The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION

 ALGEBRA IWednesday, January 22, $2020-1: 15$ to $4: 15$ ppm., only

Student Name

School Name

The possession or use of any communications device is strictly prohibited when taking this examination. If you have or use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

Print your name and the name of your school on the lines above.
A separate answer sheet for Part I has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet.

This examination has four parts, with a total of 37 questions. You must answer all questions in this examination. Record your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. All work should be written in pen, except for graphs and drawings, which should be done in pencil. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale.

The formulas that you may need to answer some questions in this examination are found at the end of the examination. This sheet is perforated so you may remove it from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will not be scored.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice ...

A graphing calculator and a straightedge (ruler) must be available for you to use while taking this examination.

Part I
Answer all 24 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. Record your answers on your separate answer sheet. [48]

$$
f(x)=2\left(3^{x}\right)+1
$$

1 If $f(x)=2\left(3^{x}\right)+1$, what is the value of $f(2)$?

$$
f(z)=2\left(3^{2}\right)+1
$$

Use this space for computations.
(1) 13
(3) 37
(2) 19
(4) 54

$$
\begin{aligned}
& f_{(2)}=2(9)+1 \\
& f_{(2)}=18+1 \\
& f_{(2)}=19
\end{aligned}
$$

2 A high school sponsored a badminton tournament. After each round, one-half of the players were eliminated. If there were 64 players at the start of the tournament, which equation models the number of players left after 3 rounds?
(1) $y=64(1-.5)^{3}$
(3) $y=64(1-.3)^{0.5}$
(2) $y=64(1+.5)^{3}$
(4) $y=64(1+.3)^{0.5}$

Round \#Players
Check wo Calculator

$$
y=64(1-, 5)^{3}
$$

$$
y=8
$$

3 Given $7 x+2 \geq 58$, which number is not in the solution set?
(1) 6
(3) 10
(2) 8
(4) 12

4 Which table could represent a function?

(1)

x	$g(x)$
1	2
2	4
3	6
4	2

(2) of X. Thistion. there is one

x	$h(x)$
2	6
0	4
1	6
2	$\sqrt{2}$

(3)

\mathbf{x}	$\mathbf{k}(\mathbf{x})$
2	2
3	>2
4	6
3	6

(H)
$7 x+2 \geq 58$
$7 x \geq 56$

Check

$$
\operatorname{lin}_{h(x)}
$$

$$
\begin{aligned}
7(6)+2 & \geq 58
\end{aligned}
$$

$$
\begin{aligned}
42 & +2 \geq 58 \\
\text { False } \rightarrow 44 & \geq 58
\end{aligned}
$$

Given $\quad \frac{x-3}{4}+\frac{2}{3}=\frac{17}{12}$
$M(4) \quad x-3+\frac{8}{3}=\frac{68}{12}$
Use this space for
5 Which value of x makes $\frac{x-3}{4}+\frac{2}{3}=\frac{17}{12}$ true? $_{M_{(3)}} 3(x-3)+8=\frac{204}{12}$ computations.
(1) 8
(3) 0
(2) 6
(4) 4

Simplify $3(x-3)+8=17$
Dist.prsp. $3 x-9+8=17$

$$
\frac{6-3}{4}+\frac{2}{3}=\frac{17}{12}
$$

$$
\text { CL } \begin{array}{ll}
3 x-1 & =17 \\
3 x & =18
\end{array}
$$

6 Which expression is equivalent to $18 x^{2-50 ?[(3) \quad X \quad=6}$
$y_{z} \quad$ (1) $2(3 x+5)^{2}$

$$
y_{4} \text { (3) } 2(3 x-5)(3 x+5)
$$

(2) $2(3 x-5)^{2}$
y_{5}
(4) $2(3 x-25)(3 x+25)$
$\frac{\text { Stra }}{\text { Use a }}$
ashed bel
$+(k)$
7 The functions $f(x)=x^{2}-6 x+9$ and $g(x)=f(x)+k$ are graphed below.

Which value of k would result in the graph of $g(x)$?
(1) 0

$$
\text { (3) }-3
$$

(2) 2
(4) -2

$$
\begin{array}{r}
g(x)=f(x)+(k) \\
g(x)=f(x)+(-2) \\
k=-2
\end{array}
$$

and compare outs nt table values.

$$
\begin{aligned}
& \text { INPUTS } \\
& y_{1}=18 x^{2}-50 \\
& y_{2}=2(3 x+5)^{2} \\
& y_{3}=2(3 x-5)^{2} \\
& y_{4}=2(3 x-5)(3 x+5) \\
& y_{5}=2(3 x-25)(3 x+25)
\end{aligned}
$$

OUTPUTS

x	y_{1}	y_{4}
0	-50	-50
1	-32	-32
2	22	22
3	112	112

The outputs show that $18 x^{2}-50$ equals

$$
\begin{aligned}
& 2(3 x-5)(3 x+5)
\end{aligned}
$$

Algebra I - Jan. '20

8 The shaded boxes in the figures below represent a sequence. computations.

Figure 1

Figure 2

Figure 3

$$
\begin{aligned}
& \text { Figure }=12+4(0) \\
& \text { Figure } 2=12+4(1) \\
& \text { Figure } 3=12+4(2) \\
& \text { Figure } 4=12+4(3) \\
& \text { Figure } 35=12+4(34) \\
& 35=148
\end{aligned}
$$

$$
\begin{aligned}
& \text { Figures } \\
& \text { Figure } 35=148
\end{aligned}
$$

If figure 1 represents the first term and this pattern continues, how many shaded blocks will be in figure 35?
(1) 55
(3) 420
(2) 148
(4) 805

9 The zeros of the function $f(x)=x^{3}-9 x^{2}$ are
(1) 9 , only
(3) 0 and 3 , only
(2) 0 and 9
(4) $-3,0$, and 3

$$
\begin{aligned}
& f(x)=x^{3}-9 x^{2} \\
& 0=x^{3}-9 x^{2} \\
& 0=x^{2}(x-9) \\
& \therefore 0=x^{2} \text { and or } 0=x-9 \\
&\therefore 0=x] \text { ard } 9=x
\end{aligned}
$$

10 A middle school conducted a survey of students to determine if they spent more of their time playing games or watching videos on their tablets. The results are shown in the table below.

Of the students who spent more time playing games on their tablets, approximately what percent were boys?
(1) 41
(2) 56

$$
\begin{aligned}
\text { Boys } \\
\text { Total Students }
\end{aligned} \begin{aligned}
\frac{138}{192} & =\frac{x(\%)}{100(\%)} \\
13800 & =192 x \\
71.875 & =x \\
72 & \approx x
\end{aligned}
$$

11 Which statement best describes the solutions of a two-variable equation?

Use this space for computations.
(1) The ordered pairs must lie on the graphed equation.
(2) The ordered pairs must lie near the graphed equation.
(3) The ordered pairs must have $x \neq 0$ for one coordinate.
(4) The ordered pairs must have $y=0$ for one coordinate.

12 The expression $x^{2}-10 x+24$ is equivalent to

$$
\begin{aligned}
& 2 \text { The expression } x^{2}-10 x+24 \text { is equivalent to } \\
& \text { (1) }(x+12)(x-2) \text { constant is }(-) \text { (3) }(x+6)(x+4)
\end{aligned}
$$

$$
\text { (2) }(x-12)(x+2) \text { constant is() (4) (x-6)(x-4) }
$$

STEP\#
13 Which statement is true about the functions $f(x)$ and $g(x)$, given below?

(1) The minimum value of $g(x)$ is greater than the maximum False $-4>0$ value of $f(x)$.
(2) $f(x)$ and $g(x)$ have the same y-intercept. True y-intercepts are -4 for both (8) $f(x)$ and $g(x)$ have the same roots. False x-axis intercepts show different roots (4) $f(x)=g(x)$ when $x=-4$. $(-4,12) \neq 4=4$

14 The equation $\underline{V}(t)=12,000(0.75)^{t}$ represents the value of a motorcycle t years after it was purchased. Which statement is true?
(1) The motorcycle cost $\$ 9000$ when purchased.
(2) The motorcycle cost $\$ 12,000$ when purchased.
(8) The motorcycle's value is decreasing at a rate of 75% each year.
(4) The motorcycle's value is decreasing at a rate of 0.25% each year.

Use this space for computations.
From Graphing Calculator
(1) $-4 \pm \sqrt{5}$
(3) -1 and -7
(2) $4 \pm \sqrt{5}$
(4) 1 and 7 decimal is $\left.\begin{aligned} & 2 y r \\ & \text { in wrong place } \\ & 3 y r\end{aligned} \right\rvert\,$

0	12000
1	9000
2	6750
3	5062.5

$$
\begin{aligned}
& (x+4)^{2}-2=7 \\
& x^{2}=9
\end{aligned}
$$

16 Which expression is not equivalent to $-4 x^{3}+x^{2}-6 x+8$?
(1) $\left.{ }^{y_{2}} x^{2}=-4 x+1\right)-2(3 x-4)$
(3) $\boldsymbol{Y}_{4} \overline{\overline{4}} x^{3}+(x-2)(x-4)$

$$
\begin{array}{cl}
x+4 & = \pm 3 \\
x & =-4 \pm
\end{array}
$$

(2) $\left.3_{1}^{2}-4 x^{2}-x+6\right)+8$
(4) $Y_{S} 4\left(x^{3}-2\right)+x(x-6)$

Solution Strategy: Pat in calculator and select $x=-1$ and $x=-7$ the answer choice $\neq Y_{1}$
17 Which situation could be modeled as a linear equation?
(y) The value of a car decreases by 10% every year. multiply by $(100 \%-10 \%)$ each yr.
(2) The number of fish in a lake doubles every 5 years. multiply by 2 every 5 years
(3) Two liters of water evaporate from a pool every day. Subtract 2 every day
(4) The amount of caffeine in a person's body decreases by $\frac{1}{3}$ every multiply by $\frac{2}{3}$ every 2 hours 2 hours.
$<y$-values needed
18 The range of the function $f(x)=|x+3|-5$ is
(1) $[-5, \infty)$
(2) $(-5, \infty)$
\uparrow
5 is less than the 5 is less than the
range in this choice
[include s-5
(4) $(8, \infty)$ 5 is less than choice
(does not includes

19 A laboratory technician used the function $t(m)=2(3)^{2 m+1}$ to model
Use this space for her research. Consider the following expressions: computations.

$$
y_{2}=
$$

I. $6(3)^{2 m}$
II. $6(6)^{2 m}$

The function $t(m)$ is equivalent to
(1) I, only
(3) I and III
(2) H, only

Strategy: Input in graphing
calculator and inspect tables
III. $6(9)^{m}$

Yes/same

x	y_{1}	y_{2}	y_{3}	y_{4}
0	6	6	6	6
1	54	54	216	54
2	486	486	2776	486

20 Which system of equations has the same solutions as the system below?
(1) $6 x-2 y=14$ $-6 x+9 y=36+$
$18 x-6 y=42$
$4 x+6 y=24$
(3) $-9 x-3 y=-21$
$2 x+3 y=12$
(4) $3 x-y=7$
$x+y=2$

21 A population of paramecia, P, can be modeled using the exponential function $P(t)=3(2)^{t}$, where t is the number of days since the population was first observed. Which domain is most appropriate to use to determine the population over the course of the first two
 \downarrow weeks?
(1) $t \geq 0$
(3) $0 \leq t \leq 2$
(2) $t \leq 2$
(4) $0 \leq t \leq 14$

The problems ask for weeks.

22 Given the following data set:

Use this space for

 computations. | $61-70$ | $71-80$ | $81-90$ |
| :---: | :---: | :---: |

$\overbrace{-100}^{3}$ 95, 95, 95, 100 91-100
Which representations are correct for this data set?
\#of dots on dot plot V Intervals for histogra Which representations are correct for this data

(1) I and II, only
(3) II and III, only
(2) I and III, only
(4) I, II, and III

23 A recursively defined sequence is shown below.
Use this space for computations.

$$
\begin{gathered}
a_{1}=5 \\
a_{n+1}=2 a_{n}-7
\end{gathered}
$$

The value of a_{4} is
(1) -9
(2) -1
(3) 8
(4) 15

24 Which polynomial has a leading coefficient of 4 and a degree of 3 ?
(1) $3 x^{4}-2 x^{2}+4 x-7$
(3) $4 x^{4}-3 x^{3}+2 x^{2}$
(2) $4+x-4 x^{2}+5 x^{3}$
(4) $2 x+x^{2}+4 x^{3}$

- The degree of a polynomial is equal to the value of the highest exponent in any term.
- The leading coefficient of a polynomial is the value of the coefficient of the tern with the highest exponent.

Part II

Answer all 8 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [16]

25 Graph $f(x)=-\sqrt{x}+1$ on the set of axes below.

26 Maria orders T-shirts for her volleyball camp. Adult-sized T-shirts cost \$6.25 each and youth-sized T-shirts cost $\$ 4.50$ each. Maria has $\$ 550$ to purchase both adult-sized and youth-sized T-shirts. If she purchases 45 youth-sized T-shirts, determine algebraically the maximum number of adult-sized T-shirts she can purchase.

Let A represent the \# of adult shirts Let Y represent the $\#$ of youth shirts

$$
\begin{aligned}
6.25 A+4.50 Y & \leq 550 \\
6.25 A+4.50(45) & \leq 550 \\
6.25 A+202.50 & \leq 550 \\
6.25 A & \leq 377.50 \\
A & \leq 55.6
\end{aligned}
$$

55 is the maximum
number of adult-sized T-shirst that she can purchase.

27 A news report suggested that an adult should drink a minimum of 4 pints of water per day. Based on this report, determine the minimum amount of water an adult should drink, in fluid ounces, per week.
H* See conversion chart

$$
\frac{4 \text { pints }}{1 \text { dey }} \times \frac{7 \text { dols }}{1 \text { week }} \times \frac{2 \text { gaps }}{1 \text { pint }} \times \frac{8 \text { ounces }}{1 \text { cap }}=\frac{448 \text { ounces }}{1 \text { week }}
$$

28 Express $(3 x-4)(x+7)-\frac{1}{4} x^{2}$ as a trinomial in standard form.

$$
\begin{aligned}
& (3 x-4)(x+7)-\frac{1}{4} x^{2} \\
& 3 x^{2}+21 x-4 x-28-\frac{1}{4} x^{2} \\
& 3 x^{2}-\frac{1}{4} x^{2}+21 x-4 x-28 \\
& 2.75 x^{2}+17 x-28
\end{aligned}
$$

29 John was given the equation $4(2 a+3)=-3(a-1)+31-11 a$ to solve. Some of the steps and their reasons have already been completed. State a property of numbers for each missing reason.

$$
\begin{aligned}
& \begin{array}{l}
4(2 a+3)=-3(a-1)+31-11 a \\
8 a+12=-3 a+3+31-11 a \\
8 a+12=34-14 a \\
+14 a \\
22 a+12=34
\end{array} \\
& 22 a
\end{aligned}
$$

Given
Distributive Property
Combining like terms

30 State whether the product of $\sqrt{3}$ and $\sqrt{9}$ is rational or irrational. Explain your answer.
$\sqrt{3} \cdot \sqrt{9}$ is irrational
because:
$\rightarrow \sqrt{3}$ is the square root of a prime and square roots of prime numbers are always irrational (never ending and non-repeating in decimal form).
$\rightarrow \sqrt{9}$ is a rational number because it is equal to 3, which can be expressed as the ratio of 2 integers.

$$
\sqrt{9}=\frac{3}{1}
$$

\rightarrow The product of a rational and an irrational \# is always irrational.

31 Use the method of completing the square to determine the exact values of x for the equation $x^{2}-8 x+6=0$.

$$
\begin{aligned}
x^{2}-8 x+6 & =0 \\
x^{2}-8 x & =-6 \\
x^{2}-8 x+\left(\frac{-8}{2}\right)^{2} & =-6+\left(\frac{-8}{2}\right)^{2} \\
x^{2}-8 x+(-4)^{2} & =-6+(-4)^{2} \\
(x-4)^{2} & =-6+16 \\
(x-4)^{2} & =10 \\
\sqrt{(x-4)^{2}} & =\sqrt{10} \\
x-4 & = \pm \sqrt{10} \\
x & =+4 \pm \sqrt{10}
\end{aligned}
$$

32 A formula for determining the finite sum, S, of an arithmetic sequence of numbers is $S=\frac{n}{2}(a+b)$, where n is the number of terms, a is the first term, and b is the last term. Express b in terms of a, S, and n.

$$
\begin{aligned}
& 2 S=n(a+b) \\
& 25=n \\
& \frac{2 S}{n}=a+b \\
& \frac{2 S}{n}-a=b \\
& - \text { or } \\
& 5=\frac{n}{2}(a+b) \\
& 25=n(a+b) \\
& 2 s=a n+b n \\
& 2 s-a n=b n \\
& \frac{2 s-a n}{n}=b \\
& \frac{2 s}{n}-a=b
\end{aligned}
$$

Part III

Answer all 4 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [16]

33 Michael threw a ball into the air from the top of a building. The height of the ball, in feet, is modeled by the equation $h=-16 t^{2}+64 t+60$, where t is the elapsed time, in seconds. Graph this equation on the set of axes below.

$$
\approx \cdot(5,-20)
$$

Determine the average rate of change, in feet per second, from when Michael released the ball to when the ball reached its maximum height.
Average Rote of Change from $(0,60)$ to $(2,124)$

$$
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2} \cdot x_{1}}=\frac{124-60}{2-0}=\frac{64}{2}=32 f t / \mathrm{sec}
$$

35 The following table represents a sample of sale prices, in thousands of dollars, and number of new homes available at that price in 2017.

Sale Price, p (in thousands of dollars)	160	180	200	220	240	260	280
Number of New Homes Available f $f(p)$	126	103	82	75	82	40	20
L_{2}							

State the linear regression function, $f(p)$, that estimates the number of new homes available at a specific sale price, p. Round all values to the nearest hundredth.
Strategy: Use the STATS function of a graphing calculator with Diagnostics On. Output: $y=a x+b$

$$
\begin{aligned}
& a=-7928571429 \\
& b=249.8571429 \\
& r=-.954258
\end{aligned}
$$

$$
f(p)=-.79 p+249.86
$$

State the correlation coefficient of the data to the nearest hundredth. Explain what this means in the context of the problem.

$$
r=-.95
$$

There is a strong negative correlation. This means that the sales price goes up when the number of new homes available goes down.

$$
\text { length }=\frac{1}{2} w+6
$$

36 The length of a rectangular sign is 6 inches more than half its width. The area of this sign is 432 square inches. Write an equation in one variable that could be used to find the number of inches in the dimensions of this sign.

$$
\begin{gathered}
\text { Area }=\text { length } \times \text { width } \\
432=\left(\frac{1}{2} \omega+6\right) \omega \\
\text { or } \\
w\left(\frac{1}{2} \omega+6\right)=432
\end{gathered}
$$

Solve this equation algebraically to determine the dimensions of this sign, in inches.

$$
\begin{aligned}
\omega\left(\frac{1}{2} w+6\right) & =432 \\
\frac{1}{2} w^{2}+6 w & =432 \\
w^{2}+12 w & =864 \\
\omega^{2}+12 w+\left(\frac{2}{2}\right)^{2} & =864+\left(\frac{12}{2}\right)^{2} \\
\omega^{2}+12 w+(6)^{2} & =864+(6)^{2} \\
(w+6)^{2} & =900 \\
\sqrt{(\omega+6)^{2}} & =\sqrt{900} \\
w+6 & = \pm 30 \\
w & =-6 \pm 30
\end{aligned}
$$

$$
\text { width } \omega=24 \text { or } \omega=-36
$$

Check:

$$
\begin{aligned}
& A=\ln \\
& A=18 \times 24=432 V
\end{aligned}
$$

Part IV

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided to determine your answer. Note that diagrams are not necessarily drawn to scale. A correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [6]

37 Two families went to Rollercoaster World. The Brown family paid \$170 for 3 children and 2 adults. The Peckham family paid $\$ 360$ for 4 children and 6 adults.

If x is the price of a child's ticket in dollars and y is the price of an adult's ticket in dollars, write a system of equations that models this situation.

Graph your system of equations on the set of axes below.

Question 37 is continued on the next page.

Question 37 continued
$\underline{\text { State the coordinates of the point of intersection. }}$

$$
(30,40)
$$

Explain what each coordinate of the point of intersection means in the context of the problem.
Child tickets cost \$3000.
Adult tickets cost \# 4000.

High School Math Reference Sheet

1 inch $=2.54$ centimeters
1 meter $=39.37$ inches
1 mile $=5280$ feet
1 mile $=1760$ yards
1 mile $=1.609$ kilometers

1 kilometer $=0.62$ mile
1 pound $=16$ ounces
1 pound $=0.454$ kilogram
1 kilogram $=2.2$ pounds
1 ton $=2000$ pounds

1 cup $=8$ fluid ounces
1 pint $=2$ cups
1 quart $=2$ pints
1 gallon $=4$ quarts
1 gallon $=3.785$ liters
1 liter $=0.264$ gallon
1 liter $=1000$ cubic centimeters

Triangle	$A=\frac{1}{2} b h$
Parallelogram	$A=b h$
Circle	$A=\pi r^{2}$
Circle	$C=\pi d$ or $C=2 \pi r$
General Prisms	$V=B h$
Cylinder	$V=\pi r^{2} h$
Sphere	$V=\frac{4}{3} \pi r^{3}$
Cone	$V=\frac{1}{3} \pi r^{2} h$
Pyramid	$V=\frac{1}{3} B h$

Pythagorean Theorem	$a^{2}+b^{2}=c^{2}$
Quadratic Formula	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Arithmetic Sequence	$a_{n}=a_{1}+(n-1) d$
Geometric Sequence	$a_{n}=a_{1} r^{n-1}$
Geometric Series	$S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r}$ where $r \neq 1$
Radians	1 radian $=\frac{180}{\pi}$ degrees
Degrees	1 degree $=\frac{\pi}{180}$ radians
Exponential Growth/Decay	$A=A_{0} e^{k\left(t-t_{0}\right)}+B_{0}$

