular, and the image is one-half of the length of the given line segment.
2) The line segments are perpendicular, and the image is twice the length of the given line segment.
3) The line segments are parallel, and the image is twice the length of the given line segment.
4) The line segments are parallel, and the image is one-half of the length of the given line segment.

224 The line represented by the equation $4 y=3 x+7$ is transformed by a dilation centered at the origin. Which linear equation could represent its image?

1) $3 x-4 y=9$
2) $3 x+4 y=9$
3) $4 x-3 y=9$
4) $4 x+3 y=9$

225 Line n is represented by the equation $3 x+4 y=20$. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point $(4,2)$. [The use of the set of axes below is optional.] Explain your answer.

226 The line whose equation is $3 x-5 y=4$ is dilated by a scale factor of $\frac{5}{3}$ centered at the origin. Which statement is correct?

1) The image of the line has the same slope as the pre-image but a different y-intercept.
2) The image of the line has the same y-intercept as the pre-image but a different slope.
3) The image of the line has the same slope and the same y-intercept as the pre-image.
4) The image of the line has a different slope and a different y-intercept from the pre-image.

G.CO.A.5: ROTATIONS

227 Which point shown in the graph below is the image of point P after a counterclockwise rotation of 90° about the origin?

1) A
2) B
3) C
4) D

228 The grid below shows $\triangle A B C$ and $\triangle D E F$.

Let $\triangle A^{\prime} B^{\prime} C^{\prime}$ be the image of $\triangle A B C$ after a rotation about point A. Determine and state the location of B^{\prime} if the location of point C^{\prime} is $(8,-3)$. Explain your answer. Is $\triangle D E F$ congruent to $\triangle A^{\prime} B^{\prime} C^{\prime}$? Explain your answer.

G.CO.A.5: REFLECTIONS

229 Triangle $A B C$ is graphed on the set of axes below. Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a reflection over the line $x=1$.

G.SRT.A.2: DILATIONS

230 The image of $\triangle A B C$ after a dilation of scale factor k centered at point A is $\triangle A D E$, as shown in the diagram below.

Which statement is always true?

1) $2 A B=A D$
2) $\overline{A D} \perp \overline{D E}$
3) $A C=C E$
4) $\overline{B C} \| \overline{D E}$

231 A triangle is dilated by a scale factor of 3 with the center of dilation at the origin. Which statement is true?

1) The area of the image is nine times the area of the original triangle.
2) The perimeter of the image is nine times the perimeter of the original triangle.
3) The slope of any side of the image is three times the slope of the corresponding side of the original triangle.
4) The measure of each angle in the image is three times the measure of the corresponding angle of the original triangle.

232 If $\triangle A B C$ is dilated by a scale factor of 3 , which statement is true of the image $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) $3 A^{\prime} B^{\prime}=A B$
2) $B^{\prime} C^{\prime}=3 B C$
3) $\mathrm{m} \angle A^{\prime}=3(\mathrm{~m} \angle A)$
4) $3\left(\mathrm{~m} \angle C^{\prime}\right)=\mathrm{m} \angle C$

233 In the diagram below, $\triangle A B E$ is the image of $\triangle A C D$ after a dilation centered at the origin. The coordinates of the vertices are $A(0,0), B(3,0)$, $C(4.5,0), D(0,6)$, and $E(0,4)$.

The ratio of the lengths of $\overline{B E}$ to $\overline{C D}$ is

1) $\frac{2}{3}$
2) $\frac{3}{2}$
3) $\frac{3}{4}$
4) $\frac{4}{3}$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

234 The coordinates of the endpoints of $\overline{A B}$ are $A(2,3)$ and $B(5,-1)$. Determine the length of $\overline{A^{\prime} B^{\prime}}$, the image of $\overline{A B}$, after a dilation of $\frac{1}{2}$ centered at the origin. [The use of the set of axes below is optional.]

235 Triangle $Q R S$ is graphed on the set of axes below.

On the same set of axes, graph and label $\Delta Q^{\prime} R^{\prime} S^{\prime}$, the image of $\triangle Q R S$ after a dilation with a scale factor of $\frac{3}{2}$ centered at the origin. Use slopes to explain why $Q^{\prime} R^{\prime} \| Q R$.

236 Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of rectangle $A B C D$ after a dilation centered at point A by a scale factor of $\frac{2}{3}$. Which statement is correct?

1) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has a perimeter that is $\frac{2}{3}$ the perimeter of rectangle $A B C D$.
2) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has a perimeter that is $\frac{3}{2}$ the perimeter of rectangle $A B C D$.
3) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has an area that is $\frac{2}{3}$ the area of rectangle $A B C D$.
4) Rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has an area that is $\frac{3}{2}$ the area of rectangle $A B C D$.

237 Triangle $A B C$ and triangle $A D E$ are graphed on the set of axes below.

Describe a transformation that maps triangle $A B C$ onto triangle $A D E$. Explain why this transformation makes triangle $A D E$ similar to triangle $A B C$.

G.CO.A.3: MAPPING A POLYGON ONTO

ITSELF

238 Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?

1) octagon
2) decagon
3) hexagon
4) pentagon

239 A regular pentagon is shown in the diagram below.

If the pentagon is rotated clockwise around its center, the minimum number of degrees it must be rotated to carry the pentagon onto itself is

1) 54°
2) 72°
3) 108°
4) 360°

240 In the diagram below, a square is graphed in the coordinate plane.

A reflection over which line does not carry the square onto itself?

1) $x=5$
2) $y=2$
3) $y=x$
4) $x+y=4$

241 As shown in the graph below, the quadrilateral is a rectangle.

Which transformation would not map the rectangle onto itself?

1) a reflection over the x-axis
2) a reflection over the line $x=4$
3) a rotation of 180° about the origin
4) a rotation of 180° about the point $(4,0)$

242 A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself.

243 Which rotation about its center will carry a regular decagon onto itself?

1) 54°
2) 162°
3) 198°
4) 252°

244 Which figure always has exactly four lines of reflection that map the figure onto itself?

1) square
2) rectangle
3) regular octagon
4) equilateral triangle

245 A regular decagon is rotated n degrees about its center, carrying the decagon onto itself. The value of n could be

1) 10°
2) 150°
3) 225°
4) 252°

246 Which transformation would not carry a square onto itself?

1) a reflection over one of its diagonals
2) a 90° rotation clockwise about its center
3) a 180° rotation about one of its vertices
4) a reflection over the perpendicular bisector of one side

G.CO.A.5, G.SRT.A.2: COMPOSITIONS OF TRANSFORMATIONS

247 Triangle $A B C$ and triangle $D E F$ are drawn below.

If $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $\angle A \cong \angle D$, write a sequence of transformations that maps triangle $A B C$ onto triangle $D E F$.

248 In the diagram below, congruent figures 1,2 , and 3 are drawn.

Which sequence of transformations maps figure 1 onto figure 2 and then figure 2 onto figure 3 ?

1) a reflection followed by a translation
2) a rotation followed by a translation
3) a translation followed by a reflection
4) a translation followed by a rotation

249 A sequence of transformations maps rectangle $A B C D$ onto rectangle $A " B " C " D$ ", as shown in the diagram below.

Which sequence of transformations maps $A B C D$ onto $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ and then maps $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ onto A"B"C"D"?

1) a reflection followed by a rotation
2) a reflection followed by a translation
3) a translation followed by a rotation
4) a translation followed by a reflection

250 Describe a sequence of transformations that will map $\triangle A B C$ onto $\triangle D E F$ as shown below.

251 In the diagram below, $\triangle A B C$ has coordinates $A(1,1), B(4,1)$, and $C(4,5)$. Graph and label $\triangle A " B^{\prime \prime} C^{\prime}$, the image of $\triangle A B C$ after the translation five units to the right and two units up followed by the reflection over the line $y=0$.

252 Triangle $A B C$ and triangle $D E F$ are graphed on the set of axes below.

Which sequence of transformations maps triangle $A B C$ onto triangle $D E F$?

1) a reflection over the x-axis followed by a reflection over the y-axis
2) a 180° rotation about the origin followed by a reflection over the line $y=x$
3) a 90° clockwise rotation about the origin followed by a reflection over the y-axis
4) a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin

253 Identify which sequence of transformations could map pentagon $A B C D E$ onto pentagon $A " B " C " D " E$ ", as shown below.

1) dilation followed by a rotation
2) translation followed by a rotation
3) line reflection followed by a translation
4) line reflection followed by a line reflection

254 The graph below shows $\triangle A B C$ and its image, $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

Describe a sequence of rigid motions which would map $\triangle A B C$ onto $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

255 In the diagram below, $\triangle A B C \cong \triangle D E F$.

Which sequence of transformations maps $\triangle A B C$ onto $\triangle D E F$?

1) a reflection over the x-axis followed by a translation
2) a reflection over the y-axis followed by a translation
3) a rotation of 180° about the origin followed by a translation
4) a counterclockwise rotation of 90° about the origin followed by a translation

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

Quadrilateral MATH and its image M " A " T " H " are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral $M A T H$ onto quadrilateral $M " A " T " H$ ".

257 In the diagram below, triangles $X Y Z$ and $U V Z$ are drawn such that $\angle X \cong \angle U$ and $\angle X Z Y \cong \angle U Z V$.

Describe a sequence of similarity transformations that shows $\triangle X Y Z$ is similar to $\triangle U V Z$.

258 In the diagram below, $\triangle D E F$ is the image of $\triangle A B C$ after a clockwise rotation of 180° and a dilation where $A B=3, B C=5.5, A C=4.5$, $D E=6, F D=9$, and $E F=11$.

Which relationship must always be true?

1) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=\frac{1}{2}$
2) $\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}=\frac{2}{1}$
3) $\frac{\mathrm{m} \angle \mathrm{A}}{\mathrm{m} \angle C}=\frac{\mathrm{m} \angle F}{\mathrm{~m} \angle D}$
4) $\frac{\mathrm{m} \angle B}{\mathrm{~m} \angle E}=\frac{\mathrm{m} \angle C}{\mathrm{~m} \angle F}$

259 Which sequence of transformations will map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) reflection and translation
2) rotation and reflection
3) translation and dilation
4) dilation and rotation

260 Given: $\triangle A E C, \triangle D E F$, and $\overline{F E} \perp \overline{C E}$

What is a correct sequence of similarity transformations that shows $\triangle A E C \sim \triangle D E F$?

1) a rotation of 180 degrees about point E followed by a horizontal translation
2) a counterclockwise rotation of 90 degrees about point E followed by a horizontal translation
3) a rotation of 180 degrees about point E followed by a dilation with a scale factor of 2 centered at point E
4) a counterclockwise rotation of 90 degrees about point E followed by a dilation with a scale factor of 2 centered at point E

261 In the diagram below, $\triangle A D E$ is the image of $\triangle A B C$ after a reflection over the line $A C$ followed by a dilation of scale factor $\frac{A E}{A C}$ centered at point A.

Which statement must be true?

1) $\mathrm{m} \angle B A C \cong \mathrm{~m} \angle A E D$
2) $\mathrm{m} \angle A B C \cong \mathrm{~m} \angle A D E$
3) $\mathrm{m} \angle D A E \cong \frac{1}{2} \mathrm{~m} \angle B A C$
4) $\mathrm{m} \angle A C B \cong \frac{1}{2} \mathrm{~m} \angle D A B$

262 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a dilation followed by a translation. Which statement(s) would always be true with respect to this sequence of transformations?
I. $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$
II. $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$
III. $\overline{A B} \| \overline{A^{\prime} B^{\prime}}$
IV. $A A^{\prime}=B B^{\prime}$

1) II, only
2) I and II
3) II and III
4) II, III, and IV

G.CO.B.6: PROPERTIES OF
 TRANSFORMATIONS

263 The image of $\triangle A B C$ after a rotation of 90° clockwise about the origin is $\triangle D E F$, as shown below.

Which statement is true?

1) $\overline{B C} \cong \overline{D E}$
2) $\overline{A B} \cong \overline{D F}$
3) $\angle C \cong \angle E$
4) $\angle A \cong \angle D$

264 Triangle $M N P$ is the image of triangle $J K L$ after a 120° counterclockwise rotation about point Q. If the measure of angle L is 47° and the measure of angle N is 57°, determine the measure of angle M. Explain how you arrived at your answer.

Quadrilateral $A B C D$ is graphed on the set of axes below.

When $A B C D$ is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?

1) no and $C^{\prime}(1,2)$
2) no and $D^{\prime}(2,4)$
3) yes and $A^{\prime}(6,2)$
4) yes and $B^{\prime}(-3,4)$

266 In the diagram below, a sequence of rigid motions maps $A B C D$ onto JKLM.

If $\mathrm{m} \angle A=82^{\circ}, \mathrm{m} \angle B=104^{\circ}$, and $\mathrm{m} \angle L=121^{\circ}$, the measure of $\angle M$ is

1) 53°
2) 82°
3) 104°
4) 121°

G.CO.A.2: IDENTIFYING

 TRANSFORMATIONS267 The vertices of $\triangle J K L$ have coordinates $J(5,1)$, $K(-2,-3)$, and $L(-4,1)$. Under which transformation is the image $\Delta J^{\prime} K^{\prime} L^{\prime}$ not congruent to $\triangle J K L$?

1) a translation of two units to the right and two units down
2) a counterclockwise rotation of 180 degrees around the origin
3) a reflection over the x-axis
4) a dilation with a scale factor of 2 and centered at the origin

268 If $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$, under which transformation will the triangles not be congruent?

1) reflection over the x-axis
2) translation to the left 5 and down 4
3) dilation centered at the origin with scale factor 2
4) rotation of 270° counterclockwise about the origin

269 In the diagram below, which single transformation was used to map triangle A onto triangle B ?

1) line reflection
2) rotation
3) dilation
4) translation

270 Which transformation would not always produce an image that would be congruent to the original figure?

1) translation
2) dilation
3) rotation
4) reflection

271 Which transformation of $\overline{O A}$ would result in an image parallel to $\overline{O A}$?

1) a translation of two units down
2) a reflection over the x-axis
3) a reflection over the y-axis
4) a clockwise rotation of 90° about the origin

272 On the set of axes below, rectangle $A B C D$ can be proven congruent to rectangle $K L M N$ using which transformation?

1) rotation
2) translation
3) reflection over the x-axis
4) reflection over the y-axis

273 Under which transformation would $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, not be congruent to $\triangle A B C$?

1) reflection over the y-axis
2) rotation of 90° clockwise about the origin
3) translation of 3 units right and 2 units down
4) dilation with a scale factor of 2 centered at the origin

274 Triangle $A B C$ has vertices at $A(-5,2), B(-4,7)$, and $C(-2,7)$, and triangle $D E F$ has vertices at $D(3,2)$, $E(2,7)$, and $F(0,7)$. Graph and label $\triangle A B C$ and $\triangle D E F$ on the set of axes below. Determine and state the single transformation where $\triangle D E F$ is the image of $\triangle A B C$. Use your transformation to explain why $\triangle A B C \cong \triangle D E F$.

275 The image of $\triangle D E F$ is $\triangle D^{\prime} E^{\prime} F^{\prime}$. Under which transformation will he triangles not be congruent?

1) a reflection through the origin
2) a reflection over the line $y=x$
3) a dilation with a scale factor of 1 centered at $(2,3)$
4) a dilation with a scale factor of $\frac{3}{2}$ centered at the origin

276 The graph below shows two congruent triangles, $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$.

Which rigid motion would map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$?

1) a rotation of 90 degrees counterclockwise about the origin
2) a translation of three units to the left and three units up
3) a rotation of 180 degrees about the origin
4) a reflection over the line $y=x$

G.CO.A.2: ANALYTICAL REPRESENTATIONS OF TRANSFORMATIONS

277 Which transformation would result in the perimeter of a triangle being different from the perimeter of its image?

1) $(x, y) \rightarrow(y, x)$
2) $(x, y) \rightarrow(x,-y)$
3) $(x, y) \rightarrow(4 x, 4 y)$
4) $(x, y) \rightarrow(x+2, y-5)$

278 The vertices of $\triangle P Q R$ have coordinates $P(2,3)$, $Q(3,8)$, and $R(7,3)$. Under which transformation of $\triangle P Q R$ are distance and angle measure preserved?

1) $(x, y) \rightarrow(2 x, 3 y)$
2) $(x, y) \rightarrow(x+2,3 y)$
3) $(x, y) \rightarrow(2 x, y+3)$
4) $(x, y) \rightarrow(x+2, y+3)$

TRIGONOMETRY

G.SRT.C.6: TRIGONOMETRIC RATIOS

279 In the diagram below, $\triangle E R M \sim \triangle J T M$.

Which statement is always true?

1) $\cos J=\frac{R M}{R E}$
2) $\cos R=\frac{J M}{J T}$
3) $\tan T=\frac{R M}{E M}$
4) $\tan E=\frac{T M}{J M}$

280 In the diagram of right triangle $A D E$ below, $\overline{B C} \| \overline{D E}$.

Which ratio is always equivalent to the sine of $\angle A$?

1) $\frac{A D}{D E}$
2) $\frac{A E}{A D}$
3) $\frac{B C}{A B}$
4) $\frac{A B}{A C}$

G.SRT.C.7: COFUNCTIONS

281 In scalene triangle $A B C$ shown in the diagram below, $\mathrm{m} \angle C=90^{\circ}$.

Which equation is always true?

1) $\sin A=\sin B$
2) $\cos A=\cos B$
3) $\cos A=\sin C$
4) $\sin A=\cos B$

282 Explain why $\cos (x)=\sin (90-x)$ for x such that $0<x<90$.

283 In $\triangle A B C$, where $\angle C$ is a right angle, $\cos A=\frac{\sqrt{21}}{5}$. What is $\sin B$?

1) $\frac{\sqrt{21}}{5}$
2) $\frac{\sqrt{21}}{2}$
3) $\frac{2}{5}$
4) $\frac{5}{\sqrt{21}}$

284 In right triangle $A B C$ with the right angle at C, $\sin A=2 x+0.1$ and $\cos B=4 x-0.7$. Determine and state the value of x. Explain your answer.

285 Which expression is always equivalent to $\sin x$ when $0^{\circ}<x<90^{\circ}$?

1) $\cos \left(90^{\circ}-x\right)$
2) $\cos \left(45^{\circ}-x\right)$
3) $\cos (2 x)$
4) $\cos x$

286 In $\triangle A B C$, the complement of $\angle B$ is $\angle A$. Which statement is always true?

1) $\tan \angle A=\tan \angle B$
2) $\sin \angle A=\sin \angle B$
3) $\cos \angle A=\tan \angle B$
4) $\sin \angle A=\cos \angle B$

287 Find the value of R that will make the equation $\sin 73^{\circ}=\cos R$ true when $0^{\circ}<R<90^{\circ}$. Explain your answer.

288
When instructed to find the length of $\overline{H J}$ in right triangle $H J G$, Alex wrote the equation $\sin 28^{\circ}=\frac{H J}{20}$ while Marlene wrote $\cos 62^{\circ}=\frac{H J}{20}$. Are both students' equations correct? Explain why.

289 In right triangle $A B C, \mathrm{~m} \angle C=90^{\circ}$. If $\cos B=\frac{5}{13}$, which function also equals $\frac{5}{13}$?

1) $\tan A$
2) $\tan B$
3) $\sin A$
4) $\sin B$

290 In a right triangle, $\sin (40-x)^{\circ}=\cos (3 x)^{\circ}$. What is the value of x ?

1) 10
2) 15
3) 20
4) 25

291 Given: Right triangle $A B C$ with right angle at C. If $\sin A$ increases, does $\cos B$ increase or decrease? Explain why.

G.SRT.C.8: USING TRIGONOMETRY TO FIND

 A SIDE292 As shown below, a canoe is approaching a lighthouse on the coastline of a lake. The front of the canoe is 1.5 feet above the water and an observer in the lighthouse is 112 feet above the water.

At 5:00, the observer in the lighthouse measured the angle of depression to the front of the canoe to be 6°. Five minutes later, the observer measured and saw the angle of depression to the front of the canoe had increased by 49°. Determine and state, to the nearest foot per minute, the average speed at which the canoe traveled toward the lighthouse.

293 As shown in the diagram below, a ship is heading directly toward a lighthouse whose beacon is 125 feet above sea level. At the first sighting, point A, the angle of elevation from the ship to the light was 7°. A short time later, at point D, the angle of elevation was 16°.

To the nearest foot, determine and state how far the ship traveled from point A to point D.

294 The map below shows the three tallest mountain peaks in New York State: Mount Marcy, Algonquin Peak, and Mount Haystack. Mount Haystack, the shortest peak, is 4960 feet tall. Surveyors have determined the horizontal distance between Mount Haystack and Mount Marcy is 6336 feet and the horizontal distance between Mount Marcy and Algonquin Peak is 20,493 feet.

The angle of depression from the peak of Mount Marcy to the peak of Mount Haystack is 3.47 degrees. The angle of elevation from the peak of Algonquin Peak to the peak of Mount Marcy is 0.64 degrees. What are the heights, to the nearest foot, of Mount Marcy and Algonquin Peak? Justify your answer.

295 A 20-foot support post leans against a wall, making a 70° angle with the ground. To the nearest tenth of a foot, how far up the wall will the support post reach?

1) 6.8
2) 6.9
3) 18.7
4) 18.8

296 As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?

1) 29.7
2) 16.6
3) 13.5
4) 11.2

297 A carpenter leans an extension ladder against a house to reach the bottom of a window 30 feet above the ground. As shown in the diagram below, the ladder makes a 70° angle with the ground. To the nearest foot, determine and state the length of the ladder.

298 Cathy wants to determine the height of the flagpole shown in the diagram below. She uses a survey instrument to measure the angle of elevation to the top of the flagpole, and determines it to be 34.9°. She walks 8 meters closer and determines the new measure of the angle of elevation to be 52.8°. At each measurement, the survey instrument is 1.7 meters above the ground.

Determine and state, to the nearest tenth of a meter, the height of the flagpole.

299 In the diagram below, a window of a house is 15 feet above the ground. A ladder is placed against the house with its base at an angle of 75° with the ground. Determine and state the length of the ladder to the nearest tenth of a foot.

300 The diagram below shows two similar triangles.

If $\tan \theta=\frac{3}{7}$, what is the value of x, to the nearest tenth?

1) 1.2
2) 5.6
3) 7.6
4) 8.8

301 Given the right triangle in the diagram below, what is the value of x, to the nearest foot?

1) 11
2) 17
3) 18
4) 22

302 A ladder 20 feet long leans against a building, forming an angle of 71° with the level ground. To the nearest foot, how high up the wall of the building does the ladder touch the building?

1) 15
2) 16
3) 18
4) 19

303 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot? Determine and state the speed of the airplane, to the nearest mile per hour.

304 In right triangle $A B C, \mathrm{~m} \angle A=32^{\circ}, \mathrm{m} \angle B=90^{\circ}$, and $A E=6.2 \mathrm{~cm}$. What is the length of $\overline{B C}$, to the nearest tenth of a centimeter?

1) 3.3
2) 3.9
3) 5.3
4) 11.7

305 A man was parasailing above a lake at an angle of elevation of 32° from a boat, as modeled in the diagram below.

If 129.5 meters of cable connected the boat to the parasail, approximately how many meters above the lake was the man?

1) 68.6
2) 80.9
3) 109.8
4) 244.4

306 As shown in the diagram below, an island (I) is due north of a marina (M). A boat house (H) is 4.5 miles due west of the marina. From the boat house, the island is located at an angle of 54° from the marina.

Determine and state, to the nearest tenth of a mile, the distance from the boat house (H) to the island (I). Determine and state, to the nearest tenth of a mile, the distance from the island (I) to the marina (M).
G.SRT.C.8: USING TRIGONOMETRY TO FIND AN ANGLE

307 A man who is 5 feet 9 inches tall casts a shadow of 8 feet 6 inches. Assuming that the man is standing perpendicular to the ground, what is the angle of elevation from the end of the shadow to the top of the man's head, to the nearest tenth of a degree?

1) 34.1
2) 34.5
3) 42.6
4) 55.9

308 A ladder leans against a building. The top of the ladder touches the building 10 feet above the ground. The foot of the ladder is 4 feet from the building. Find, to the nearest degree, the angle that the ladder makes with the level ground.

309 The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.

Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

310 In the diagram of right triangle $A B C$ shown below, $A B=14$ and $A C=9$.

What is the measure of $\angle A$, to the nearest degree?

1) 33
2) 40
3) 50
4) 57

311 As modeled below, a movie is projected onto a large outdoor screen. The bottom of the 60 -foot-tall screen is 12 feet off the ground. The projector sits on the ground at a horizontal distance of 75 feet from the screen.

Determine and state, to the nearest tenth of a degree, the measure of θ, the projection angle.

312 In the diagram of $\triangle R S T$ below, $\mathrm{m} \angle T=90^{\circ}$, $R S=65$, and $S T=60$.

What is the measure of $\angle S$, to the nearest degree?

1) 23°
2) 43°
3) 47°
4) 67°

313 To build a handicapped-access ramp, the building code states that for every 1 inch of vertical rise in height, the ramp must extend out 12 inches horizontally, as shown in the diagram below.

What is the angle of inclination, x, of this ramp, to the nearest hundredth of a degree?

1) 4.76
2) 4.78
3) 85.22
4) 85.24

314 Bob places an 18 -foot ladder 6 feet from the base of his house and leans it up against the side of his house. Find, to the nearest degree, the measure of the angle the bottom of the ladder makes with the ground.

LOGIC

G.CO.B.7-8, G.SRT.B.5: TRIANGLE CONGRUENCY

315 Given right triangles $A B C$ and $D E F$ where $\angle C$ and $\angle F$ are right angles, $\overline{A C} \cong \overline{D F}$ and $\overline{C B} \cong \overline{F E}$.
Describe a precise sequence of rigid motions which would show $\triangle A B C \cong \triangle D E F$.

316 After a reflection over a line, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$. Explain why triangle $A B C$ is congruent to triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$.

317 Given: D is the image of A after a reflection over $\overleftrightarrow{C H}$
$\overleftrightarrow{C H}$ is the perpendicular bisector of $\overrightarrow{B C E}$ $\triangle A B C$ and $\triangle D E C$ are drawn
Prove: $\triangle A B C \cong \triangle D E C$

320

318 Which statement is sufficient evidence that $\triangle D E F$ is congruent to $\triangle A B C$?

1) $A B=D E$ and $B C=E F$
2) $\angle D \cong \angle A, \angle B \cong \angle E, \angle C \cong \angle F$
3) There is a sequence of rigid motions that maps $\overline{A B}$ onto $\overline{D E}, \overline{B C}$ onto $\overline{E F}$, and $\overline{A C}$ onto $\overline{D F}$.
4) There is a sequence of rigid motions that maps point A onto point $D, \overline{A B}$ onto $\overline{D E}$, and $\angle B$ onto $\angle E$.
graphed.

Use the properties of rigid motions to explain why $\triangle A B C \cong \triangle X Y Z$.
In the diagram below, $\triangle A B C$ and $\triangle X Y Z$ are

In the diagram below, $\overline{A C} \cong \overline{D F}$ and points A, C, D, and F are collinear on line ℓ.

Let $\triangle D^{\prime} E^{\prime} F^{\prime}$ be the image of $\triangle D E F$ after a translation along ℓ, such that point D is mapped onto point A. Determine and state the location of F^{\prime}. Explain your answer. Let $\triangle D^{\prime \prime} E " F "$ be the image of $\triangle D^{\prime} E^{\prime} F^{\prime}$ after a reflection across line ℓ. Suppose that E " is located at B. Is $\triangle D E F$ congruent to $\triangle A B C$? Explain your answer.

321 As graphed on the set of axes below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a sequence of transformations.

Is $\triangle A^{\prime} B^{\prime} C^{\prime}$ congruent to $\triangle A B C$? Use the properties of rigid motion to explain your answer.

322 In the graph below, $\triangle A B C$ has coordinates $A(-9,2), B(-6,-6)$, and $C(-3,-2)$, and $\triangle R S T$ has coordinates $R(-2,9), S(5,6)$, and $T(2,3)$.

Is $\triangle A B C$ congruent to $\triangle R S T$? Use the properties of rigid motions to explain your reasoning.

323 In the two distinct acute triangles $A B C$ and $D E F$, $\angle B \cong \angle E$. Triangles $A B C$ and $D E F$ are congruent when there is a sequence of rigid motions that maps

1) $\angle A$ onto $\angle D$, and $\angle C$ onto $\angle F$
2) $\overline{A C}$ onto $\overline{D F}$, and $\overline{B C}$ onto $\overline{E F}$
3) $\angle C$ onto $\angle F$, and $\overline{B C}$ onto $\overline{E F}$
4) point A onto point D, and $\overline{A B}$ onto $\overline{D E}$

324 In the diagram below of $\triangle A B C$ and $\triangle X Y Z$, a sequence of rigid motions maps $\angle A$ onto $\angle X$, $\angle C$ onto $\angle Z$, and $\overline{A C}$ onto $\overline{X Z}$.

Determine and state whether $\overline{B C} \cong \overline{Y Z}$. Explain why.

325 In the diagram of $\triangle L A C$ and $\triangle D N C$ below, $\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$.

a) Prove that $\triangle L A C \cong \triangle D N C$.
b) Describe a sequence of rigid motions that will map $\triangle L A C$ onto $\triangle D N C$.

326 Given $\triangle A B C \cong \triangle D E F$, which statement is not always true?

1) $\overline{B C} \cong \overline{D F}$
2) $m \angle A=m \angle D$
3) area of $\triangle A B C=$ area of $\triangle D E F$
4) perimeter of $\triangle A B C=$ perimeter of $\triangle D E F$

G.CO.C.10, G.SRT.B.5: TRIANGLE PROOFS

327 Prove the sum of the exterior angles of a triangle is 360°.

328 Line segment $E A$ is the perpendicular bisector of $\overline{Z T}$, and $\overline{Z E}$ and $\overline{T E}$ are drawn.

Which conclusion can not be proven?

1) $\overline{E A}$ bisects angle $Z E T$.
2) Triangle $E Z T$ is equilateral.
3) $\overline{E A}$ is a median of triangle $E Z T$.
4) Angle Z is congruent to angle T.

329 Given: $\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ Prove that $\angle Y W Z$ is a right angle.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

330 Given the theorem, "The sum of the measures of the interior angles of a triangle is 180°," complete the proof for this theorem.

Given: $\triangle A B C$
Prove: $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$
Fill in the missing reasons below.

Statements	Reasons
(1) $\triangle A B C$ (2) Through point C, draw $\overleftrightarrow{D C E}$ parallel to $\overline{A B}$.	(2) Given
(3) $\mathrm{m} \angle 1=\mathrm{m} \angle A C D, \mathrm{~m} \angle 3=\mathrm{m} \angle B C E$ (1) (4) $\mathrm{m} \angle A C D+\mathrm{m} \angle 2+\mathrm{m} \angle B C E=180^{\circ}$	

331 Two right triangles must be congruent if

1) an acute angle in each triangle is congruent
2) the length of the hypotenuses are equal
3) the corresponding legs are congruent
4) the areas are equal

332 Given: $\triangle A B E$ and $\triangle C B D$ shown in the diagram below with $\overline{D B} \cong \overline{B E}$

Which statement is needed to prove
$\triangle A B E \cong \triangle C B D$ using only SAS \cong SAS?

1) $\angle C D B \cong \angle A E B$
2) $\angle A F D \cong \angle E F C$
3) $\overline{A D} \cong \overline{C E}$
4) $\overline{A E} \cong \overline{C D}$

333 Given: $\overline{R S}$ and $\overline{\overline{T V}}$ bisect each other at point X $\overline{T R}$ and $\overline{S V}$ are drawn

Prove: $\overline{T R} \| \overline{S V}$

334 Kelly is completing a proof based on the figure below.

She was given that $\angle A \cong \angle E D F$, and has already proven $\overline{A B} \cong \overline{D E}$. Which pair of corresponding parts and triangle congruency method would not prove $\triangle A B C \cong \triangle D E F$?

1) $\overline{A C} \cong \overline{D F}$ and SAS
2) $\overline{B C} \cong \overline{E F}$ and SAS
3) $\angle C \cong \angle F$ and AAS
4) $\angle C B A \cong \angle F E D$ and ASA

G.CO.C.11, G.SRT.B.5: QUADRILATERAL

 PROOFS335 In parallelogram $A B C D$ shown below, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E.

Prove: $\angle A C D \cong \angle C A B$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

336 Given: Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $B D$ that bisect each other, and $\angle 1 \cong \angle 2$

Prove: $\triangle A C D$ is an isosceles triangle and $\triangle A E B$ is a right triangle

337 Given: Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E

Prove: $\triangle A E D \cong \triangle C E B$
Describe a single rigid motion that maps $\triangle A E D$ onto $\triangle C E B$.

338 Given: Parallelogram $A B C D$ with diagonal $\overline{A C}$ drawn

Prove: $\triangle A B C \cong \triangle C D A$

339 Given: Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E, respectively

Prove that $\triangle A N W \cong \triangle D R E$. Prove that quadrilateral $A W D E$ is a parallelogram.

340 In the diagram of parallelogram $A B C D$ below, $\overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$.

Prove $A B C D$ is a rhombus.

341 In quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, and $\overline{B F}$ and $\overline{D E}$ are perpendicular to diagonal $\overline{A C}$ at points F and E.

Prove: $\overline{A E} \cong \overline{C F}$

342 Isosceles trapezoid $A B C D$ has bases $\overline{D C}$ and $\overline{A B}$ with nonparallel legs $\overline{A D}$ and $\overline{B C}$. Segments $A E$, $B E, C E$, and $D E$ are drawn in trapezoid $A B C D$ such that $\angle C D E \cong \angle D C E, \overline{A E} \perp \overline{D E}$, and $\overline{B E} \perp \overline{C E}$.

Prove $\triangle A D E \cong \triangle B C E$ and prove $\triangle A E B$ is an isosceles triangle.

G.SRT.B.5: CIRCLE PROOFS

343 In the diagram below, secant $\overline{A C D}$ and tangent $\overline{A B}$ are drawn from external point A to circle O.

Prove the theorem: If a secant and a tangent are drawn to a circle from an external point, the product of the lengths of the secant segment and its external segment equals the length of the tangent segment squared. $\left(A C \cdot A D=A B^{2}\right)$

344 Given: Circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E

Theorem: If two chords intersect in a circle, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. Prove this theorem by proving $A E \cdot E B=C E \cdot E D$.

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

345 In the diagram below of circle O, tangent $\overleftrightarrow{E C}$ is drawn to diameter $\overline{A C}$. Chord $\overline{B C}$ is parallel to secant $\overline{A D E}$, and chord $\overline{A B}$ is drawn.

Prove: $\frac{B C}{C A}=\frac{A B}{E C}$

G.SRT.A.3, G.C.A.1: SIMILARITY PROOFS

346 Given: Parallelogram $A B C D, \overline{E F G}$, and diagonal $\overline{D F B}$

Prove: $\triangle D E F \sim \triangle B G F$

347 In the diagram below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a transformation.

Describe the transformation that was performed. Explain why $\triangle A^{\prime} B^{\prime} C^{\prime} \sim \triangle A B C$.

348 In the diagram below, $\overline{G I}$ is parallel to $\overline{N T}$, and $\overline{I N}$ intersects $\overline{G T}$ at A.

Prove: $\triangle G I A \sim \triangle T N A$

Geometry Regents Exam Questions by State Standard: Topic www.jmap.org

349 In the diagram below, $\angle G R S \cong \angle A R T, G R=36$, $S R=45, A R=15$, and $R T=18$.

Which triangle similarity statement is correct?

1) $\triangle G R S \sim \triangle A R T$ by AA.
2) $\triangle G R S \sim \triangle A R T$ by SAS.
3) $\triangle G R S \sim \triangle A R T$ by SSS.
4) $\triangle G R S$ is not similar to $\triangle A R T$.

350 As shown in the diagram below, circle A has a radius of 3 and circle B has a radius of 5 .

Use transformations to explain why circles A and B are similar.

Geometry Regents Exam Questions by Common Core State Standard: Topic Answer Section

14 ANS:

PTS: 2 REF: fall1409geo NAT: G.CO.D. 12 TOP: Constructions KEY: parallel and perpendicular lines
15
ANS:

PTS: 2
REF: 061631geo NAT: G.CO.D. 12 TOP: Constructions KEY: parallel and perpendicular lines
16
ANS:

PTS: 4
REF: 011634geo NAT: G.CO.D. 12 TOP: Constructions KEY: congruent and similar figures

17 ANS:
Cles
x
PTS: 2
REF: 081628geo NAT: G.CO.D. 12 TOP: Constructions
KEY: line bisector
18
ANS:

The length of $\overline{A^{\prime} C^{\prime}}$ is twice $\overline{A C}$.
PTS: 4 REF: 081632geo NAT: G.CO.D. 12 TOP: Constructions KEY: congruent and similar figures
19 ANS:

PTS: 2
REF: 011725geo NAT: G.CO.D. 12 TOP: Constructions KEY: line bisector

ANS:

PTS: 2
REF: 061725geo NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines
ANS:

Since the square is inscribed, each vertex of the square is on the circle and the diagonals of the square are diameters of the circle. Therefore, each angle of the square is an inscribed angle in the circle that intercepts the circle at the endpoints of the diameters. Each angle of the square, which is an inscribed angle, measures 90 degrees. Therefore, the measure of the arc intercepted by two adjacent sides of the square is 180 degrees because it is twice the measure of its inscribed angle.

PTS: 4 REF: fall1412geo NAT: G.CO.D. 13 TOP: Constructions
22 ANS:

PTS: 2
REF: 061525geo NAT: G.CO.D. 13 TOP: Constructions

23 ANS:

PTS: 2 REF: 081526geo NAT: G.CO.D. 13 TOP: Constructions
24 ANS:

Right triangle because $\angle C B F$ is inscribed in a semi-circle.
PTS: 4 REF: 011733geo NAT: G.CO.D. 13 TOP: Constructions
25 ANS:

PTS: 2
REF: 081728geo NAT: G.CO.D. 13 TOP: Constructions

ANS:

PTS: 2 REF: 011826geo NAT: G.CO.D. 13 TOP: Constructions
27 ANS: 4
$-5+\frac{3}{5}(5--5)-4+\frac{3}{5}(1--4)$
$-5+\frac{3}{5}(10) \quad-4+\frac{3}{5}(5)$
$-5+6 \quad-4+3$
1 -1
PTS: 2 REF: spr1401geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
28 ANS:
$4+\frac{4}{9}(22-4) 2+\frac{4}{9}(2-2)(12,2)$

$$
4+\frac{4}{9}(18) \quad 2+\frac{4}{9}(0)
$$

$$
4+8 \quad 2+0
$$

$12 \quad 2$
PTS: 2 REF: 061626geo NAT: G.GPE.B. 6 TOP: Directed Line Segments 29 ANS:
$\frac{2}{5} \cdot(16-1)=6 \frac{2}{5} \cdot(14-4)=4 \quad(1+6,4+4)=(7,8)$
PTS: 2
REF: 081531geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

30 ANS:

$$
\begin{array}{cc}
-6+\frac{2}{5}(4--6) & -5+\frac{2}{5}(0--5) \\
-6+\frac{2}{5}(10) & -5+\frac{2}{5}(5) \\
-6+4 & -5+2 \\
-2 & -3
\end{array}
$$

PTS: 2 REF: 061527geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
31 ANS: 1
$3+\frac{2}{5}(8-3)=3+\frac{2}{5}(5)=3+2=55+\frac{2}{5}(-5-5)=5+\frac{2}{5}(-10)=5-4=1$
PTS: 2 REF: 011720geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
32 ANS: 4
$x=-6+\frac{1}{6}(6--6)=-6+2=-4 \quad y=-2+\frac{1}{6}(7--2)=-2+\frac{9}{6}=-\frac{1}{2}$
PTS: 2 REF: 081618geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
33 ANS:

$$
\begin{aligned}
& x=\frac{2}{3}(4--2)=4 \quad-2+4=2 \quad J(2,5) \\
& y=\frac{2}{3}(7-1)=4
\end{aligned}
$$

PTS: 2
REF: 011627geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

34 ANS: 1
$x=-5+\frac{1}{3}(4--5)=-5+3=-2 \quad y=2+\frac{1}{3}(-10-2)=2-4=-2$
PTS: 2 REF: 011806geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
35 ANS: 2
$-4+\frac{2}{5}(6--4)=-4+\frac{2}{5}(10)=-4+4=05+\frac{2}{5}(20-5)=5+\frac{2}{5}(15)=5+6=11$
PTS: 2 REF: 061715geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
36 ANS: 1
$-8+\frac{3}{8}(16--8)=-8+\frac{3}{8}(24)=-8+9=1-2+\frac{3}{8}(6--2)=-2+\frac{3}{8}(8)=-2+3=1$
PTS: 2 REF: 081717geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
37 ANS:
Since linear angles are supplementary, $\mathrm{m} \angle G I H=65^{\circ}$. Since $\overline{G H} \cong \overline{I H}, \mathrm{~m} \angle G H I=50^{\circ}(180-(65+65))$. Since $\angle E G B \cong \angle G H I$, the corresponding angles formed by the transversal and lines are congruent and $\overline{A B} \| \overline{C D}$.

PTS: 4 REF: 061532geo NAT: G.CO.C. 9 TOP: Lines and Angles
38 ANS: 1
Alternate interior angles
PTS: 2 REF: 061517geo NAT: G.CO.C. 9 TOP: Lines and Angles
39 ANS: 1 PTS: 2 REF: 011606geo NAT: G.CO.C. 9
TOP: Lines and Angles
40 ANS: 1
$\frac{f}{4}=\frac{15}{6}$
$f=10$
PTS: 2 REF: 061617geo NAT: G.CO.C. 9 TOP: Lines and Angles
41 ANS: 4
PTS: 2
REF: 081611geo NAT: G.CO.C. 9
TOP: Lines and Angles
42 ANS: 2 PTS: 2 REF: 081601geo NAT: G.CO.C. 9
TOP: Lines and Angles

43 ANS: 2

PTS: 2 REF: 011818geo NAT: G.CO.C. 9 TOP: Lines and Angles
44 ANS: 1
$m=\frac{-A}{B}=\frac{-2}{-1}=2$
$m_{\perp}=-\frac{1}{2}$
PTS: 2 REF: 061509geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: identify perpendicular lines
45 ANS: 1

$$
m=-\frac{2}{3} \quad 1=\left(-\frac{2}{3}\right) 6+b
$$

$$
1=-4+b
$$

$$
5=b
$$

PTS: 2 REF: 081510geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of parallel line
46 ANS: 4
$m=-\frac{1}{2} \quad-4=2(6)+b$
$m_{\perp}=2 \quad-4=12+b$
PTS: 2 REF: 011602geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line
47 ANS: 1
$m=\left(\frac{-11+5}{2}, \frac{5+-7}{2}\right)=(-3,-1) m=\frac{5--7}{-11-5}=\frac{12}{-16}=-\frac{3}{4} \quad m_{\perp}=\frac{4}{3}$

PTS: 2
REF: 061612geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: perpendicular bisector

48 ANS: 1
$m=\frac{-4}{-6}=\frac{2}{3}$
$m_{\perp}=-\frac{3}{2}$
PTS: 2 REF: 011820geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line
49 ANS: 4
The slope of $\overline{B C}$ is $\frac{2}{5}$. Altitude is perpendicular, so its slope is $-\frac{5}{2}$.
PTS: 2
REF: 061614geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: find slope of perpendicular line
50 ANS: 3
$y=m x+b$
$2=\frac{1}{2}(-2)+b$
$3=b$
PTS: 2 REF: 011701geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of parallel line
51 ANS: 2
$m=\frac{3}{2} \quad . \quad 1=-\frac{2}{3}(-6)+b$
$m_{\perp}=-\frac{2}{3} \quad \begin{aligned} 1 & =4+b \\ -3 & =b\end{aligned}$
PTS: 2 REF: 061719geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: write equation of perpendicular line
52 ANS: 4
The segment's midpoint is the origin and slope is -2 . The slope of a perpendicular line is $\frac{1}{2} . \quad y=\frac{1}{2} x+0$

$$
\begin{array}{r}
2 y=x \\
2 y-x=0
\end{array}
$$

PTS: 2
REF: 081724geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: perpendicular bisector

53 ANS: 2
$s^{2}+s^{2}=7^{2}$
$2 s^{2}=49$
$s^{2}=24.5$

$$
s \approx 4.9
$$

PTS: 2 REF: 081511geo NAT: G.SRT.C. 8 TOP: Pythagorean Theorem
54 ANS:
$\frac{16}{9}=\frac{x}{20.6} \quad D=\sqrt{36.6^{2}+20.6^{2}} \approx 42$
$x \approx 36.6$
PTS: 4 REF: 011632geo NAT: G.SRT.C. 8 TOP: Pythagorean Theorem
KEY: without graphics
55 ANS: 3
$\sqrt{20^{2}-10^{2}} \approx 17.3$
PTS: 2 REF: 081608geo NAT: G.SRT.C. 8 TOP: Pythagorean Theorem
KEY: without graphics
56 ANS: 2
$6+6 \sqrt{3}+6+6 \sqrt{3} \approx 32.8$
PTS: 2 REF: 011709geo NAT: G.SRT.C. 8 TOP: 30-60-90 Triangles
57 ANS:
$\triangle M N O$ is congruent to $\triangle P N O$ by SAS. Since $\triangle M N O \cong \triangle P N O$, then $\overline{M O} \cong \overline{P O}$ by CPCTC. So $\overline{N O}$ must divide $\overline{M P}$ in half, and $M O=8$.

PTS: 2 REF: fall1405geo NAT: G.SRT.B. 5 TOP: Isosceles Triangle Theorem
58 ANS:
$180-2(25)=130$
PTS: 2 REF: 011730geo NAT: G.SRT.B. 5 TOP: Isosceles Triangle Theorem
59 ANS: 3
$\frac{9}{5}=\frac{9.2}{x} 5.1+9.2=14.3$
$9 x=46$
$x \approx 5.1$
PTS: 2 REF: 061511geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem

60 ANS: 4
$\frac{2}{6}=\frac{5}{15}$
PTS: 2
REF: 081517geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
61 ANS: 2
$\frac{12}{4}=\frac{36}{x}$
$12 x=144$
$x=12$
PTS: 2
REF: 061621geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
62 ANS:
$\frac{3.75}{5}=\frac{4.5}{6} \quad \overline{A B}$ is parallel to $\overline{C D}$ because $\overline{A B}$ divides the sides proportionately.
$39.375=39.375$
PTS: 2 REF: 061627geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
63 ANS: 4

$$
\begin{aligned}
\frac{2}{4} & =\frac{9-x}{x} \\
36-4 x & =2 x \\
x & =6
\end{aligned}
$$

PTS: 2
64 ANS: 4
$\frac{1}{3.5}=\frac{x}{18-x}$
$3.5 x=18-x$
$4.5 x=18$
$x=4$
PTS: 2
65 ANS: 3
$\frac{24}{40}=\frac{15}{x}$
$24 x=600$
$x=25$
PTS: 2 REF: 011813geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem

66 ANS: 2

PTS: 2 REF: 081604geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles
67 ANS: 2
$\angle B=180-(82+26)=72 ; \angle D E C=180-26=154 ; \angle E D B=360-(154+26+72)=108 ; \angle B D F=\frac{108}{2}=54 ;$ $\angle D F B=180-(54+72)=54$

PTS: 2 REF: 061710geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles
68 ANS: 4

PTS: 2 REF: 061717geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles
69 ANS: 4

PTS: 2 REF: 081711geo NAT: G.CO.C. 10 TOP: Exterior Angle Theorem
70 ANS: 3
$6 x-40+x+20=180-3 x \mathrm{~m} \angle B A C=180-(80+40)=60$

$$
\begin{aligned}
10 x & =200 \\
x & =20
\end{aligned}
$$

PTS: 2
71 ANS: 4
TOP: Midsegments
72 ANS: 4 PTS: 2
TOP: Midsegments
73 ANS: 1
$m_{R T}=\frac{5--3}{4--2}=\frac{8}{6}=\frac{4}{3} m_{S T}=\frac{5-2}{4-8}=\frac{3}{-4}=-\frac{3}{4}$ Slopes are opposite reciprocals, so lines form a right angle.
PTS: 2
REF: 011618geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane

74 ANS:
The slopes of perpendicular line are opposite reciprocals. Since the lines are perpendicular, they form right angles
and a right triangle. $m_{B C}=-\frac{3}{2}-1=\frac{2}{3}(-3)+b$ or $-4=\frac{2}{3}(-1)+b$

$$
\begin{aligned}
& m_{\perp}=\frac{2}{3} \quad \begin{aligned}
-1 & =-2+b \\
1 & =b
\end{aligned} \\
& 3=\frac{2}{3} x+1 \quad-\frac{10}{3}=b \\
& 2=\frac{2}{3} x \quad 3=\frac{2}{3} x-\frac{10}{3} \\
& 3=x \\
& 9=2 x-10 \\
& 19=2 x \\
& 9.5=x
\end{aligned}
$$

PTS: 4 REF: 081533geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane

PTS: 4
REF: 081732geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane

76 ANS:
Opposite angles in a parallelogram are congruent, so $\mathrm{m} \angle O=118^{\circ}$. The interior angles of a triangle equal 180°. $180-(118+22)=40$.

PTS: 2 REF: 061526geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
77 ANS: 3

PTS: 2 REF: 081508geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
78 ANS: 3

PTS: 2 REF: 011603geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
79 ANS: 1
180-(68•2)
PTS: 2 REF: 081624geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
80 ANS: 4

PTS: 2 REF: 081708geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
81 ANS: 4
PTS: 2
REF: 061513geo NAT: G.CO.C. 11
TOP: Parallelograms
82 ANS: 2 PTS: 2
REF: 011802geo NAT: G.CO.C. 11
TOP: Parallelograms
83 ANS: 3
(3) Could be a trapezoid.

PTS: 2 REF: 081607geo NAT: G.CO.C. 11 TOP: Parallelograms
84 ANS: 2 PTS: 2 REF: 061720geo NAT: G.CO.C. 11
TOP: Parallelograms
85 ANS: 2 PTS: 2 REF: 081501geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
86 ANS: 1

1) opposite sides; 2) adjacent sides; 3) perpendicular diagonals; 4) diagonal bisects angle

PTS: 2 REF: 061609geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals

87 ANS: 4
PTS: 2
REF: 011705geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
88 ANS: 1 PTS: 2
REF: 011716geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
89 ANS: 3
In (1) and (2), $A B C D$ could be a rectangle with non-congruent sides. (4) is not possible
PTS: 2 REF: 081714geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals
90 ANS: 4 PTS: 2 REF: 061711geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
91 ANS:
The four small triangles are 8-15-17 triangles. $4 \times 17=68$
PTS: 2 REF: 081726geo NAT: G.CO.C. 11 TOP: Special Quadrilaterals
92 ANS: 4 PTS: 2 REF: 011819geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
93 ANS:
$M\left(\frac{4+0}{2}, \frac{6-1}{2}\right)=M\left(2, \frac{5}{2}\right) m=\frac{6--1}{4-0}=\frac{7}{4} m_{\perp}=-\frac{4}{7} y-2.5=-\frac{4}{7}(x-2)$ The diagonals, $\overline{M T}$ and $\overline{A H}$, of rhombus MATH are perpendicular bisectors of each other.

PTS: 4
REF: fall1411geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
94 ANS: 4
$\frac{-2-1}{-1-3}=\frac{-3}{2} \quad \frac{3-2}{0-5}=\frac{1}{-5} \quad \frac{3-1}{0--3}=\frac{2}{3} \quad \frac{2--2}{5--1}=\frac{4}{6}=\frac{2}{3}$
PTS: 2
REF: 081522geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: general

95 ANS:
$m_{\overline{T S}}=\frac{-10}{6}=-\frac{5}{3} m_{\overline{S R}}=\frac{3}{5}$ Since the slopes of $\overline{T S}$ and $\overline{S R}$ are opposite reciprocals, they are perpendicular and form a right angle. $\triangle R S T$ is a right triangle because $\angle S$ is a right angle. $P(0,9) m_{R P}^{-}=\frac{-10}{6}=-\frac{5}{3} m_{P T}=\frac{3}{5}$
Since the slopes of all four adjacent sides ($\overline{T S}$ and $\overline{S R}, \overline{S R}$ and $\overline{R P}, \overline{P T}$ and $\overline{T S}, \overline{R P}$ and $\overline{P T}$) are opposite reciprocals, they are perpendicular and form right angles. Quadrilateral $R S T P$ is a rectangle because it has four right angles.

PTS: 6 REF: 061536geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids
96 ANS: 1
$m_{T A}=-1 \quad y=m x+b$
$m_{\overline{E M}}=1 \quad 1=1(2)+b$

$$
-1=b
$$

PTS: 2 REF: 081614geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: general
97 ANS: 3
$\frac{7-1}{0-2}=\frac{6}{-2}=-3$ The diagonals of a rhombus are perpendicular.
PTS: 2 REF: 011719geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
98
ANS:

PTS: 2
REF: 011731geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids

99 ANS:
$\overline{P Q} \sqrt{(8-3)^{2}+(3--2)^{2}}=\sqrt{50} \overline{Q R} \sqrt{(1-8)^{2}+(4-3)^{2}}=\sqrt{50} \overline{R S} \sqrt{(-4-1)^{2}+(-1-4)^{2}}=\sqrt{50}$ $\overline{P S} \sqrt{(-4-3)^{2}+(-1--2)^{2}}=\sqrt{50} P Q R S$ is a rhombus because all sides are congruent. $m_{P Q}=\frac{8-3}{3-2}=\frac{5}{5}=1$ $m_{\overline{Q R}}=\frac{1-8}{4-3}=-7$ Because the slopes of adjacent sides are not opposite reciprocals, they are not perpendicular

and do not form a right angle. Therefore $P Q R S$ is not a square.
PTS: 6 REF: 061735geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids
ANS:
$\triangle P A T$ is an isosceles triangle because sides $\overline{A P}$ and $\overline{A T}$ are congruent $\left(\sqrt{3^{2}+11^{2}}=\sqrt{7^{2}+9^{2}}=\sqrt{130}\right)$.
$R(2,9)$. Quadrilateral PART is a parallelogram because the opposite sides are parallel since they have equal slopes

$$
\left(m_{\overline{A R}}=\frac{4}{6}=\frac{2}{3} ; m_{\overline{P T}}=\frac{4}{6}=\frac{2}{3} ; m_{\overline{P A}}=-\frac{11}{3} ; m_{\overline{R T}}=-\frac{11}{3}\right)
$$

PTS: 6 REF: 011835geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
KEY: grids
ANS: 2
$\sqrt{(-1-2)^{2}+(4-3)^{2}}=\sqrt{10}$
PTS: 2 REF: 011615geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane

102 ANS: 3

$$
\begin{aligned}
& \sqrt{45}=3 \sqrt{5} \quad a=\frac{1}{2}(3 \sqrt{5})(6 \sqrt{5})=\frac{1}{2}(18)(5)=45 \\
& \sqrt{180}=6 \sqrt{5}
\end{aligned}
$$

PTS: 2 REF: 061622geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane 103 ANS: 3
$A=\frac{1}{2} a b \quad 3-6=-3=x$
$24=\frac{1}{2} a(8) \frac{4+12}{2}=8=y$
$a=6$
PTS: 2 REF: 081615geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
104 ANS: 3
$4 \sqrt{(-1--3)^{2}+(5-1)^{2}}=4 \sqrt{20}$
PTS: 2 REF: 081703geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
ANS: 3
PTS: 2
TOP: Polygons in the Coordinate Plane
106 ANS: 1 PTS: 2
TOP: Chords, Secants and Tangents
107 ANS: $1 \quad$ PTS: 2
TOP: Chords, Secants and Tangents
REF: 061702geo NAT: G.GPE.B. 7
REF: 061520geo NAT: G.C.A. 2
KEY: mixed
REF: 061508geo NAT: G.C.A. 2
KEY: inscribed
108 ANS: 3
$5 \cdot \frac{10}{4}=\frac{50}{4}=12.5$
PTS: 2
REF: 081512geo
NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: common tangents
109
ANS: 3 PTS: 2
REF: 011621geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: inscribed

110 ANS:

$$
180-2(30)=120
$$

PTS: 2
REF: 011626geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: parallel lines
111 ANS: $2 \quad$ PTS: 2
REF: 061610geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents KEY: inscribed
112 ANS: 1
The other statements are true only if $\overline{A D} \perp \overline{B C}$.
PTS: 2
REF: 081623geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: inscribed
113 ANS:
$\frac{3}{8} \cdot 56=21$
PTS: 2
REF: 081625geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: common tangents
114 ANS: 2
$8(x+8)=6(x+18)$
$8 x+64=6 x+108$
$2 x=44$
$x=22$
PTS: 2
REF: 011715geo NAT: G.C.A. 2
KEY: secants drawn from common point, length
115 ANS:
$\frac{152-56}{2}=48$
PTS: 2
REF: 011728geo NAT: G.C.A. 2
KEY: secant and tangent drawn from common point, angle
116 ANS: 4
$\frac{1}{2}(360-268)=46$
PTS: 2 REF: 061704geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents KEY: inscribed

117
ANS: 2
$6 \cdot 6=x(x-5)$
$36=x^{2}-5 x$
$0=x^{2}-5 x-36$
$0=(x-9)(x+4)$
$x=9$
PTS: 2
REF: 061708geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: intersecting chords, length
ANS: 1
Parallel chords intercept congruent arcs. $\frac{180-130}{2}=25$
PTS: 2 REF: 081704geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: parallel lines
119 ANS: 2
$x^{2}=3 \cdot 18$
$x=\sqrt{3 \cdot 3 \cdot 6}$
$x=3 \sqrt{6}$

PTS: 2
REF: 081712geo NAT: G.C.A. 2
KEY: secant and tangent drawn from common point, length
ANS: 4
PTS: 2
TOP: Chords, Secants and Tangents
REF: 011816geo
KEY: inscribed
REF: 081515geo NAT: G.C.A. 3
TOP: Inscribed Quadrilaterals
122 ANS: 4
Opposite angles of an inscribed quadrilateral are supplementary.
PTS: 2 REF: 011821geo NAT: G.C.A. 3 TOP: Inscribed Quadrilaterals
123 ANS: 2

$$
\begin{aligned}
x^{2}+y^{2}+6 y+9 & =7+9 \\
x^{2}+(y+3)^{2} & =16
\end{aligned}
$$

PTS: 2 REF: 061514geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
124 ANS: 3
$x^{2}+4 x+4+y^{2}-6 y+9=12+4+9$

$$
(x+2)^{2}+(y-3)^{2}=25
$$

PTS: 2 REF: 081509geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: completing the square

NAT: G.C.A. 2
TOP: Chords, Secants and Tangents

125 ANS: 4
$x^{2}+6 x+9+y^{2}-4 y+4=23+9+4$
$(x+3)^{2}+(y-2)^{2}=36$
PTS: 2
REF: 011617geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
126 ANS: 1

Since the midpoint of $\overline{A B}$ is $(3,-2)$, the center must be either $(5,-2)$ or $(1,-2)$.
$r=\sqrt{2^{2}+5^{2}}=\sqrt{29}$
PTS: 2 REF: 061623geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: other
ANS: 1
$x^{2}-4 x+4+y^{2}+8 y+16=-11+4+16$
$(x-2)^{2}+(y+4)^{2}=9$
PTS: 2
REF: 081616geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
128 ANS: 2 PTS: 2
TOP: Equations of Circles
REF: 061603geo NAT: G.GPE.A. 1
KEY: find center and radius | completing the square
$x^{2}+y^{2}-6 y+9=-1+9$
$x^{2}+(y-3)^{2}=8$
PTS: 2 REF: 011718geo NAT: G.GPE.A. 1 TOP: Equations of Circles KEY: completing the square
130 ANS: 1
$x^{2}+y^{2}-12 y+36=-20+36$

$$
x^{2}+(y-6)^{2}=16
$$

PTS: 2
REF: 061712geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square

131 ANS:
$x^{2}-6 x+9+y^{2}+8 y+16=56+9+16(3,-4) ; r=9$

$$
(x-3)^{2}+(y+4)^{2}=81
$$

PTS: 2 REF: 081731geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
132 ANS: 2
$x^{2}+y^{2}-6 x+2 y=6$
$x^{2}-6 x+9+y^{2}+2 y+1=6+9+1$
$(x-3)^{2}+(y+1)^{2}=16$
PTS: 2 REF: 011812geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
133
$r=\sqrt{(7-3)^{2}+(1--2)^{2}}=\sqrt{16+9}=5$
PTS: 2 REF: 061503geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane
134 ANS:
Yes. $\quad(x-1)^{2}+(y+2)^{2}=4^{2}$

$$
\begin{aligned}
(3.4-1)^{2}+(1.2+2)^{2} & =16 \\
5.76+10.24 & =16 \\
16 & =16
\end{aligned}
$$

PTS: 2 REF: 081630geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane
135 ANS: 3
$\sqrt{(-5)^{2}+12^{2}}=\sqrt{169} \sqrt{11^{2}+(2 \sqrt{12})^{2}}=\sqrt{121+48}=\sqrt{169}$
PTS: 2 REF: 011722geo NAT: G.GPE.B. 4 TOP: Circles in the Coordinate Plane
136 ANS: 1
$\frac{64}{4}=1616^{2}=256 \quad 2 w+2(w+2)=6415 \times 17=255 \quad 2 w+2(w+4)=64 \quad 14 \times 18=252 \quad 2 w+2(w+6)=64$
$w=15$
$w=14$
$w=13$
$13 \times 19=247$
PTS: 2 REF: 011708geo NAT: G.MG.A. 3 TOP: Area of Polygons
137 ANS:

$$
\begin{aligned}
x^{2}+x^{2} & =58^{2} \quad A=(\sqrt{1682}+8)^{2} \approx 2402.2 \\
2 x^{2} & =3364 \\
x & =\sqrt{1682}
\end{aligned}
$$

PTS: 4 REF: 081734geo NAT: G.MG.A. 3 TOP: Area of Polygons

138 ANS: 2
$S A=6 \cdot 12^{2}=864$
$\frac{864}{450}=1.92$
PTS: 2 REF: 061519geo NAT: G.MG.A. 3 TOP: Surface Area
139 ANS: 2
x is $\frac{1}{2}$ the circumference. $\frac{C}{2}=\frac{10 \pi}{2} \approx 16$
PTS: 2 REF: 061523geo NAT: G.GMD.A. 1 TOP: Circumference
140 ANS: 1
$\frac{1000}{20 \pi} \approx 15.9$
PTS: 2 REF: 011623geo NAT: G.GMD.A. 1 TOP: Circumference
141 ANS: 3
$\theta=\frac{s}{r}=\frac{2 \pi}{10}=\frac{\pi}{5}$
PTS: 2 REF: fall1404geo NAT: G.C.B. 5 TOP: Arc Length
KEY: angle
142 ANS:
$s=\theta \cdot r \quad s=\theta \cdot r \quad$ Yes, both angles are equal.
$\pi=A \cdot 4 \frac{13 \pi}{8}=B \cdot 6.5$
$\frac{\pi}{4}=A$

$$
\frac{\pi}{4}=B
$$

PTS: 2
REF: 061629geo NAT: G.C.B. 5
TOP: Arc Length
KEY: arc length
143
ANS: 3
$\frac{s_{L}}{s_{S}}=\frac{6 \theta}{4 \theta}=1.5$
PTS: 2
REF: 011824geo
NAT: G.C.B. 5
TOP: Arc Length
KEY: arc length
144
$\frac{40}{360} \cdot \pi(4.5)^{2}=2.25 \pi$
PTS: 2
REF: 061726geo
NAT: G.C.B. 5
TOP: Sectors

145 ANS:
$\frac{\left(\frac{180-20}{2}\right)}{360} \times \pi(6)^{2}=\frac{80}{360} \times 36 \pi=8 \pi$
PTS: 4 REF: spr1410geo NAT: G.C.B. 5 TOP: Sectors 146 ANS:
$A=6^{2} \pi=36 \pi 36 \pi \cdot \frac{x}{360}=12 \pi$

$$
\begin{aligned}
& x=360 \cdot \frac{12}{36} \\
& x=120
\end{aligned}
$$

PTS: 2 REF: 061529geo NAT: G.C.B. 5 TOP: Sectors
147 ANS: 3
$\frac{60}{360} \cdot 6^{2} \pi=6 \pi$
PTS: 2
REF: 081518geo
NAT: G.C.B. 5 TOP: Sectors
148 ANS: 3
$\frac{x}{360} \cdot 3^{2} \pi=2 \pi \quad 180-80=100$

$$
x=80 \quad \frac{180-100}{2}=40
$$

PTS: 2
REF: 011612geo
NAT: G.C.B. 5
TOP: Sectors
149 ANS: 3
$\frac{60}{360} \cdot 8^{2} \pi=\frac{1}{6} \cdot 64 \pi=\frac{32 \pi}{3}$
PTS: 2
REF: 061624geo
NAT: G.C.B. 5
REF: 081619geo
TOP: Sectors
ANS: 2
PTS: 2
TOP: Sectors
151 ANS: 4
$\frac{300}{360} \cdot 8^{2} \pi=\frac{160 \pi}{3}$
PTS: 2 REF: 011721geo NAT: G.C.B. 5 TOP: Sectors
152 ANS: 2
$\frac{\frac{512 \pi}{3}}{\left(\frac{32}{2}\right)^{2} \pi} \cdot 2 \pi=\frac{4 \pi}{3}$
PTS: 2
REF: 081723geo
NAT: G.C.B. 5
TOP: Sectors

153
ANS:
$\frac{Q}{360}(\pi)\left(25^{2}\right)=(\pi)\left(25^{2}\right)-500 \pi$

$$
Q=\frac{125 \pi(360)}{625 \pi}
$$

$$
Q=72
$$

PTS: 2 REF: 011828geo NAT: G.C.B. 5 TOP: Sectors
154 ANS:
Each quarter in both stacks has the same base area. Therefore, each corresponding cross-section of the stacks will have the same area. Since the two stacks of quarters have the same height of 23 quarters, the two volumes must be the same.

PTS: 2 REF: spr1405geo NAT: G.GMD.A. 1 TOP: Volume ANS:
Yes. The bases of the cylinders have the same area and the cylinders have the same height.
PTS: 2 REF: 081725geo NAT: G.GMD.A. 1 TOP: Volume
156 ANS:
Each triangular prism has the same base area. Therefore, each corresponding cross-section of the prisms will have the same area. Since the two prisms have the same height of 14 , the two volumes must be the same.

PTS: 2 REF: 061727geo NAT: G.GMD.A. 1 TOP: Volume
157 ANS: 4
$2592276=\frac{1}{3} \cdot s^{2} \cdot 146.5$
$230 \approx s$
PTS: 2 REF: 081521geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
ANS: 2
$14 \times 16 \times 10=2240 \frac{2240-1680}{2240}=0.25$
PTS: 2 REF: 011604geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
159
ANS: 2
$V=\frac{1}{3} \cdot 6^{2} \cdot 12=144$
PTS: 2 REF: 011607geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids

160 ANS:
$V=(\pi)\left(4^{2}\right)(9)+\left(\frac{1}{2}\right)\left(\frac{4}{3}\right)(\pi)\left(4^{3}\right) \approx 586$
PTS: 4
REF: 011833geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
161
ANS: 4 PTS: 2
TOP: Volume KEY: compositions
162 ANS: 3
$\underline{\frac{4}{3} \pi\left(\frac{9.5}{2}\right)^{3}}$
$\frac{4}{3} \pi\left(\frac{2.5}{2}\right)^{3} \quad \approx 55$

PTS: 2 REF: 011614geo NAT: G.GMD.A. 3 TOP: Volume KEY: spheres
163 ANS: 4
$V=\pi\left(\frac{6.7}{2}\right)^{2}(4 \cdot 6.7) \approx 945$
PTS: 2 REF: 081620geo NAT: G.GMD.A. 3 TOP: Volume KEY: cylinders
164 ANS:
$\frac{\pi \cdot 11.25^{2} \cdot 33.5}{231} \approx 57.7$
PTS: 4 REF: 061632geo NAT: G.GMD.A. 3 TOP: Volume KEY: cylinders
165
$\sqrt[3]{\frac{3 V_{f}}{4 \pi}}-\sqrt[3]{\frac{3 V_{p}}{4 \pi}}=\sqrt[3]{\frac{3(294)}{4 \pi}}-\sqrt[3]{\frac{3(180)}{4 \pi}} \approx 0.6$
PTS: 2
REF: 061728geo NAT: G.GMD.A. 3 TOP: Volume KEY: spheres

166 ANS:
Similar triangles are required to model and solve a proportion. $\frac{x+5}{1.5}=\frac{x}{1} \quad \frac{1}{3} \pi(1.5)^{2}(15)-\frac{1}{3} \pi(1)^{2}(10) \approx 24.9$

$$
\begin{aligned}
x+5 & =1.5 x \\
5 & =.5 x \\
10 & =x \\
10+5 & =15
\end{aligned}
$$

PTS: 6 REF: 061636geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
167 ANS: 1
$V=\frac{1}{3} \pi\left(\frac{1.5}{2}\right)^{2}\left(\frac{4}{2}\right) \approx 1.2$
PTS: 2 REF: 011724geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
168 ANS: 2
$4 \times 4 \times 6-\pi(1)^{2}(6) \approx 77$
PTS: 2 REF: 011711geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
169 ANS:

$$
\begin{aligned}
C & =2 \pi r \quad V=\frac{1}{3} \pi \cdot 5^{2} \cdot 13 \approx 340 \\
31.416 & =2 \pi r \\
5 & \approx r
\end{aligned}
$$

PTS: 4 REF: 011734geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
170
ANS: 1
$84=\frac{1}{3} \cdot s^{2} \cdot 7$
$6=s$
PTS: 2 REF: 061716geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
171
ANs: 3
$2.5 \times 1.25 \times(27 \times 12)+\frac{1}{2} \pi(1.25)^{2}(27 \times 12) \approx 1808$
PTS: 2
REF: 061723geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions

172 ANS:

$$
\begin{array}{rlrl}
\tan 16.5 & =\frac{x}{13.5} & 9 \times 16 \times 4.5 & =648 \quad 3752-(35 \times 16 \times .5)=3472 \\
x & \approx 4 & 13.5 \times 16 \times 4.5 & =972 \quad 3472 \times 7.48 \approx 25971 \\
4+4.5 & =8.5 & \frac{1}{2} \times 13.5 \times 16 \times 4 & =432 \\
& & \frac{25971}{10.5} \approx 2473.4 \\
12.5 \times 16 \times 8.5 & =\underline{1700} \frac{2473.4}{60} \approx 41
\end{array}
$$

PTS: 6 REF: 081736geo NAT: G.GMD.A. 3 TOP: Volume KEY: compositions
173 ANS:

$$
\begin{aligned}
20000 \mathrm{~g}\left(\frac{1 \mathrm{ft}^{3}}{7.48 \mathrm{~g}}\right)=2673.8 \mathrm{ft}^{3} 2673.8 & =\pi r^{2}(34.5) 9.9+1=10.9 \\
r & \approx 4.967 \\
d & \approx 9.9
\end{aligned}
$$

PTS: 4 REF: 061734geo NAT: G.GMD.A. 3 TOP: Volume KEY: cylinders
174 ANS: 3

$$
V=\frac{1}{3} \pi r^{2} h
$$

$54.45 \pi=\frac{1}{3} \pi(3.3)^{2} h$
$h=15$
PTS: 2 REF: 011807geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
175
ANS: 2
$V=\frac{1}{3}\left(\frac{36}{4}\right)^{2} \cdot 15=405$
PTS: 2
REF: 011822geo NAT: G.GMD.A. 3 TOP: Volume KEY: pyramids
176 ANS: $\tan 47=\frac{x}{8.5} \quad$ Cone: $V=\frac{1}{3} \pi(8.5)^{2}(9.115) \approx 689.6$ Cylinder: $V=\pi(8.5)^{2}(25) \approx 5674.5$ Hemisphere: $x \approx 9.115$
$V=\frac{1}{2}\left(\frac{4}{3} \pi(8.5)^{3}\right) \approx 1286.3689 .6+5674.5+1286.3 \approx 7650$ No, because $7650 \cdot 62.4=477,360$ $477,360 \cdot 85=405,756$, which is greater than 400,000 .

PTS: 6 REF: 061535geo NAT: G.MG.A. 2 TOP: Density

177 ANS:
$r=25 \mathrm{~cm}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=0.25 \mathrm{~m} \quad V=\pi(0.25 \mathrm{~m})^{2}(10 \mathrm{~m})=0.625 \pi \mathrm{~m}^{3} \quad W=0.625 \pi \mathrm{~m}^{3}\left(\frac{380 \mathrm{~K}}{1 \mathrm{~m}^{3}}\right) \approx 746.1 \mathrm{~K}$
$n=\frac{\$ 50,000}{\left(\frac{\$ 4.75}{\mathrm{~K}}\right)(746.1 \mathrm{~K})}=14.1 \quad 15$ trees
PTS: 4 REF: spr1412geo NAT: G.MG.A. 2 TOP: Density
178 ANS:
No, the weight of the bricks is greater than $900 \mathrm{~kg} .500 \times(5.1 \mathrm{~cm} \times 10.2 \mathrm{~cm} \times 20.3 \mathrm{~cm})=528,003 \mathrm{~cm}^{3}$.
$528,003 \mathrm{~cm}^{3} \times \frac{1 \mathrm{~m}^{3}}{100 \mathrm{~cm}^{3}}=0.528003 \mathrm{~m}^{3} . \frac{1920 \mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.528003 \mathrm{~m}^{3} \approx 1013 \mathrm{~kg}$.
PTS: 2 REF: fall1406geo NAT: G.MG.A. 2 TOP: Density
179 ANS: 3
$V=12 \cdot 8.5 \cdot 4=408$
$W=408 \cdot 0.25=102$
PTS: 2 REF: 061507geo NAT: G.MG.A. 2 TOP: Density
180 ANS: 1
$V=\frac{\frac{4}{3} \pi\left(\frac{10}{2}\right)^{3}}{2} \approx 261.8 \cdot 62.4=16,336$
PTS: 2 REF: 081516geo NAT: G.MG.A. 2 TOP: Density 181 ANS:
$\frac{137.8}{6^{3}} \approx 0.638$ Ash

PTS: 2 REF: 081525geo NAT: G.MG.A. 2 TOP: Density
182 ANS: 1
Illinois: $\frac{12830632}{231.1} \approx 55520$ Florida: $\frac{18801310}{350.6} \approx 53626$ New York: $\frac{19378102}{411.2} \approx 47126$ Pennsylvania:
$\frac{12702379}{283.9} \approx 44742$
PTS: 2 REF: 081720geo NAT: G.MG.A. 2 TOP: Density
183 ANS: 2
$\frac{4}{3} \pi \cdot 4^{3}+0.075 \approx 20$
PTS: 2 REF: 011619geo NAT: G.MG.A. 2 TOP: Density

184 ANS: 2
$\frac{1 \mathrm{l}}{1.2 \mathrm{oz}}\left(\frac{16 \mathrm{oz}}{1 \mathrm{lb}}\right)=\frac{13 . \overline{3} \mathrm{l}}{\mathrm{lb}} \frac{13 . \overline{3} \mathrm{l}}{\mathrm{b}}\left(\frac{1 \mathrm{~g}}{3.785 \mathrm{l}}\right) \approx \frac{3.5 \mathrm{~g}}{1 \mathrm{lb}}$
PTS: 2 REF: 061618geo NAT: G.MG.A. 2 TOP: Density
185 ANS: 1
$\frac{1}{2}\left(\frac{4}{3}\right) \pi \cdot 5^{3} \cdot 62.4 \approx 16,336$
PTS: 2 REF: 061620geo NAT: G.MG.A. 2 TOP: Density 186 ANS:
$V=\frac{1}{3} \pi\left(\frac{3}{2}\right)^{2} \cdot 8 \approx 18.85 \cdot 100=18851885 \cdot 0.52 \cdot 0.10=98.021 .95(100)-(37.83+98.02)=59.15$
PTS: 6 REF: 081536geo NAT: G.MG.A. 2 TOP: Density 187 ANS:
$500 \times 1015 \mathrm{cc} \times \frac{\$ 0.29}{\mathrm{~kg}} \times \frac{7.95 \mathrm{~g}}{\mathrm{cc}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=\$ 1170$
PTS: 2 REF: 011829geo NAT: G.MG.A. 2 TOP: Density
188 ANS: 2

$$
\begin{aligned}
C & =\pi d \quad V=\pi\left(\frac{2.25}{\pi}\right)^{2} \cdot 8 \approx 12.8916 \quad W=12.8916 \cdot 752 \approx 9694 \\
4.5 & =\pi d \\
\frac{4.5}{\pi} & =d \\
\frac{2.25}{\pi} & =r
\end{aligned}
$$

PTS: 2 REF: 081617geo NAT: G.MG.A. 2 TOP: Density
189 ANS:

$$
\frac{40000}{\pi\left(\frac{51}{2}\right)^{2}} \approx 19.6 \frac{72000}{\pi\left(\frac{75}{2}\right)^{2}} \approx 16.3 \text { Dish } A
$$

PTS: 2 REF: 011630geo NAT: G.MG.A. 2 TOP: Density 190 ANS:
$V=\frac{1}{3} \pi\left(\frac{8.3}{2}\right)^{2}(10.2)+\frac{1}{2} \cdot \frac{4}{3} \pi\left(\frac{8.3}{2}\right)^{3} \approx 183.961+149.693 \approx 333.65 \mathrm{~cm}^{3} 333.65 \times 50=16682.7 \mathrm{~cm}^{3}$ $16682.7 \times 0.697=11627.8 \mathrm{~g} 11.6278 \times 3.83=\$ 44.53$

PTS: 6 REF: 081636geo NAT: G.MG.A. 2 TOP: Density

191 ANS:
C: $V=\pi(26.7)^{2}(750)-\pi(24.2)^{2}(750)=95,437.5 \pi$

$$
95,437.5 \pi \mathrm{~cm}^{3}\left(\frac{2.7 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{\$ 0.38}{\mathrm{~kg}}\right)=\$ 307.62
$$

P: $V=40^{2}(750)-35^{2}(750)=281,250$ $\$ 307.62-288.56=\$ 19.06$ $281,250 \mathrm{~cm}^{3}\left(\frac{2.7 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{\$ 0.38}{\mathrm{~kg}}\right)=\$ 288.56$

PTS: 6 REF: 011736geo NAT: G.MG.A. 2 TOP: Density 192 ANS: 3
$\frac{A B}{B C}=\frac{D E}{E F}$
$\frac{9}{15}=\frac{6}{10}$
$90=90$
PTS: 2
REF: 061515geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic
193
ANS: 4
$\frac{7}{12} \cdot 30=17.5$
PTS: 2 REF: 061521geo NAT: G.SRT.B. 5 TOP: Similarity KEY: perimeter and area
194

PTS: 2
REF: 061531geo NAT: G.SRT.B. 5 TOP: Similarity KEY: basic

195 ANS:
$x=\sqrt{.55^{2}-.25^{2}} \cong 0.49$ No, $.49^{2}=.25 y .9604+.25<1.5$

$$
.9604=y
$$

PTS: 4 REF: 061534geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
196 ANS: 4

$$
\begin{aligned}
\frac{1}{2} & =\frac{x+3}{3 x-1} \quad G R=3(7)-1=20 \\
3 x-1 & =2 x+6 \\
x & =7
\end{aligned}
$$

PTS: 2
REF: 011620geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
197 ANS: 2
PTS: 2
REF: 081519geo NAT: G.SRT.B. 5
TOP: Similarity KEY: basic
198 ANS:
$\frac{120}{230}=\frac{x}{315}$

$$
x=164
$$

PTS: 2
REF: 081527geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
199 ANS: 3

1) $\frac{12}{9}=\frac{4}{3}$ 2) AA 3) $\frac{32}{16} \neq \frac{8}{2}$ 4) SAS

PTS: 2 REF: 061605geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
200 ANS:
$\frac{6}{14}=\frac{9}{21}$ SAS
$126=126$
PTS: 2 REF: 081529geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
201 ANS: 3
$\frac{12}{4}=\frac{x}{5} \quad 15-4=11$

$$
x=15
$$

PTS: 2
REF: 011624geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic

202 ANS: 1
$\frac{6}{8}=\frac{9}{12}$
PTS: 2 REF: 011613geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
203 ANS:
If an altitude is drawn to the hypotenuse of a triangle, it divides the triangle into two right triangles similar to each other and the original triangle.

PTS: 2 REF: 061729geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
204 ANS: 2
$\sqrt{3 \cdot 21}=\sqrt{63}=3 \sqrt{7}$
PTS: 2 REF: 011622geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
205 ANS: 2
$h^{2}=30 \cdot 12$
$h^{2}=360$
$h=6 \sqrt{10}$
PTS: 2 REF: 061613geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
206
ANS: 2
$x^{2}=4 \cdot 10$
$x=\sqrt{40}$
$x=2 \sqrt{10}$
PTS: 2 REF: 081610geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
207 ANS: 3
$\frac{x}{10}=\frac{6}{4} \quad \overline{C D}=15-4=11$
$x=15$
PTS: 2 REF: 081612geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
208 ANS: 2
(1) AA; (3) SAS; (4) SSS. NYSED has stated that all students should be awarded credit regardless of their answer to this question.

PTS: 2 REF: 061724geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic

209 ANS: 4
$\frac{6.6}{x}=\frac{4.2}{5.25}$
$4.2 x=34.65$

$$
x=8.25
$$

PTS: 2
REF: 081705geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
210 ANS: 2
$12^{2}=9 \cdot 16$
$144=144$
PTS: 2
KEY: leg
211 ANS: 4
REF: 081718geo
NAT: G.SRT.B. 5 TOP: Similarity

TOP: Similarity KEY: basic
212 ANS: 2
$x^{2}=12(12-8)$
$x^{2}=48$
$x=4 \sqrt{3}$
PTS: 2 REF: 011823geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
213 ANS: 1 PTS: 2

REF: 061518geo NAT: G.SRT.A. 1
TOP: Line Dilations
214 ANS:
$\ell: y=3 x-4$
$m: y=3 x-8$
PTS: 2 REF: 011631geo NAT: G.SRT.A. 1 TOP: Line Dilations

Geometry Regents Exam Questions by Common Core State Standard: Topic Answer Section

215 ANS: 2
The given line $h, 2 x+y=1$, does not pass through the center of dilation, the origin, because the y-intercept is at $(0,1)$. The slope of the dilated line, m, will remain the same as the slope of line $h,-2$. All points on line h, such as $(0,1)$, the y-intercept, are dilated by a scale factor of 4 ; therefore, the y-intercept of the dilated line is $(0,4)$ because the center of dilation is the origin, resulting in the dilated line represented by the equation $y=-2 x+4$.

PTS: 2 REF: spr1403geo NAT: G.SRT.A. 1 TOP: Line Dilations
216 ANS: 2
The line $y=2 x-4$ does not pass through the center of dilation, so the dilated line will be distinct from $y=2 x-4$. Since a dilation preserves parallelism, the line $y=2 x-4$ and its image will be parallel, with slopes of 2 . To obtain the y-intercept of the dilated line, the scale factor of the dilation, $\frac{3}{2}$, can be applied to the y-intercept, $(0,-4)$. Therefore, $\left(0 \cdot \frac{3}{2},-4 \cdot \frac{3}{2}\right) \rightarrow(0,-6)$. So the equation of the dilated line is $y=2 x-6$.

PTS: 2 REF: fall1403geo NAT: G.SRT.A. 1 TOP: Line Dilations
217 ANS: 1
The line $3 y=-2 x+8$ does not pass through the center of dilation, so the dilated line will be distinct from $3 y=-2 x+8$. Since a dilation preserves parallelism, the line $3 y=-2 x+8$ and its image $2 x+3 y=5$ are parallel, with slopes of $-\frac{2}{3}$.

PTS: 2 REF: 061522geo NAT: G.SRT.A. 1 TOP: Line Dilations
218 ANS: 4
The line $y=3 x-1$ passes through the center of dilation, so the dilated line is not distinct.
PTS: 2 REF: 081524geo NAT: G.SRT.A. 1 TOP: Line Dilations
219 ANS: 1
B: $(4-3,3-4) \rightarrow(1,-1) \rightarrow(2,-2) \rightarrow(2+3,-2+4)$
C: $(2-3,1-4) \rightarrow(-1,-3) \rightarrow(-2,-6) \rightarrow(-2+3,-6+4)$
PTS: 2 REF: 011713geo NAT: G.SRT.A. 1 TOP: Line Dilations
220 ANS: 2
PTS: 2
REF: 011610geo
NAT: G.SRT.A. 1
TOP: Line Dilations
221 ANS: 4
$3 \times 6=18$
PTS: 2 REF: 061602geo NAT: G.SRT.A. 1 TOP: Line Dilations
222 ANS: 4
$\sqrt{(32-8)^{2}+(28--4)^{2}}=\sqrt{576+1024}=\sqrt{1600}=40$
PTS: 2 REF: 081621geo NAT: G.SRT.A. 1 TOP: Line Dilations

PTS: 2
ANS:

The line is on the center of dilation, so the line does not change. $p: 3 x+4 y=20$
PTS: 2
226 ANS: 1
REF: 061731geo
NAT: G.SRT.A. 1 TOP: Line Dilations

TOP: Line Dilations
PTS: 2
REF: 081605geo NAT: G.CO.A. 5
ANS: 3
PTS: 2
REF: 061706geo NAT: G.SRT.A. 1
TOP: Line Dilations
ANS: 1
Since a dilation preserves parallelism, the line $4 y=3 x+7$ and its image $3 x-4 y=9$ are parallel, with slopes of $\frac{3}{4}$.

REF: 081710geo NAT: G.SRT.A. 1 TOP: Line Dilations

PTS: 2
REF: 011814geo NAT: G.SRT.A. 1

KEY: grids
$A B C$ - point of reflection $\rightarrow(-y, x)+$ point of reflection $\triangle D E F \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ because $\triangle D E F$ is a reflection of
$A(2,-3)-(2,-3)=(0,0) \rightarrow(0,0)+(2,-3)=A^{\prime}(2,-3)$
$B(6,-8)-(2,-3)=(4,-5) \rightarrow(5,4)+(2,-3)=B^{\prime}(7,1)$
$C(2,-9)-(2,-3)=(0,-6) \rightarrow(6,0)+(2,-3)=C^{\prime}(8,-3)$
$\triangle A^{\prime} B^{\prime} C^{\prime}$ and reflections preserve distance.
PTS: 4 REF: 081633geo NAT: G.CO.A. 5 TOP: Rotations
KEY: grids
ANS:

PTS: 2
KEY: grids
230
ANS: 4

TOP: Dilations
REF: 011625geo
NAT: G.CO.A. 5 TOP: Reflections

PTS: 2
REF: 081506geo NAT: G.SRT.A. 2

231 ANS: 1
$3^{2}=9$
PTS: 2 REF: 081520geo NAT: G.SRT.A. 2 TOP: Dilations
ANS: 2
PTS: 2
REF: 061516geo NAT: G.SRT.A. 2
TOP: Dilations
233 ANS: 1
$\frac{4}{6}=\frac{3}{4.5}=\frac{2}{3}$
PTS: 2
REF: 081523geo NAT: G.SRT.A. 2 TOP: Dilations
234 ANS:

$$
\sqrt{(2.5-1)^{2}+(-.5-1.5)^{2}}=\sqrt{2.25+4}=2.5
$$

PTS: 2 REF: 081729geo NAT: G.SRT.A. 2 TOP: Dilations
235 ANS:

A dilation preserves slope, so the slopes of $\overline{Q R}$ and $\overline{Q^{\prime} R^{\prime}}$ are equal. Because the slopes are equal, $Q^{\prime} R^{\prime} \| Q R$.

PTS: 4
KEY: grids
236 ANS: 1
TOP: Dilations
237 ANS:
A dilation of 3 centered at A. A dilation preserves angle measure, so the triangles are similar.
PTS: 4 REF: 011832geo NAT: G.SRT.A. 2 TOP: Dilations
238 ANS: 1
$\frac{360^{\circ}}{45^{\circ}}=8$
PTS: 2
REF: 061510geo
NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself

239 ANS: 2
Segments drawn from the center of the regular pentagon bisect each angle of the pentagon, and create five isosceles triangles as shown in the diagram below. Since each exterior angle equals the angles formed by the segments drawn from the center of the regular pentagon, the minimum degrees necessary to carry a regular polygon onto itself are equal to the measure of an exterior angle of the regular polygon.

PTS: 2 REF: spr1402geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
240 ANS: 1 PTS: 2 REF: 081505geo NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
241 ANS: 3
The x-axis and line $x=4$ are lines of symmetry and $(4,0)$ is a point of symmetry.
PTS: 2 REF: 081706geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
242 ANS:
$\frac{360}{6}=60$
PTS: 2 REF: 081627geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
243 ANS: 4
$\frac{360^{\circ}}{10}=36^{\circ} 252^{\circ}$ is a multiple of 36°
PTS: 2 REF: 011717geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
244 PTS: 2 REF: 061707geo NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
245 ANS: 4
$\frac{360^{\circ}}{10}=36^{\circ} 252^{\circ}$ is a multiple of 36°
PTS: 2 REF: 081722geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
246 ANS: 3 PTS: 2 REF: 011815geo NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
247 ANS:
Rotate $\triangle A B C$ clockwise about point C until $\overline{D F} \| \overline{A C}$. Translate $\triangle A B C$ along $\overline{C F}$ so that C maps onto F.
PTS: 2 REF: 061730geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
248
ANS: 4
PTS: 2
REF: 061504geo NAT: G.CO.A. 5
KEY: identify
249
TOP: Compositions of Transformations
REF: 081507geo NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify

250 ANS:
$T_{6,0} \circ r_{x-\text {-xis }}$
PTS: 2 REF: 061625geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
251
ANS:

PTS: 2
REF: 081626geo
NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: grids
ANS: 1
PTS: 2
TOP: Compositions of Transformations
REF: 011608geo
NAT: G.CO.A. 5
ANS: 3
PTS: 2
KEY: identify
REF: 011710geo NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify
254 ANS:
$T_{0,-2}{ }^{\circ} r_{y-\text {-xis }}$
PTS: 2
REF: 011726geo
NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
PTS: 2
REF: 061701geo
NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify
ANS:
$R_{180^{\circ}}$ about $\left(-\frac{1}{2}, \frac{1}{2}\right)$
PTS: 2 REF: 081727geo NAT: G.CO.A. 5 TOP: Compositions of Transformations KEY: identify
ANS:
Triangle $X^{\prime} Y^{\prime} Z^{\prime}$ is the image of $\triangle X Y Z$ after a rotation about point Z such that $\overline{Z X}$ coincides with $\overline{Z U}$. Since rotations preserve angle measure, $\overline{Z Y}$ coincides with $\overline{Z V}$, and corresponding angles X and Y, after the rotation, remain congruent, so $\overline{X Y} \| \overline{U V}$. Then, dilate $\triangle X^{\prime} Y^{\prime} Z^{\prime}$ by a scale factor of $\frac{Z U}{Z X}$ with its center at point Z. Since dilations preserve parallelism, $\overline{X Y}$ maps onto $\overline{U V}$. Therefore, $\triangle X Y Z \sim \triangle U V Z$.

PTS: 2
KEY: grids
REF: spr1406geo NAT: G.SRT.A. 2 TOP: Compositions of Transformations

258	ANS: 4	PTS: 2	REF: 081514geo	NAT: G.SRT.A. 2
	TOP: Compositions of Transformations	KEY: grids		
259	ANS: 4	PTS: 2	REF: 061608geo	NAT: G.SRT.A. 2
	TOP: Compositions of Transformations	KEY: grids		
260	ANS: 4	PTS: 2	REF: 081609geo	NAT: G.SRT.A. 2
	TOP: Compositions of Transformations	KEY: grids		
261	ANS: 2	PTS: 2	REF: 011702geo	NAT: G.SRT.A. 2
	TOP: Compositions of Transformations	KEY: basic		

262 ANS: 1

NYSED accepts either (1) or (3) as a correct answer. Statement III is not true if A, B, A^{\prime} and B^{\prime} are collinear.
PTS: 2 REF: 061714geo NAT: G.SRT.A. 2 TOP: Compositions of Transformations
KEY: basic
263 ANS: 4
The measures of the angles of a triangle remain the same after all rotations because rotations are rigid motions which preserve angle measure.

PTS: 2 REF: fall1402geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
264 ANS:
$M=180-(47+57)=76$ Rotations do not change angle measurements.
PTS: 2 REF: 081629geo NAT: G.CO.B. 6 TOP: Properties of Transformations
PTS: 2
REF: 011611geo NAT: G.CO.B. 6
TOP: Properties of Transformations KEY: graphics
266 ANS: 1
$360-(82+104+121)=53$
PTS: 2 REF: 011801geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: basic
267 ANS: 4 PTS: 2
TOP: Identifying Transformations
REF: 061502geo NAT: G.CO.A. 2
KEY: basic
268 ANS: 3 PTS: 2 REF: 081502geo NAT: G.CO.A. 2
TOP: Identifying Transformations
269 ANS: $2 \quad$ PTS: 2
TOP: Identifying Transformations
KEY: basic
REF: 081513geo NAT: G.CO.A. 2
KEY: graphics
REF: 081602geo NAT: G.CO.A. 2
KEY: basic
REF: 061604geo NAT: G.CO.A. 2
KEY: graphics
REF: 061616geo NAT: G.CO.A. 2
KEY: graphics
REF: 011706geo NAT: G.CO.A. 2
KEY: basic

ANS:

$$
r_{x=-1} \text { Reflections are rigid motions that preserve distance, so } \triangle A B C \cong \triangle D E F \text {. }
$$

PTS: 4
REF: 061732geo NAT: G.CO.A. 2 TOP: Identifying Transformations
KEY: graphics
275
ANS: 4
PTS: 2
REF: 081702geo NAT: G.CO.A. 2
TOP: Identifying Transformations
KEY: basic
276 ANS: 4 PTS: 2
REF: 011803geo NAT: G.CO.A. 2
TOP: Identifying Transformations KEY: graphics
277
ANS: 3 PTS: 2
REF: 011605geo NAT: G.CO.A. 2
TOP: Analytical Representations of Transformations KEY: basic
278
ANS: $4 \quad$ PTS: $2 \quad$ REF: 011808geo \quad NAT: G.CO.A. 2
TOP: Analytical Representations of Transformations KEY: basic
279 ANS: 4 PTS: 2 REF: 061615geo NAT: G.SRT.C. 6
TOP: Trigonometric Ratios
280 ANS: 3 PTS: 2 REF: 011714geo NAT: G.SRT.C. 6
TOP: Trigonometric Ratios
281 ANS: $4 \quad$ PTS: 2
TOP: Cofunctions
282 ANS:
The acute angles in a right triangle are always complementary. The sine of any acute angle is equal to the cosine of its complement.

PTS: 2 REF: spr1407geo NAT: G.SRT.C. 7 TOP: Cofunctions
283 ANS: 1 PTS: 2 REF: 081606geo NAT: G.SRT.C. 7
TOP: Cofunctions
284 ANS:
$4 x-.07=2 x+.01 \operatorname{Sin} A$ is the ratio of the opposite side and the hypotenuse while $\cos B$ is the ratio of the adjacent

$$
\begin{aligned}
2 x & =0.8 \\
x & =0.4
\end{aligned}
$$

side and the hypotenuse. The side opposite angle A is the same side as the side adjacent to angle B. Therefore, $\sin A=\cos B$.

PTS: 2
REF: fall1407geo NAT: G.SRT.C. 7 TOP: Cofunctions
ANS: 1
TOP: Cofunctions
286
ANS: 4
PTS: 2
REF: 081504geo
NAT: G.SRT.C. 7
PTS: 2
REF: 011609geo NAT: G.SRT.C. 7
TOP: Cofunctions

287 ANS:
$73+R=90$ Equal cofunctions are complementary.

$$
R=17
$$

PTS: 2 REF: 061628geo NAT: G.SRT.C. 7 TOP: Cofunctions
ANS:
Yes, because 28° and 62° angles are complementary. The sine of an angle equals the cosine of its complement.
PTS: 2 REF: 011727geo NAT: G.SRT.C. 7 TOP: Cofunctions
289 ANS: 3 PTS: 2 REF: 061703geo NAT: G.SRT.C. 7
TOP: Cofunctions
290 ANS: 4
$40-x+3 x=90$

$$
2 x=50
$$

$$
x=25
$$

PTS: 2 REF: 081721geo NAT: G.SRT.C. 7 TOP: Cofunctions
291 ANS:
$\cos B$ increases because $\angle A$ and $\angle B$ are complementary and $\sin A=\cos B$.
PTS: 2 REF: 011827geo NAT: G.SRT.C. 7 TOP: Cofunctions
292 ANS:
x represents the distance between the lighthouse and the canoe at 5:00; y represents the distance between the lighthouse and the canoe at 5:05. $\tan 6=\frac{112-1.5}{x} \tan (49+6)=\frac{112-1.5}{y} \frac{1051.3-77.4}{5} \approx 195$

$$
x \approx 1051.3 \quad y \approx 77.4
$$

PTS: 4
REF: spr1409geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
KEY: advanced
293
ANS:
$\tan 7=\frac{125}{x} \quad \tan 16=\frac{125}{y} \quad 1018-436 \approx 582$

$$
x \approx 1018 \quad y \approx 436
$$

PTS: 4
REF: 081532geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced

294
ANS:

$$
M \approx 384
$$

$$
A \approx 229
$$

$$
4960+384=5344
$$

$$
5344-229=5115
$$

PTS: 6 REF: fall1413geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
ANS: 4
$\sin 70=\frac{x}{20}$

$$
x \approx 18.8
$$

PTS: 2 REF: 061611geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: without graphics
296
ANS: 3
$\tan 34=\frac{T}{20}$

$$
T \approx 13.5
$$

PTS: 2 REF: 061505geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: graphics
297
ANS:
$\sin 70=\frac{30}{L}$

$$
L \approx 32
$$

PTS: 2 REF: 011629geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: graphics
298 ANS:
$\tan 52.8=\frac{h}{x}$

$$
x \tan 52.8=x \tan 34.9+8 \tan 34.9 \tan 52.8 \approx \frac{h}{9} \quad 11.86+1.7 \approx 13.6
$$

$$
h=x \tan 52.8
$$

$$
x \tan 52.8-x \tan 34.9=8 \tan 34.9
$$

$$
x \approx 11.86
$$

$\tan 34.9=\frac{h}{x+8}$

$$
h=(x+8) \tan 34.9
$$

$$
x=\frac{8 \tan 34.9}{\tan 52.8-\tan 34.9}
$$

$$
x \approx 9
$$

PTS: 6 REF: 011636geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced

299
ANS:

$$
\begin{aligned}
\sin 75 & =\frac{15}{x} \\
x & =\frac{15}{\sin 75} \\
x & \approx 15.5
\end{aligned}
$$

PTS: 2 REF: 081631geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: graphics
ANS: 2
$\tan \theta=\frac{2.4}{x}$

$$
\begin{gathered}
\frac{3}{7}=\frac{2.4}{x} \\
x=5.6
\end{gathered}
$$

PTS: 2 REF: 011707geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
ANS: 3
$\cos 40=\frac{14}{x}$

$$
x \approx 18
$$

PTS: 2
ANS: 4
$\sin 71=\frac{x}{20}$
$x=20 \sin 71 \approx 19$
PTS: 2
REF: 061721geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: without graphics
ANS:

$$
\begin{aligned}
\tan 15 & =\frac{6250}{x} \quad \tan 52
\end{aligned}=\frac{6250}{y} 23325.3-4883=18442 \frac{18442 \mathrm{ft}}{1 \mathrm{~min}}\left(\frac{1 \mathrm{mi}}{5280 \mathrm{ft}}\right)\left(\frac{60 \mathrm{~min}}{1 \mathrm{~h}}\right) \approx 210
$$

PTS: 6 REF: 061736geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
304 ANS: 1
$\sin 32=\frac{x}{6.2}$

$$
x \approx 3.3
$$

PTS: 2 REF: 081719geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

305
ANS: 1
$\sin 32=\frac{O}{129.5}$ $O \approx 68.6$

PTS: 2 REF: 011804geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side 306

ANS:
$\cos 54=\frac{4.5}{m} \tan 54=\frac{h}{4.5}$

$$
m \approx 7.7 \quad h \approx 6.2
$$

PTS: 4 REF: 011834geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side ANS: 1
The man's height, 69 inches, is opposite to the angle of elevation, and the shadow length, 102 inches, is adjacent to the angle of elevation. Therefore, tangent must be used to find the angle of elevation. $\tan x=\frac{69}{102}$

$$
x \approx 34.1
$$

PTS: 2 REF: fall1401geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle ANS:
$\tan x=\frac{10}{4}$
$x \approx 68$
PTS: 2 REF: 061630geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
309
ANS:
$\sin x=\frac{4.5}{11.75}$

$$
x \approx 23
$$

PTS: 2 REF: 061528geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
310 ANS: 3
$\cos A=\frac{9}{14}$

$$
A \approx 50^{\circ}
$$

PTS: 2 REF: 011616geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
311 ANS:

$$
\left.\begin{array}{rl}
\tan x & =\frac{12}{75} \quad \tan y
\end{array}\right)=\frac{72}{75} \quad 43.83-9.09 \approx 34.7
$$

PTS: 4 REF: 081634geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

312 ANS: 1
$\cos S=\frac{60}{65}$

$$
S \approx 23
$$

PTS: 2 REF: 061713geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
313 ANS: 1
$\tan x=\frac{1}{12}$

$$
x \approx 4.76
$$

PTS: 2 REF: 081715geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
314 ANS:
$\cos W=\frac{6}{18}$
$W \approx 71$
PTS: 2 REF: 011831geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
315 ANS:
Translate $\triangle A B C$ along $\overline{C F}$ such that point C maps onto point F, resulting in image $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then reflect $\triangle A^{\prime} B^{\prime} C^{\prime}$ over $\overline{D F}$ such that $\triangle A^{\prime} B^{\prime} C^{\prime}$ maps onto $\triangle D E F$.
or
Reflect $\triangle A B C$ over the perpendicular bisector of $\overline{E B}$ such that $\triangle A B C$ maps onto $\triangle D E F$.
PTS: 2 REF: fall1408geo NAT: G.CO.B. 7 TOP: Triangle Congruency
316 ANS:
Reflections are rigid motions that preserve distance.
PTS: 2 REF: 061530geo NAT: G.CO.B. 7 TOP: Triangle Congruency
317 ANS:
It is given that point D is the image of point A after a reflection in line $C H$. It is given that $\overleftrightarrow{C H}$ is the perpendicular bisector of $\overline{B C E}$ at point C. Since a bisector divides a segment into two congruent segments at its midpoint, $\overline{B C} \cong \overline{E C}$. Point E is the image of point B after a reflection over the line $C H$, since points B and E are equidistant from point C and it is given that $\overleftrightarrow{C H}$ is perpendicular to $\overrightarrow{B E}$. Point C is on $\overleftrightarrow{C H}$, and therefore, point C maps to itself after the reflection over $\overleftrightarrow{C H}$. Since all three vertices of triangle $A B C$ map to all three vertices of triangle $D E C$ under the same line reflection, then $\triangle A B C \cong \triangle D E C$ because a line reflection is a rigid motion and triangles are congruent when one can be mapped onto the other using a sequence of rigid motions.

PTS: 6	REF: spr1414geo	NAT: G.CO.B. 7	TOP: Triangle Congruency
ANS: 3	PTS: 2	REF: 061524 geo	NAT: G.CO.B. 7
TOP: Triangle Congruency			

319 ANS:
The transformation is a rotation, which is a rigid motion.
PTS: 2 REF: 081530geo NAT: G.CO.B. 7 TOP: Triangle Congruency
320 ANS:
Translations preserve distance. If point D is mapped onto point A, point F would map onto point C.
$\triangle D E F \cong \triangle A B C$ as $\overline{A C} \cong \overline{D F}$ and points are collinear on line ℓ and a reflection preserves distance.
PTS: 4 REF: 081534geo NAT: G.CO.B. 7 TOP: Triangle Congruency
321 ANS:
Yes. The sequence of transformations consists of a reflection and a translation, which are isometries which preserve distance and congruency.

PTS: 2 REF: 011628geo NAT: G.CO.B. 7 TOP: Triangle Congruency
322 ANS:
No. Since $\overline{B C}=5$ and $\overline{S T}=\sqrt{18}$ are not congruent, the two triangles are not congruent. Since rigid motions preserve distance, there is no rigid motion that maps $\triangle A B C$ onto $\triangle R S T$.

PTS: 2 REF: 011830geo NAT: G.CO.B. 7 TOP: Triangle Congruency
323 ANS: 3
NYSED has stated that all students should be awarded credit regardless of their answer to this question.
PTS: 2 REF: 061722geo NAT: G.CO.B. 7 TOP: Triangle Congruency
324 ANS:
Yes. $\angle A \cong \angle X, \angle C \cong \angle Z, \overline{A C} \cong \overline{X Z}$ after a sequence of rigid motions which preserve distance and angle measure, so $\triangle A B C \cong \triangle X Y Z$ by ASA. $\overline{B C} \cong \overline{Y Z}$ by СРСТС.

PTS: 2 REF: 081730geo NAT: G.CO.B. 7 TOP: Triangle Congruency
325 ANS:
$\overline{L A} \cong \overline{D N}, \overline{C A} \cong \overline{C N}$, and $\overline{D A C} \perp \overline{L C N}$ (Given). $\angle L C A$ and $\angle D C N$ are right angles (Definition of perpendicular lines). $\triangle L A C$ and $\triangle D N C$ are right triangles (Definition of a right triangle). $\triangle L A C \cong \triangle D N C$ (HL).
$\triangle L A C$ will map onto $\triangle D N C$ after rotating $\triangle L A C$ counterclockwise 90° about point C such that point L maps onto point D.

PTS: 4 REF: spr1408geo NAT: G.CO.B. 8 TOP: Triangle Congruency
326 ANS: 1 PTS: 2 REF: 011703geo NAT: G.SRT.B. 5
TOP: Triangle Congruency
327 ANS:
As the sum of the measures of the angles of a triangle is $180^{\circ}, \mathrm{m} \angle A B C+\mathrm{m} \angle B C A+\mathrm{m} \angle C A B=180^{\circ}$. Each interior angle of the triangle and its exterior angle form a linear pair. Linear pairs are supplementary, so $\mathrm{m} \angle A B C+\mathrm{m} \angle F B C=180^{\circ}, \mathrm{m} \angle B C A+\mathrm{m} \angle D C A=180^{\circ}$, and $\mathrm{m} \angle C A B+\mathrm{m} \angle E A B=180^{\circ}$. By addition, the sum of these linear pairs is 540°. When the angle measures of the triangle are subtracted from this sum, the result is 360°, the sum of the exterior angles of the triangle.

PTS: 4 REF: fall1410geo NAT: G.CO.C. 10 TOP: Triangle Proofs

328
ANS: 2

PTS: 2 REF: 061619geo NAT: G.CO.C. 10 TOP: Triangle Proofs
329 ANS:

$\triangle X Y Z, \overline{X Y} \cong \overline{Z Y}$, and $\overline{Y W}$ bisects $\angle X Y Z$ (Given). $\triangle X Y Z$ is isosceles
(Definition of isosceles triangle). $\overline{Y W}$ is an altitude of $\triangle X Y Z$ (The angle bisector of the vertex of an isosceles triangle is also the altitude of that triangle). $\overline{Y W} \perp \overline{X Z}$ (Definition of altitude). $\angle Y W Z$ is a right angle (Definition of perpendicular lines).

PTS: 4 REF: spr1411geo NAT: G.CO.C. 10 TOP: Triangle Proofs
330 ANS:
(2) Euclid's Parallel Postulate; (3) Alternate interior angles formed by parallel lines and a transversal are congruent; (4) Angles forming a line are supplementary; (5) Substitution

PTS: 4 REF: 011633geo NAT: G.CO.C. 10 TOP: Triangle Proofs
331 ANS: 3

1) only proves AA; 2) need congruent legs for HL; 3) SAS; 4) only proves product of altitude and base is equal

PTS: 2
KEY: statements
332
ANS: 3
REF: 061607geo
NAT: G.SRT.B. 5 TOP: Triangle Proofs

TOP: Triangle Proofs
PTS: 2
REF: 081622geo NAT: G.SRT.B. 5
KEY: statements

ANS:
$\overline{R S}$ and $\overline{T V}$ bisect each other at point X; $\overline{T R}$ and $\overline{S V}$ are drawn (given); $\overline{T X} \cong \overline{X V}$ and $\overline{R X} \cong \overline{X S}$ (segment bisectors create two congruent segments); $\angle T X R \cong \angle V X S$ (vertical angles are congruent); $\triangle T X R \cong \triangle V X S$ (SAS); $\angle T \cong \angle V$ (CPCTC); $\overline{T R} \| \overline{S V}$ (a transversal that creates congruent alternate interior angles cuts parallel lines).

PTS: 4 REF: 061733geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: proof
ANS: 2 PTS: 2 REF: 061709geo NAT: G.SRT.B. 5
TOP: Triangle Proofs
KEY: statements
335 ANS:
Parallelogram $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E (given). $\overline{D C}\|\overline{A B} ; \overline{D A}\| \overline{C B}$ (opposite sides of a parallelogram are parallel). $\angle A C D \cong \angle C A B$ (alternate interior angles formed by parallel lines and a transversal are congruent).

PTS: 2 REF: 081528geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs
336 ANS:
Quadrilateral $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ that bisect each other, and $\angle 1 \cong \angle 2$ (given); quadrilateral $A B C D$ is a parallelogram (the diagonals of a parallelogram bisect each other); $\overline{A B} \| \overline{C D}$ (opposite sides of a parallelogram are parallel); $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$ (alternate interior angles are congruent); $\angle 2 \cong \angle 3$ and $\angle 3 \cong \angle 4$ (substitution); $\triangle A C D$ is an isosceles triangle (the base angles of an isosceles triangle are congruent); $\overline{A D} \cong \overline{D C}$ (the sides of an isosceles triangle are congruent); quadrilateral $A B C D$ is a rhombus (a rhombus has consecutive congruent sides); $\overline{A E} \perp \overline{B E}$ (the diagonals of a rhombus are perpendicular); $\angle B E A$ is a right angle (perpendicular lines form a right angle); $\triangle A E B$ is a right triangle (a right triangle has a right angle).

PTS: 6 REF: 061635geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs
337 ANS:
Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E (Given). $\overline{A D} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent). $\angle A E D \cong \angle C E B$ (Vertical angles are congruent). $\overline{B C} \| \overline{D A}$ (Definition of parallelogram). $\angle D B C \cong \angle B D A$ (Alternate interior angles are congruent). $\triangle A E D \cong \triangle C E B$ (AAS). 180° rotation of $\triangle A E D$ around point E.

PTS: 4 REF: 061533geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
338 ANS:
Parallelogram $A B C D$ with diagonal $\overline{A C}$ drawn (given). $\overline{A C} \cong \overline{A C}$ (reflexive property). $\overline{A D} \cong \overline{C B}$ and $\overline{B A} \cong \overline{D C}$ (opposite sides of a parallelogram are congruent). $\triangle A B C \cong \triangle C D A$ (SSS).

PTS: 2 REF: 011825geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs

ANS:
Parallelogram ANDR with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E (Given). $\overline{A N} \cong \overline{R D}$, $\overline{A R} \cong \overline{D N}$ (Opposite sides of a parallelogram are congruent). $A E=\frac{1}{2} A R$, $W D=\frac{1}{2} D N$, so $\overline{A E} \cong \overline{W D}$ (Definition of bisect and division property of equality). $\overline{A R} \| \overline{D N}$ (Opposite sides of a parallelogram are parallel). AWDE is a parallelogram (Definition of parallelogram). $R E=\frac{1}{2} A R, N W=\frac{1}{2} D N$, so $\overline{R E} \cong \overline{N W}$ (Definition of bisect and division property of equality). $\overline{E D} \cong \overline{A W}$ (Opposite sides of a parallelogram are congruent). $\triangle A N W \cong \triangle D R E$ (SSS).

PTS: 6 REF: 011635geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
ANS:
Parallelogram $A B C D, \overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$ (given). $\angle B E C \cong \angle D F C$ (perpendicular lines form right angles, which are congruent). $\angle F C D \cong \angle B C E$ (reflexive property). $\triangle B E C \cong \triangle D F C$ (ASA). $\overline{B C} \cong \overline{C D}$ (CPCTC). $A B C D$ is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

PTS: 6 REF: 081535geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
341 ANS:
Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, and $\overline{B F}$ and $\overline{D E}$ are perpendicular to diagonal $\overline{A C}$ at points F and E (given). $\angle A E D$ and $\angle C F B$ are right angles (perpendicular lines form right angles). $\angle A E D \cong \angle C F B$ (All right angles are congruent). $A B C D$ is a parallelogram (A quadrilateral with one pair of sides congruent and parallel is a parallelogram). $\overline{A D} \| \overline{B C}$ (Opposite sides of a parallelogram are parallel). $\angle D A E \cong \angle B C F$ (Parallel lines cut by a transversal form congruent alternate interior angles). $\overline{D A} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent). $\triangle A D E \cong \triangle C B F$ (AAS). $\overline{A E} \cong \overline{C F}$ (СРСТС).

PTS: 6 REF: 011735geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs
342 ANS:
Isosceles trapezoid $A B C D, \angle C D E \cong \angle D C E, \overline{A E} \perp \overline{D E}$, and $\overline{B E} \perp \overline{C E}$ (given); $\overline{A D} \cong \overline{B C}$ (congruent legs of isosceles trapezoid); $\angle D E A$ and $\angle C E B$ are right angles (perpendicular lines form right angles); $\angle D E A \cong \angle C E B$ (all right angles are congruent); $\angle C D A \cong \angle D C B$ (base angles of an isosceles trapezoid are congruent);

$$
\begin{aligned}
& \angle C D A-\angle C D E \cong \angle D C B-\angle D C E \text { (subtraction postulate); } \triangle A D E \cong \triangle B C E \text { (AAS); } \overline{E A} \cong \overline{E B} \text { (CPCTC); } \\
& \angle E D A \cong \angle E C B
\end{aligned}
$$

$\triangle A E B$ is an isosceles triangle (an isosceles triangle has two congruent sides).
PTS: 6 REF: 081735geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs

ANS:
Circle O, secant $\overline{A C D}$, tangent $\overline{A B}$ (Given). Chords $\overline{B C}$ and $\overline{B D}$ are drawn (Auxiliary lines). $\angle A \cong \angle A$, $\overparen{B C} \cong \overparen{B C}$ (Reflexive property). $\mathrm{m} \angle B D C=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an inscribed angle is half the measure of the intercepted arc). $\mathrm{m} \angle C B A=\frac{1}{2} \mathrm{~m} \overparen{B C}$ (The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc). $\angle B D C \cong \angle C B A$ (Angles equal to half of the same arc are congruent).
$\triangle A B C \sim \triangle A D B(\mathrm{AA}) . \frac{A B}{A C}=\frac{A D}{A B}$ (Corresponding sides of similar triangles are proportional). $A C \cdot A D=A B^{2}$ (In a proportion, the product of the means equals the product of the extremes).

PTS: 6 REF: spr1413geo NAT: G.SRT.B. 5 TOP: Circle Proofs
ANS:
Circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E (Given); Chords $\overline{C B}$ and $\overline{A D}$ are drawn (auxiliary lines drawn); $\angle C E B \cong \angle A E D$ (vertical angles); $\angle C \cong \angle A$ (Inscribed angles that intercept the same arc are congruent);
$\triangle B C E \sim \triangle D A E$ (AA) ; $\frac{A E}{C E}=\frac{E D}{E B}$ (Corresponding sides of similar triangles are proportional);
$A E \cdot E B=C E \cdot E D$ (The product of the means equals the product of the extremes).

PTS: 6
REF: 081635geo NAT: G.SRT.B. 5 TOP: Circle Proofs
345 ANS:
Circle O, tangent $\overline{E C}$ to diameter $\overline{A C}$, chord $\overline{B C} \|$ secant $\overline{A D E}$, and chord $\overline{A B}$ (given); $\angle B$ is a right angle (an angle inscribed in a semi-circle is a right angle); $\overleftrightarrow{E C} \perp \overline{O C}$ (a radius drawn to a point of tangency is perpendicular to the tangent); $\angle E C A$ is a right angle (perpendicular lines form right angles); $\angle B \cong \angle E C A$ (all right angles are congruent); $\angle B C A \cong \angle C A E$ (the transversal of parallel lines creates congruent alternate interior angles); $\triangle A B C \sim \triangle E C A(\mathrm{AA}) ; \frac{B C}{C A}=\frac{A B}{E C}$ (Corresponding sides of similar triangles are in proportion).

PTS: 4 REF: 081733geo NAT: G.SRT.B. 5 TOP: Circle Proofs
ANS:
Parallelogram $A B C D, \overline{E F G}$, and diagonal $\overline{D F B}$ (given); $\angle D F E \cong \angle B F G$ (vertical angles); $\overline{A D} \| \overline{C B}$ (opposite sides of a parallelogram are parallel); $\angle E D F \cong \angle G B F$ (alternate interior angles are congruent); $\triangle D E F \sim \triangle B G F$ (AA).

PTS: 4 REF: 061633geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
347 ANS:
A dilation of $\frac{5}{2}$ about the origin. Dilations preserve angle measure, so the triangles are similar by AA.

PTS: 4 REF: 061634geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
ANS:
$\overline{G I}$ is parallel to $\overline{N T}$, and $\overline{I N}$ intersects at A (given); $\angle I \cong \angle N, \angle G \cong \angle T$ (paralleling lines cut by a transversal form congruent alternate interior angles); $\triangle G I A \sim \triangle T N A(A A)$.

PTS: 2 REF: 011729geo NAT: G.SRT.A. 3 TOP: Similarity Proofs

349 ANS: 4
$\frac{36}{45} \neq \frac{15}{18}$
$\frac{4}{5} \neq \frac{5}{6}$
PTS: 2
REF: 081709geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
ANS:

Circle A can be mapped onto circle B by first translating circle A along vector $\overline{A B}$ such that A maps onto B, and then dilating circle A, centered at A, by a scale factor of $\frac{5}{3}$. Since there exists a sequence of transformations that maps circle A onto circle B, circle A is similar to circle B.

PTS: 2
REF: spr1404geo NAT: G.C.A. 1 TOP: Similarity Proofs

