0822AI

1 If $f(x)=\frac{3 x+4}{2}$, then $f(8)$ is

1) 21
2) 16
3) 14
4) 4

2 If $x \neq 0$, then the common ratio of the sequence $x, 2 x^{2}, 4 x^{3}, 8 x^{4}, 16 x^{5}, \ldots$ is

1) $2 x$
2) 2
3) x
4) $\frac{1}{2} x$

3 The expression $36 x^{2}-9$ is equivalent to

1) $(6 x-3)^{2}$
2) $(18 x-4.5)^{2}$
3) $(6 x+3)(6 x-3)$
4) $(18 x+4.5)(18 x-4.5)$

4 Given the relation $R=\{(-4,2),(3,6),(x, 8),(-1,4)\}$
Which value of x would make this relation a function?

1) -4
2) -1
3) 3
4) 0

5 If point $(K,-5)$ lies on the line whose equation is $3 x+y=7$, then the value of K is

1) -8
2) -4
3) 22
4) 4

6 The expression $\frac{1}{3} x\left(6 x^{2}-3 x+9\right)$ is equivalent to

1) $2 x^{2}-x+3$
2) $2 x^{2}+3 x+3$
3) $2 x^{3}-x^{2}+3 x$
4) $2 x^{3}+3 x^{2}+3 x$

7 The graphs below represent four polynomial functions. Which of these functions has zeros of 2 and -3 ?
1)

2)

3)

4)

8 What is the constant term of the polynomial $4 d+6+3 d^{2}$?

1) 6
2) 2
3) 3
4) 4

9 Emily was given $\$ 600$ for her high school graduation. She invested it in an account that earns 2.4% interest per year. If she does not make any deposits or withdrawals, which expression can be used to determine the amount of money that will be in the account after 4 years?

1) $600(1+0.24)^{4}$
2) $600(1-0.24)^{4}$
3) $600(1+0.024)^{4}$
4) $600(1-0.024)^{4}$

10 Different ways to represent data are shown below.

Which data representations have a median of 2 ?

1) I and II, only
2) II and III, only
3) I and III, only
4) I, II, and III

11 What would be the order of these quadratic functions when they are arranged from the narrowest graph to the widest graph?

$$
f(x)=-5 x^{2} \quad g(x)=0.5 x^{2} \quad h(x)=3 x^{2}
$$

1) $f(x), g(x), h(x)$
2) $h(x), f(x), g(x)$
3) $g(x), h(x), f(x)$
4) $f(x), h(x), g(x)$

12 At Berkeley Central High School, a survey was conducted to see if students preferred cheeseburgers, pizza, or hot dogs for lunch. The results of this survey are shown in the table below.

	Cheeseburgers	Pizza	Hot Dogs
Females	32	44	24
Males	36	30	34

Based on this survey, what percent of the students preferred pizza?

1) 30
2) 37
3) 44
4) 74

13 Which situation could be modeled by a linear function?

1) The value of a car depreciates by 7% annually.
2) A gym charges a $\$ 50$ initial fee and then $\$ 30$ monthly.
3) The number of bacteria in a lab doubles weekly.
4) The amount of money in a bank account increases by 0.1% monthly.

14 Which function has the smallest y-intercept value?

\mathbf{x}	$\mathbf{g (x)}$
-2	3
0	1
1	0
3	-2

3)

4) $f(x)=x^{2}+2 x-1$
2) $h(x)=\sqrt{x}-3$

15 When solving $x^{2}-10 x-13=0$ by completing the square, which equation is a step in the process?

1) $(x-5)^{2}=38$
2) $(x-5)^{2}=12$
3) $(x-10)^{2}=38$
4) $(x-10)^{2}=12$

16 When. $3 x^{2}+7 x-6+2 x^{3}$ is written in standard form, the leading coefficient is

1) 7
2) 2
3) 3
4) -6

17 Which of the equations below have the same solution?
I. $\quad 10(x-5)=-15$
II. $4+2(x-2)=9$
III. $\frac{1}{3} x=\frac{3}{2}$

1) I and II, only
2) II and III, only
3) I and III, only
4) I, II, and III

18 In an organism, the number of cells, $C(d)$, after d days can be represented by the function $C(d)=120 \bullet 2^{3 d}$. This function can also be expressed as

1) $C(d)=240^{3 d}$
2) $C(d)=960 \bullet 2^{d}$
3) $C(d)=120 \bullet 6^{d}$
4) $C(d)=120 \bullet 8^{d}$

19 In the process of solving the equation $10 x^{2}-12 x-16 x=6$, George wrote $2\left(5 x^{2}-14 x\right)=2(3)$, followed by $5 x^{2}-14 x=3$. Which properties justify George's process?
A. addition property of equality
B. division property of equality
C. commutative property of addition
D. distributive property

1) A and C
2) A and B
3) D and C
4) D and B

20 A sequence is defined recursively by

$$
\begin{gathered}
a_{1}=-2 \\
a_{n}=3 a_{n-1}+1
\end{gathered}
$$

What is the value of a_{4} ?

1) -41
2) -14
3) 22
4) 67

21 A swimmer set a world record in the women's 1500 -meter freestyle, finishing the race in 15.42 minutes. If 1 meter is approximately 3.281 feet, which set of calculations could be used to convert her speed to miles per hour?

1) $\frac{1500 \text { meters }}{15.42 \mathrm{~min}} \bullet \frac{60 \mathrm{~min}}{1 \text { hour }} \bullet \frac{1 \text { meter }}{3.281 \text { feet }} \bullet \frac{1 \text { mile }}{5280 \text { feet }}$
2) $\frac{1500 \text { meters }}{15.42 \text { min }} \bullet \frac{60 \mathrm{~min}}{1 \text { hour }} \bullet \frac{3.281 \text { feet }}{1 \text { meter }} \bullet \frac{1 \text { mile }}{5280 \text { feet }}$
3) $\frac{1500 \text { meters }}{15.42 \text { min }} \bullet \frac{3.281 \text { feet }}{1 \text { meter }} \bullet \frac{1 \text { mile }}{5280 \text { feet }}$
4) $\frac{1500 \text { meters }}{15.42 \mathrm{~min}} \bullet \frac{60 \mathrm{~min}}{1 \text { hour }} \bullet \frac{1 \text { mile }}{5280 \text { feet }}$

22 The diagram below shows the graph of $h(t)$, which models the height, in feet, of a rocket t seconds after it was shot into the air.

The domain of $h(t)$ is

1) $(0,4)$
2) $[0,4]$
3) $(0,64)$
4) $[0,64]$

23 The table below shows the time, in hours, spent by students on electronic devices and their math test scores. The data collected model a linear regression.

Time Spent on an Electronic Device (hours)	Math Test Score
3	85
1	99
4	81
0	98
3	90
7	65
5	78
2	90

What is the correlation coefficient, to the nearest hundredth, for these data?

1) -0.98
2) -0.95
3) 0.98
4) 0.95

24 The volume of a trapezoidal prism can be found using the formula $V=\frac{1}{2} a(b+c) h$. Which equation is correctly solved for b ?

1) $b=\frac{V}{2 a h}+c$
2) $b=\frac{V}{2 a h}-c$
3) $b=\frac{2 V}{a h}+c$
4) $b=\frac{2 V}{a h}-c$

Algebra I Regents Exam 0822

www.jmap.org
25 Graph $f(x)=|x+1|$ on the set of axes below.

26 The table below shows the value of a particular car over time.

Time (years)	Value (dollars)
0	20,000
5	10,550
10	5570
15	2940
20	1550

Determine whether a linear or exponential function is more appropriate for modeling this data. Explain your choice.

27 Is the product of $\sqrt{8}$ and $\sqrt{98}$ rational or irrational? Justify your answer.

28 The ages of the last 16 United States presidents on their first inauguration day are shown in the table below.

51	54	51	60
62	43	55	56
61	52	69	64
46	54	47	70

Determine the interquartile range for this set of data.

29 The cost of one pound of grapes, g, is 15 cents more than one pound of apples, a. The cost of one pound of bananas, b, is twice as much as one pound of grapes. Write an equation that represents the cost of one pound of bananas in terms of the cost of one pound of apples.

30 A student is given the functions $f(x)=(x+1)^{2}$ and $g(x)=(x+3)^{2}$. Describe the transformation that maps $f(x)$ onto $g(x)$.

31 Solve $3 x^{2}-5 x-7=0$ algebraically for all values of x, rounding to the nearest tenth.

32 Factor completely: $3 y^{2}-12 y-288$

33 Thomas took a 140-mile bus trip to visit his grandparents. His trip is outlined on the graph below.

Explain what might have happened in the interval between D and E. State the interval in which the bus traveled the fastest. State how many miles per hour the bus was traveling during this interval. What was the average rate of speed, in miles per hour, for Thomas' entire bus trip?

34 Graph $f(x)$ and $g(x)$ on the set of axes below.

$$
\begin{gathered}
f(x)=x^{2}-4 x+3 \\
g(x)=\frac{1}{2} x+1
\end{gathered}
$$

Based on your graph, state one value of x that satisfies $f(x)=g(x)$. Explain your reasoning.

35 A store sells grapes for $\$ 1.99$ per pound, strawberries for $\$ 2.50$ per pound, and pineapples for $\$ 2.99$ each. Jonathan has $\$ 25$ to buy fruit. He plans to buy 2 more pounds of strawberries than grapes. He also plans to buy 2 pineapples. If x represents the number of pounds of grapes, write an inequality in one variable that models this scenario. Determine algebraically the maximum number of whole pounds of grapes he can buy.

36 Solve the system of inequalities graphically on the set of axes below. Label the solution set S.

$$
\begin{aligned}
& y+3 x<5 \\
& 1 \geq 2 x-y
\end{aligned}
$$

Is the point $(-5,0)$ in the solution set? Explain your answer.

37 An ice cream shop sells small and large sundaes. One day, 30 small sundaes and 50 large sundaes were sold for $\$ 420$. Another day, 15 small sundaes and 35 large sundaes were sold for $\$ 270$. Sales tax is included in all prices. If x is the cost of a small sundae and y is the cost of a large sundae, write a system of equations to represent this situation. Peyton thinks that small sundaes cost $\$ 2.75$ and large sundaes cost $\$ 6.75$. Is Peyton correct? Justify your answer. Using your equations, determine algebraically the cost of one small sundae and the cost of one large sundae.

Answer Section
1 ANS: 3
$f(8)=\frac{3(8)+4}{2}=\frac{28}{2}=14$
PTS: 2 REF: 082201ai NAT: F.IF.A. 2 TOP: Functional Notation
2 ANS: 1
$\frac{2 x^{2}}{x}=2 x$
PTS: 2 REF: 082202ai NAT: F.IF.A. 3 TOP: Sequences
KEY: difference or ratio
3 ANS: 3 PTS: 2 REF: 082203ai NAT: A.SSE.A. 2
TOP: Factoring the Difference of Perfect Squares KEY: quadratic
4 ANS: 4 PTS: 2 REF: 082204ai NAT: F.IF.A. 1
TOP: Defining Functions KEY: ordered pairs
5 ANS: 4
$3 K-5=7$

$$
\begin{aligned}
3 K & =12 \\
K & =4
\end{aligned}
$$

PTS: $2 \quad$ REF: 082205ai
6 ANS: $3 \quad$ PTS: 2
TOP: Operations with Polynomials
7 ANS: $3 \quad$ PTS: 2
TOP: Zeros of Polynomials
8 ANS: $1 \quad$ PTS: 2
TOP: Modeling Expressions
9 ANS: $3 \quad$ PTS: 2
TOP: Modeling Exponential Functions
10 ANS: $1 \quad$ PTS: 2
TOP: Dot Plots
11 ANS: 4 PTS: 2
TOP: Graphing Polynomial Functions
12 ANS: 2
$\frac{44+30}{32+44+24+36+30+34}=37 \%$
PTS: 2 REF: 082212ai NAT: S.ID.B. 5 TOP: Frequency Tables
KEY: two-way
13 ANS: 2 PTS: 2
TOP: Families of Functions

NAT: A.REI.D. 10 TOP: Identifying Solutions
REF: 082206ai NAT: A.APR.A. 1
KEY: multiplication
REF: 082207ai NAT: A.APR.B. 3
REF: 082208ai NAT: A.SSE.A. 1
REF: 082209ai NAT: F.BF.A. 1
REF: 082210ai NAT: S.ID.A. 1
REF: 082211ai NAT: F.BF.B. 3

REF: 082213ai NAT: F.LE.A. 1

14 ANS: 2

1) $1 ; 2)-3 ; 3)-2 ; 4)-1$

PTS: 2 REF: 082214ai NAT: F.IF.C. 9 TOP: Comparing Functions
15 ANS: 1
$x^{2}-10 x+25=13+25$

$$
(x-5)^{2}=38
$$

PTS: 2 REF: 082215ai NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: completing the square
16 ANS: 2
$2 x^{3}+3 x^{2}+7 x-6$
PTS: 2 REF: 082216ai NAT: A.SSE.A. 1 TOP: Modeling Expressions
17 ANS: 3
$10(x-5)=-154+2(x-2)=9 \quad \frac{1}{3} x=\frac{3}{2}$
$\begin{array}{rlrl}10 x-50 & =-15 & 4+2 x-4 & =9 \\ 10 x & =35 & 2 x & =9 \\ x & =\frac{7}{2} & x & =\frac{9}{2}\end{array}$
PTS: 2 REF: 082217ai NAT: A.REI.B. 3 TOP: Solving Linear Equations
18 ANS: 4
$C(d)=120 \bullet 2^{3 d}=120 \bullet\left(2^{3}\right)^{d}=120 \bullet 8^{d}$
PTS: 2 REF: 082218ai NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
19 ANS: 4 PTS: 2 REF: 082219ai NAT: A.REI.A. 1
TOP: Identifying Properties
20 ANS: 1
$a_{2}=3(-2)+1=-5 \quad a_{3}=3(-5)+1=-14 \quad a_{3}=3(-14)+1=-41$
PTS: 2 REF: 082220ai NAT: F.IF.A. 3 TOP: Sequences
KEY: recursive
21 ANS: 2
PTS: 2
REF: 082221ai NAT: N.Q.A. 1
TOP: Conversions
22 ANS: 2
PTS: 2
REF: 082222ai NAT: F.IF.A. 2
TOP: Domain and Range
23 ANS: 1
$r=-0.98$
PTS: 2
REF: 082223ai
NAT: S.ID.C. 8
TOP: Correlation Coefficient

24 ANS: 4

$$
\begin{aligned}
V & =\frac{1}{2} a(b+c) h \\
2 V & =a(b+c) h \\
\frac{2 V}{a h} & =b+c \\
\frac{2 V}{a h}-c & =b
\end{aligned}
$$

PTS: 2 REF: 082224ai NAT: A.CED.A. 4 TOP: Transforming Formulas
ANS:

PTS: 2 REF: 082225ai NAT: F.IF.C. 7 TOP: Graphing Absolute Value Functions

ANS:

Exponential, as the value decreases by about $47 \% /$ year.
PTS: 2 REF: 082226ai NAT: S.ID.B. 6 TOP: Regression
KEY: choose model
27 ANS:
Rational, as $\sqrt{8} \cdot \sqrt{98}=2 \sqrt{2} \cdot \sqrt{49} \cdot \sqrt{2}=2 \sqrt{2} \cdot 7 \sqrt{2}=14 \cdot 2=28$, which is the ratio of two integers.
PTS: 2 REF: 082227ai NAT: N.RN.B. 3 TOP: Operations with Radicals
KEY: classify
28 ANS:
$61.5-51=10.5$
PTS: 6 REF: 082228ai NAT: S.ID.A. 2 TOP: Dispersion
KEY: basic
29 ANS:
$b=2(a+15)$
PTS: 2
REF: 082229ai
NAT: A.CED.A. 2 TOP: Modeling Linear Equations
30 ANS:
translate 2 left
PTS: 2 REF: 082230ai NAT: F.BF.B. 3 TOP: Graphing Polynomial Functions

31 ANS:
$\frac{5 \pm \sqrt{(-5)^{2}-4(3)(-7)}}{2(3)}=\frac{5 \pm \sqrt{109}}{6} \approx-0.9,2.6$
PTS: 2 REF: 082231ai NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: quadratic formula
32 ANS:
$3 y^{2}-12 y-288$
$3\left(y^{2}-4 y-96\right)$
$3(y-12)(y+8)$
PTS: 2 REF: 082232ai NAT: A.SSE.A. 2 TOP: Factoring Polynomials
33 ANS:
The bus stopped in the interval between D and E. The bus traveled the fastest in the interval between C and D at 60 mph . The average rate of speed was $\frac{140}{4}=35 \mathrm{mph}$.

PTS: 4 REF: 082233ai NAT: F.IF.B. 4 TOP: Relating Graphs to Events
34 ANS:

At $x=\frac{1}{2}, f$ intersects g.
PTS: 4
REF: 082234ai NAT: A.REI.D. 11 TOP: Quadratic-Linear Systems
35 ANS:
$1.99 x+2.50(x+2)+2(2.99) \leq 25 \quad 3$ pounds of grapes

$$
\begin{aligned}
1.99 x+2.50 x+5+5.98 & \leq 25 \\
4.49 x & \leq 14.02 \\
x & \leq \frac{1402}{449}
\end{aligned}
$$

PTS: 4
REF: 082235ai
NAT: A.CED.A. 1 TOP: Modeling Linear Inequalities

36 ANS:

$$
\begin{array}{r}
\text { Yes, as } 0+3(-5)<5 \\
1 \geq 2(-5)-0
\end{array}
$$

PTS: 4
REF: 082236ai NAT: A.REI.D. 12 TOP: Graphing Systems of Linear Inequalities
37 ANS:
$30 x+50 y=420$ Peyton is wrong as $2.75(15)+6.75(35) \neq 270.30 x+50 y=42030 x+50(6)=420$
$15 x+35 y=270$

$$
\begin{array}{rlrl}
30 x+70 y & =540 \\
20 y & =120 & 30 x & =120 \\
y & =6 & & =4 \\
&
\end{array}
$$

PTS: 6
REF: 082237ai
NAT: A.CED.A. 3 TOP: Modeling Linear Systems

