0814AI

1 Which statement is not always true?

1) The product of two irrational numbers is irrational.
2) The product of two rational numbers is rational.
3) The sum of two rational numbers is rational.
4) The sum of a rational number and an irrational number is irrational.

2 A satellite television company charges a one-time installation fee and a monthly service charge. The total cost is modeled by the function $y=40+90 x$. Which statement represents the meaning of each part of the function?

1) y is the total cost, x is the number of months of service, $\$ 90$ is the installation fee, and $\$ 40$ is the service charge per month.
2) y is the total cost, x is the number of months of service, $\$ 40$ is the installation fee, and $\$ 90$ is the service charge per month.
3) x is the total cost, y is the number of months of service, $\$ 40$ is the installation fee, and $\$ 90$ is the service charge per month.
4) x is the total cost, y is the number of months of service, $\$ 90$ is the installation fee, and $\$ 40$ is the service charge per month.

3 If $4 x^{2}-100=0$, the roots of the equation are

1) -25 and 25
2) -25 , only
3) -5 and 5
4) -5 , only

4 Isaiah collects data from two different companies, each with four employees. The results of the study, based on each worker's age and salary, are listed in the tables below.

Company 1	
Worker's Age in Years	Salary in Dollars
25	30,000
27	32,000
28	35,000
33	38,000

Company 2	
Worker's Age in Years	Salary in Dollars
25	29,000
28	35,500
29	37,000
31	65,000

Which statement is true about these data?

1) The median salaries in both companies are greater than $\$ 37,000$.
2) The salary range in company 2 is greater than the salary range in company 1 .
3) The mean salary in company 1 is greater than the mean salary in company 2.
4) The mean age of workers at company 1 is greater than the mean age of workers at company 2.

5 Which point is not on the graph represented by $y=x^{2}+3 x-6$?

1) $(-6,12)$
2) $(-4,-2)$
3) $(2,4)$
4) $(3,-6)$

6 A company produces x units of a product per month, where $C(x)$ represents the total cost and $R(x)$ represents the total revenue for the month. The functions are modeled by $C(x)=300 x+250$ and $R(x)=-0.5 x^{2}+800 x-100$. The profit is the difference between revenue and cost where $P(x)=R(x)-C(x)$. What is the total profit, $P(x)$, for the month?

1) $P(x)=-0.5 x^{2}+500 x-150$
2) $\quad P(x)=-0.5 x^{2}+500 x-350$
3) $P(x)=-0.5 x^{2}-500 x+350$
4) $P(x)=-0.5 x^{2}+500 x+350$

Algebra I Regents Exam 0814
www.jmap.org
7 What is one point that lies in the solution set of the system of inequalities graphed below?

1) $(7,0)$
2) $(3,0)$
3) $(0,7)$
4) $(-3,5)$

8 The value of the x-intercept for the graph of $4 x-5 y=40$ is

1) 10
2) $\frac{4}{5}$
3) $-\frac{4}{5}$
4) -8

9 Sam and Jeremy have ages that are consecutive odd integers. The product of their ages is 783 . Which equation could be used to find Jeremy's age, j, if he is the younger man?

1) $j^{2}+2=783$
2) $j^{2}-2=783$
3) $j^{2}+2 j=783$
4) $j^{2}-2 j=783$

10 A population that initially has 20 birds approximately doubles every 10 years. Which graph represents this population growth?
 Number of Years

3)

1)

11 Let f be a function such that $f(x)=2 x-4$ is defined on the domain $2 \leq x \leq 6$. The range of this function is

1) $0 \leq y \leq 8$
2) $0 \leq y<\infty$
3) $2 \leq y \leq 6$
4) $-\infty<y<\infty$

12 Which situation could be modeled by using a linear function?

1) a bank account balance that grows at a rate of 5% per year, compounded annually
2) a population of bacteria that doubles every 4.5 hours
3) the cost of cell phone service that charges a base amount plus 20 cents per minute
4) the concentration of medicine in a person's body that decays by a factor of one-third every hour

Algebra I Regents Exam 0814

www.jmap.org
13 Which graph shows a line where each value of y is three more than half of x ?
1)

3)

2)

4)

14 The table below shows the average diameter of a pupil in a person's eye as he or she grows older.

Age (years)	Average Pupil Diameter (mm)
20	4.7
30	4.3
40	3.9
50	3.5
60	3.1
70	2.7
80	2.3

What is the average rate of change, in millimeters per year, of a person's pupil diameter from age 20 to age 80 ?

1) 2.4
2) 0.04
3) -2.4
4) -0.04

15 Which expression is equivalent to $x^{4}-12 x^{2}+36$?

1) $\left(x^{2}-6\right)\left(x^{2}-6\right)$
2) $\left(x^{2}+6\right)\left(x^{2}+6\right)$
3) $\left(6-x^{2}\right)\left(6+x^{2}\right)$
4) $\left(x^{2}+6\right)\left(x^{2}-6\right)$

16 The third term in an arithmetic sequence is 10 and the fifth term is 26 . If the first term is a_{1}, which is an equation for the nth term of this sequence?

1) $a_{n}=8 n+10$
2) $a_{n}=8 n-14$
3) $a_{n}=16 n+10$
4) $a_{n}=16 n-38$

17 The graph of the equation $y=a x^{2}$ is shown below.

If a is multiplied by $-\frac{1}{2}$, the graph of the new equation is

1) wider and opens downward
2) narrower and opens downward
3) wider and opens upward
4) narrower and opens upward

18 The zeros of the function $f(x)=(x+2)^{2}-25$ are

1) -2 and 5
2) -5 and 2
3) -3 and 7
4) -7 and 3

19 During the 2010 season, football player McGee's earnings, m, were 0.005 million dollars more than those of his teammate Fitzpatrick's earnings, f. The two players earned a total of 3.95 million dollars. Which system of equations could be used to determine the amount each player earned, in millions of dollars?

1) $m+f=3.95$
2) $f-3.95=m$
$m+0.005=f$
3) $m-3.95=f$
$f+0.005=m$
4) $\begin{aligned} & m+0.005=f \\ & m+f=3.95 \\ & f+0.005=m\end{aligned}$

20 What is the value of x in the equation $\frac{x-2}{3}+\frac{1}{6}=\frac{5}{6}$?

1) 4
2) 6
3) 8
4) 11

Algebra I Regents Exam 0814

www.jmap.org
21 The table below shows the number of grams of carbohydrates, x, and the number of Calories, y, of six different foods.

Carbohydrates (x)	Calories (y)
8	120
9.5	138
10	147
6	88
7	108
4	62

Which equation best represents the line of best fit for this set of data?

1) $y=15 x$
2) $y=0.07 x$
3) $y=0.1 x-0.4$
4) $y=14.1 x+5.8$

22 A function is graphed on the set of axes below.

Which function is related to the graph?

1) $f(x)=\left\{\begin{array}{l}x^{2}, x<1 \\ x-2, x>1\end{array}\right.$
2) $f(x)=\left\{\begin{array}{l}x^{2}, x<1 \\ \frac{1}{2} x+\frac{1}{2}, x>1\end{array}\right.$
3) $f(x)=\left\{\begin{array}{l}x^{2}, x<1 \\ 2 x-7, x>1\end{array}\right.$
4) $f(x)=\left\{\begin{array}{l}x^{2}, x<1 \\ \frac{3}{2} x-\frac{9}{2}, x>1\end{array}\right.$

23 The function $h(t)=-16 t^{2}+144$ represents the height, $h(t)$, in feet, of an object from the ground at t seconds after it is dropped. A realistic domain for this function is

1) $-3 \leq t \leq 3$
2) $0 \leq h(t) \leq 144$
3) $0 \leq t \leq 3$
4) all real numbers

24 If $f(1)=3$ and $f(n)=-2 f(n-1)+1$, then $f(5)=$

1) -5
2) 11
3) 21
4) 43

25 In the equation $x^{2}+10 x+24=(x+a)(x+b), b$ is an integer. Find algebraically all possible values of b.

Rhonda deposited $\$ 3000$ in an account in the Merrick National Bank, earning 4.2\% interest, compounded annually. She made no deposits or withdrawals. Write an equation that can be used to find B, her account balance after t years.

27 Guy and Jim work at a furniture store. Guy is paid $\$ 185$ per week plus 3% of his total sales in dollars, x, which can be represented by $g(x)=185+0.03 x$. Jim is paid $\$ 275$ per week plus 2.5% of his total sales in dollars, x, which can be represented by $f(x)=275+0.025 x$. Determine the value of x, in dollars, that will make their weekly pay the same.

Express the product of $2 x^{2}+7 x-10$ and $x+5$ in standard form.

29 Let f be the function represented by the graph below.

Let g be a function such that $g(x)=-\frac{1}{2} x^{2}+4 x+3$. Determine which function has the larger maximum value. Justify your answer.

30 Solve the inequality below to determine and state the smallest possible value for x in the solution set.

$$
3(x+3) \leq 5 x-3
$$

31 The table below represents the residuals for a line of best fit.

\boldsymbol{x}	2	3	3	4	6	7	8	9	9	10
Residual	2	1	-1	-2	-3	-2	-1	2	0	3

Plot these residuals on the set of axes below.

Using the plot, assess the fit of the line for these residuals and justify your answer.

32 A student was given the equation $x^{2}+6 x-13=0$ to solve by completing the square. The first step that was written is shown below.

$$
x^{2}+6 x=13
$$

The next step in the student's process was $x^{2}+6 x+c=13+c$. State the value of c that creates a perfect square trinomial. Explain how the value of c is determined.

Algebra I Regents Exam 0814
www.jmap.org
33 On the axes below, graph $f(x)=|3 x|$.

If $g(x)=f(x)-2$, how is the graph of $f(x)$ translated to form the graph of $g(x)$? If $h(x)=f(x-4)$, how is the graph of $f(x)$ translated to form the graph of $h(x)$?

34 The formula for the area of a trapezoid is $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$. Express b_{1} in terms of A, h, and b_{2}. The area of a trapezoid is 60 square feet, its height is 6 ft , and one base is 12 ft . Find the number of feet in the other base.

Algebra I Regents Exam 0814
www.jmap.org
35 Let $f(x)=-2 x^{2}$ and $g(x)=2 x-4$. On the set of axes below, draw the graphs of $y=f(x)$ and $y=g(x)$.

Using this graph, determine and state all values of x for which $f(x)=g(x)$.

36 A school is building a rectangular soccer field that has an area of 6000 square yards. The soccer field must be 40 yards longer than its width. Determine algebraically the dimensions of the soccer field, in yards.

37 Edith babysits for x hours a week after school at a job that pays $\$ 4$ an hour. She has accepted a job that pays $\$ 8$ an hour as a library assistant working y hours a week. She will work both jobs. She is able to work no more than 15 hours a week, due to school commitments. Edith wants to earn at least $\$ 80$ a week, working a combination of both jobs. Write a system of inequalities that can be used to represent the situation. Graph these inequalities on the set of axes below.

Determine and state one combination of hours that will allow Edith to earn at least $\$ 80$ per week while working no more than 15 hours.

Answer Section

14 ANS: 4
$\frac{4.7-2.3}{20-80}=\frac{2.4}{-60}=-0.04$.
PTS: 2 REF: 081414ai NAT: F.IF.B. 6 TOP: Rate of Change
15 ANS: 1 PTS: 2 REF: 081415ai NAT: A.SSE.A. 2
TOP: Factoring Polynomials
KEY: higher power
16 ANS: 2 PTS: 2
REF: 081416ai NAT: F.LE.A. 2
TOP: Sequences KEY: explicit
17 ANS: 1 PTS: 2 REF: 081417ai NAT: F.BF.B. 3
TOP: Graphing Polynomial Functions
18 ANS: 4

$$
(x+2)^{2}-25=0
$$

$((x+2)+5))((x+2)-5))=0$ $x=-7,3$

PTS: 2 REF: 081418ai NAT: A.APR.B. 3 TOP: Zeros of Polynomials
19 ANS: 4 PTS: 2
REF: 081419ai NAT: A.CED.A. 3
TOP: Modeling Linear Systems
20 ANS: 1
$\frac{x-2}{3}=\frac{4}{6}$
$6 x-12=12$

$$
\begin{aligned}
6 x & =24 \\
x & =4
\end{aligned}
$$

PTS: 2 REF: 081420ai NAT: A.REI.B. 3 TOP: Solving Linear Equations
KEY: fractional expressions
21 ANS: 4 PTS: 2 REF: 081421ai NAT: S.ID.B. 6
TOP: Regression KEY: linear
22 ANS: 2 PTS: 2 REF: 081422ai NAT: F.IF.C. 7
TOP: Graphing Piecewise-Defined Functions
23 ANS: 2

$$
0=-16 t^{2}+144
$$

$$
16 t^{2}=144
$$

$$
t^{2}=9
$$

$$
t=3
$$

PTS: 2
REF: 081423ai
NAT: F.IF.B. 5 TOP: Domain and Range

24 ANS: 4
$f(1)=3 ; f(2)=-5 ; f(3)=11 ; f(4)=-21 ; f(5)=43$
PTS: 2 REF: 081424ai NAT: F.IF.A. 3 TOP: Sequences
KEY: recursive
25 ANS:
$x^{2}+10 x+24=(x+4)(x+6)=(x+6)(x+4) .6$ and 4
PTS: 2 REF: 081425ai NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: factoring
26 ANS:
$B=3000(1.042)^{t}$
PTS: 2 REF: 081426ai NAT: F.BF.A. 1 TOP: Modeling Exponential Functions
27 ANS:

$$
\begin{aligned}
185+0.03 x & =275+0.025 x \\
0.005 x & =90 \\
x & =18000
\end{aligned}
$$

PTS: 2 REF: 081427ai NAT: A.REI.C. 6 TOP: Solving Linear Systems
KEY: substitution
ANS:

$$
\begin{gathered}
\left(2 x^{2}+7 x-10\right)(x+5) \\
2 x^{3}+7 x^{2}-10 x+10 x^{2}+35 x-50 \\
2 x^{3}+17 x^{2}+25 x-50
\end{gathered}
$$

PTS: 2
REF: 081428ai
NAT: A.APR.A. 1 TOP: Operations with Polynomials
KEY: multiplication
29 ANS:
g. The maximum of f is 6 . For g, the maximum is 11. $x=\frac{-b}{2 a}=\frac{-4}{2\left(-\frac{1}{2}\right)}=\frac{-4}{-1}=4$

$$
y=-\frac{1}{2}(4)^{2}+4(4)+3=-8+16+3=11
$$

PTS: 2 REF: 081429ai NAT: F.IF.C. 9 TOP: Comparing Functions
30 ANS:
6. $3 x+9 \leq 5 x-3$
$12 \leq 2 x$
$6 \leq x$

PTS: 2 REF: 081430ai NAT: A.REI.B. 3 TOP: Interpreting Solutions

31 ANS:

The line is a poor fit because the residuals form a pattern.
PTS: 2
REF: 081431ai
NAT: S.ID.B. 6 TOP: Residuals
32 ANS:
Since $(x+p)^{2}=x^{2}+2 p x+p^{2}, p$ is half the coefficient of x, and the constant term is equal to $p^{2} \cdot\left(\frac{6}{2}\right)^{2}=9$
PTS: 2 REF: 081432ai NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: completing the square
33 ANS:

2 down. 4 right.
PTS: 4 REF: 081433ai NAT: F.BF.B. 3 TOP: Graphing Absolute Value Functions
34 ANS:
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right) b_{1}=\frac{2(60)}{6}-12=20-12=8$
$\frac{2 A}{h}=b_{1}+b_{2}$
$\frac{2 A}{h}-b_{2}=b_{1}$
PTS: 4 REF: 081434ai NAT: A.CED.A. 4 TOP: Transforming Formulas

35 ANS:

$$
x=-2,1
$$

PTS: 4
REF: 081435ai
NAT: A.REI.D. 11 TOP: Quadratic-Linear Systems
36 ANS:

$$
\begin{aligned}
w(w+40) & =6000 \\
w^{2}+40 w-6000 & =0 \\
(w+100)(w-60) & =0 \\
w & =60, l=100
\end{aligned}
$$

PTS: 4
REF: 081436ai
NAT: A.CED.A. 1 TOP: Geometric Applications of Quadratics
37 ANS:
$x+y \leq 15$

$4 x+8 y \geq 80$
PTS: 6
REF: 081437ai
NAT: A.CED.A. 3 TOP: Modeling Systems of Linear Inequalities

