Algebra I Regents Exam 0123
www.jmap.org
0123AI
1 When the expression $2 x(x-4)-3(x+5)$ is written in simplest form, the result is

1) $2 x^{2}-11 x-15$
2) $2 x^{2}-11 x+5$
3) $2 x^{2}-3 x-19$
4) $2 x^{2}-3 x+1$

2 The point $(3, w)$ is on the graph of $y=2 x+7$. What is the value of w ?

1) -2
2) -4
3) 10
4) 13

3 Students were asked to write $2 x^{3}+3 x+4 x^{2}+1$ in standard form. Four student responses are shown below.
Alexa: $4 x^{2}+3 x+2 x^{3}+1$
Carol: $2 x^{3}+3 x+4 x^{2}+1$
Ryan: $2 x^{3}+4 x^{2}+3 x+1$
Eric: $\quad 1+2 x^{3}+3 x+4 x^{2}$
Which student's response is correct?

1) Alexa
2) Ryan
3) Carol
4) Eric

4 Given $f(x)=-3 x^{2}+10$, what is the value of $f(-2)$?

1) -26
2) -2
3) 22
4) 46

5 Which relation is a function?

1) $\{(1,3),(2,1),(3,1),(4,7)\}$
2)

Input	Output
-6	-2
-4	2
7	3
7	5

3)

4)

6 What is the value of the third quartile in the box plot shown below?

1) 18
2) 22
3) 36
4) 46

7 What is the solution to $2+3(2 a+1)=3(a+2)$?

1) $\frac{1}{7}$
2) $\frac{1}{3}$
3) $-\frac{3}{7}$
4) $-\frac{1}{3}$

8 One Saturday afternoon, three friends decided to keep track of the number of text messages they received each hour from 8 a .m. to noon. The results are shown below.
Emily said that the number of messages she received increased by 8 each hour.
Jessica said that the number of messages she received doubled every hour.
Chris said that he received 3 messages the first hour, 10 the second hour, none the third hour, and 15 the last hour. Which of the friends' responses best classifies the number of messages they received each hour as a linear function?

1) Emily, only
2) Emily and Chris
3) Jessica, only
4) Jessica and Chris

9 Which expression is equivalent to $(x+4)^{2}(x+4)^{3}$?

1) $(x+4)^{6}$
2) $(x+4)^{5}$
3) $\left(x^{2}+16\right)^{6}$
4) $\left(x^{2}+16\right)^{5}$

10 Caitlin graphs the function $f(x)=a x^{2}$, where a is a positive integer. If Caitlin multiplies a by -2 , when compared to $f(x)$, the new graph will become

1) narrower and open downward
2) narrower and open upward
3) wider and open downward
4) wider and open upward

11 Sunny purchases a new car for $\$ 29,873$. The car depreciates 20% annually. Which expression can be used to determine the value of the car after t years?

1) $29,873(.20)^{t}$
2) $29,873(20)^{t}$
3) $29,873(1-.20)^{t}$
4) $29,873(1+.20)^{t}$

12 If $f(x)=x^{2}+2 x+1$ and $g(x)=7 x-5$, for which values of x is $f(x)=g(x)$?

1) -1 and 6
2) -3 and -2
3) -6 and -1
4) 2 and 3

13 Skyler mows lawns in the summer. The function $f(x)$ is used to model the amount of money earned, where x is the number of lawns completely mowed. A reasonable domain for this function would be

1) real numbers
2) irrational numbers
3) rational numbers
4) natural numbers

14 Which expression is equivalent to $2 x^{2}+8 x-10$?

1) $2(x-1)(x+5)$
2) $2(x+1)(x-5)$
3) $2(x-1)(x-5)$
4) $2(x+1)(x+5)$

15 Ian throws a ball up in the air and lets it fall to the ground. The height of the ball, $h(t)$, is modeled by the equation $h(t)=-16 t^{2}+6 t+3$, with $h(t)$ measured in feet, and time, t, measured in seconds. The number 3 in $h(t)$ represents

1) the maximum height of the ball
2) the number of seconds it takes for the ball to reach the ground
3) the height from which the ball is thrown
4) the number of seconds it takes for the ball to reach its maximum height

16 Thirty-two teams are participating in a basketball tournament. Only the winning teams in each round advance to the next round, as shown in the table below.

Number of Rounds Completed, x	0	1	2	3	4	5
Number of Teams Remaining, $f(x)$	32	16	8	4	2	1

Which function type best models the relationship between the number of rounds completed and the number of teams remaining?

1) absolute value
2) linear
3) exponential
4) quadratic

17 In a geometric sequence, the first term is 4 and the common ratio is -3 . The fifth term of this sequence is

1) 324
2) 108
3) -108
4) -324

18 The amount of energy, Q, in joules, needed to raise the temperature of m grams of a substance is given by the formula $Q=m C\left(T_{f}-T_{i}\right)$, where C is the specific heat capacity of the substance. If its initial temperature is T_{i}, an equation to find its final temperature, T_{f}, is

1) $T_{f}=\frac{Q}{m C}-T_{i}$
2) $T_{f}=\frac{Q}{m C}+T_{i}$
3) $T_{f}=\frac{T_{i}+Q}{m C}$
4) $T_{f}=\frac{Q-m C}{T_{i}}$

19 When using the method of completing the square, which equation is equivalent to $x^{2}-12 x-10=0$?

1) $(x+6)^{2}=-26$
2) $(x+6)^{2}=46$
3) $(x-6)^{2}=-26$
4) $(x-6)^{2}=46$

20 Which quadratic function has the smallest minimum value?

1) $f(x)=6 x^{2}+5 x-2$
2) $g(x)=6(x-2)^{2}-2$

x	$h(x)$
0	6
1	2
2	0
3	0
4	2
5	6

4)

21 Which representation yields the same outcome as the sequence defined recursively below?

$$
a_{1}=3
$$

$$
a_{n}=-4+a_{n-1}
$$

1) $3,7,11,15,19, \ldots$
2) $3,-1,-5,-9,-13, \ldots$
3) $a_{n}=4 n-1$
4) $a_{n}=4-n$

22 If the zeros of the function $g(x)$ are $\{-3,0,4\}$, which function could represent $g(x)$?

1) $g(x)=(x+3)(x-4)$
2) $g(x)=(x-3)(x+4)$
3) $g(x)=x(x+3)(x-4)$
4) $g(x)=x(x-3)(x+4)$

23 Morgan read that a snail moves about 72 feet per day. He performs the calculation $\frac{72 \text { feet }}{1 \text { day }} \bullet \frac{1 \text { day }}{24 \text { hours }} \bullet \frac{1 \text { hour }}{60 \text { minutes }} \bullet \frac{12 \text { inches }}{1 \text { foot }}$ to convert this rate to different units. What are the units for the converted rate?

1) hours/inch
2) inches/hour
3) minutes/inch
4) inches/minute

24 During summer vacation, Ben decides to sell hot dogs and pretzels on a food cart in Manhattan. It costs Ben $\$ 0.50$ for each hot dog and $\$ 0.40$ for each pretzel. He has only $\$ 100$ to spend each day on hot dogs and pretzels. He wants to sell at least 200 items each day. If h is the number of hot dogs and p is the number of pretzels, which inequality would be part of a system of inequalities used to determine the total number of hot dogs and pretzels Ben can sell?

1) $h+p \leq 200$
2) $h+p \geq 200$
3) $0.50 h+0.40 p \geq 200$
4) $0.50 h+0.40 p \leq 200$

25 Graph the function $g(x)=\sqrt{x+3}$ on the set of axes below.

26 The sixth-grade classes at West Road Elementary School were asked to vote on the location of their class trip. The results are shown in the table below.

	Playland	Splashdown	Fun Central
Boys	38	53	25
Girls	39	46	37

Determine, to the nearest percent, the percentage of girls who voted for Splashdown.

27 Solve the inequality $-\frac{2}{3} x+6>-12$ algebraically for x.

28 Determine the common difference of the arithmetic sequence in which $a_{1}=3$ and $a_{4}=15$.

29 Given: $A=\sqrt{363}$ and $B=\sqrt{27}$
Explain why $A+B$ is irrational. Explain why $A \bullet B$ is rational.

30 Use the quadratic formula to solve $x^{2}-4 x+1=0$ for x. Round the solutions to the nearest hundredth.

31 Factor completely: $4 x^{3}-49 x$

32 The function g is defined as

$$
g(x)=\left\{\begin{array}{l}
|x+3|, x<-2 \\
x^{2}+1,-2 \leq x \leq 2
\end{array}\right.
$$

On the set of axes below, graph $g(x)$.

33 Anessa is studying the changes in population in a town. The graph below shows the population over 50 years.

State the entire interval during which the population remained constant. State the maximum population of the town over the 50 -year period. Determine the average rate of change from year 30 to year 40 . Explain what your average rate of change means from year 30 to year 40 in the context of the problem.

34 The table below shows the number of math classes missed during a school year for nine students, and their final exam scores.

Number of Classes Missed (x)	2	10	3	22	15	2	20	18	9
Final Exam Score (y)	99	72	90	35	60	80	40	43	75

Write the linear regression equation for this data set. Round all values to the nearest hundredth. State the correlation coefficient for your linear regression. Round your answer to the nearest hundredth. State what the correlation coefficient indicates about the linear fit of the data.

35 A fence was installed around the edge of a rectangular garden. The length, l, of the fence was 5 feet less than 3 times its width, w. The amount of fencing used was 90 feet. Write a system of equations or write an equation using one variable that models this situation. Determine algebraically the dimensions, in feet, of the garden.

36 Given: $3 y-9 \leq 12$

$$
y<-2 x-4
$$

Graph the system of inequalities on the set of axes below.

State the coordinates of a point that satisfies both inequalities. Justify your answer.

37 Aidan and his sister Ella are having a race. Aidan runs at a rate of 10 feet per second. Ella runs at a rate of 6 feet per second. Since Ella is younger, Aidan is letting her begin 30 feet ahead of the starting line. Let y represent the distance from the starting line and x represent the time elapsed, in seconds. Write an equation to model the distance Aidan traveled. Write an equation to model the distance Ella traveled. On the set of axes below, graph your equations.

Exactly how many seconds does it take Aidan to catch up to Ella? Justify your answer.

0123AI

Answer Section
1 ANS: 1
$2 x^{2}-8 x-3 x-15$
$2 x^{2}-11 x-15$
PTS: 2 REF: 012301ai NAT: A.APR.A. 1 TOP: Operations with Polynomials
KEY: subtraction
2 ANS: 4
$w=2(3)+7=13$
PTS: 2 REF: 012302ai NAT: A.REI.D. 10 TOP: Identifying Solutions
3 ANS: 3 PTS: 2 REF: 012303ai NAT: A.SSE.A. 1
TOP: Modeling Expressions
4 ANS: 2
$f(-2)=-3(-2)^{2}+10=-12+10=-2$
PTS: 2 REF: 012304ai NAT: F.IF.A. 2 TOP: Functional Notation
5 ANS: 1 PTS: 2 REF: 012305ai NAT: F.IF.A. 1
TOP: Defining Functions KEY: mixed
6 ANS: 3
The value of the third quartile is the last vertical line of the box.
PTS: 2 REF: 012306ai NAT: S.ID.A. 1 TOP: Box Plots
KEY: interpret
7 ANS: 2

$$
\begin{aligned}
2+3(2 a+1) & =3(a+2) \\
2+6 a+3 & =3 a+6 \\
3 a+5 & =6 \\
3 a & =1 \\
a & =\frac{1}{3}
\end{aligned}
$$

PTS: 2 REF. 012307
8 ANS: $1 \quad$ PTS: 2
NAT: A.REI.B. 3 TOP: Solving Linear Equations
TOP: Families of Functions
9 ANS: $2 \quad$ PTS: 2
TOP: Operations with Polynomials
REF: 012309ai NAT: A.APR.A. 1
0 ANS: $1 \quad$ PTS: 2
TOP: Graphing Polynomial Functions
11 ANS: $3 \quad$ PTS: 2
TOP: Modeling Exponential Functions

12 ANS: 4

$$
\begin{aligned}
x^{2}+2 x+1 & =7 x-5 \\
x^{2}-5 x+6 & =0 \\
(x-3)(x-2) & =0 \\
x & =3,2
\end{aligned}
$$

PTS: 2 REF: 012312ai NAT: A.REI.D. 11 TOP: Quadratic-Linear Systems
13 ANS: 4 PTS: 2 REF: 012313ai NAT: F.IF.B. 5
TOP: Domain and Range
14 ANS: $1 \quad$ PTS: 2
REF: 012314ai NAT: A.SSE.A. 2
TOP: Factoring Polynomials
15 ANS: 2 PTS: 2
REF: 012315ai NAT: F.IF.B. 4
TOP: Graphing Quadratic Functions
16 ANS: 2 PTS: 2
REF: 012316ai NAT: F.LE.A. 1
TOP: Families of Functions
17 ANS: 1
$a_{5}=4(-3)^{5-1}=324$
PTS: 2 REF: 012317ai NAT: F.IF.A. 3 TOP: Sequences
KEY: explicit
18 ANS: 2

$$
\begin{aligned}
\frac{Q}{m C} & =T_{f}-T_{i} \\
\frac{Q}{m C}+T_{i} & =T_{f}
\end{aligned}
$$

PTS: 2 REF: 012318ai NAT: A.CED.A. 4 TOP: Transforming Formulas
19 ANS: 4
$x^{2}-12 x+36=10+36$

$$
(x-6)^{2}=46
$$

PTS: 2 REF: 012319ai NAT: A.REI.B. 4 TOP: Solving Quadratics KEY: completing the square
20 ANS: 1

1) $f\left(\frac{-5}{2(6)}\right) \approx-3.04$; 2) $g(2)=-2$; 3) $h(2.5)=(2.5-2)(2.5-3)=-0.25$; 4) 0

PTS: 2 REF: 012320ai NAT: F.IF.C. 9 TOP: Comparing Functions
21 ANS: 2
$d=-4$
PTS: 2
REF: 012321ai NAT: F.LE.A. 2 TOP: Sequences
KEY: recursive

22	ANS: 3	PTS: 2	REF: 012322ai	NAT: A.APR.B.3
	TOP: Zeros of Polynomials			
23	ANS: 4	REF: 012323ai	NAT: N.Q.A. 1	
	TOP: Conversions			
24	ANS: 2	PTS: 2	REF: 012324ai	NAT: A.CED.A. 3
	TOP: Modeling Systems of Linear Inequalities			

25 ANS:

PTS: 2 REF: 012325ai NAT: F.IF.C. 7 TOP: Graphing Root Functions
26
ANS:
$\frac{46}{39+46+37} \approx 38 \%$
PTS: 2
REF: 012326ai
NAT: S.ID.B. 5
TOP: Frequency Tables
KEY: two-way
27
$-3\left(-\frac{2}{3} x+6>-12\right)$
$2 x-18<36$
$2 x<54$
$x<27$
PTS: 2
REF: 012327ai
NAT: A.REI.B. 3
ANS:
$\frac{15-3}{4-1}=\frac{12}{3}=4$
PTS: 2
REF: 012328ai
NAT: F.IF.A. 3 TOP: Sequences
KEY: difference or ratio
29
ANS:
$A+B$ is irrational because $14 \sqrt{3}$ cannot be written as the ratio of two integers. $A \bullet B$ is rational because 99 can be written as the ratio of two integers.

PTS: 2
REF: 012329ai
NAT: N.RN.B. 3
TOP: Operations with Radicals
KEY: classify

30 ANS:
$x=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(1)}}{2(1)} \approx 0.27,3.73$
PTS: 2 REF: 012330ai NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: quadratic formula
31 ANS:
$4 x^{3}-49 x=x\left(4 x^{2}-49\right)=x(2 x+7)(2 x-7)$
PTS: 2 REF: 012331ai NAT: A.SSE.A. 2
TOP: Factoring the Difference of Perfect Squares KEY: higher power
32 ANS:

PTS: 2 REF: 012332ai NAT: F.IF.C. 7 TOP: Graphing Piecewise-Defined Functions
33 ANS:
20-30; 10000; $\frac{4000-10000}{40-30}=-600$. The population decreases by 600 each year.
PTS: 4 REF: 012333ai NAT: F.IF.B. 4 TOP: Relating Graphs to Events
34 ANS:
$y=-2.81 x+97.55,-0.97$, strong
PTS: 4 REF: 012334ai NAT: S.ID.B. 6 TOP: Regression
KEY: linear with correlation coefficient
35 ANS:

$$
\begin{aligned}
& l=3 w-52(3 w-5)+2 w=90 \quad l=3(12.5)-5 \\
& 2 l+2 w=90 \\
& 6 w-10+2 w=90=37.5-5 \\
& 8 w=100=32.5 \\
& w=12.5
\end{aligned}
$$

PTS: 4
REF: 012335ai
NAT: A.CED.A. 3 TOP: Modeling Linear Systems

36 ANS:

$(-3,0)$ falls within the double-shaded area.
PTS: 4
REF: 012336ai
NAT: A.REI.D. 12 TOP: Graphing Systems of Linear Inequalities
37 ANS:
$y=10 x$
$y=6 x+30$

$$
\begin{aligned}
10 x & =6 x+30 \\
4 x & =30 \\
x & =7.5
\end{aligned}
$$

PTS: 6
REF: 012337ai
NAT: A.CED. 2
TOP: Speed

