The University of the State of New York

REGENTS HIGH SCHOOL EXAMINATION

ALGEBRA I (Common Core)

Tuesday, June 3, 2014 - 9:15 a.m. to 12:15 p.m., only
Student Name:

School Name:

The possession or use of any communications device is strictly prohibited when taking this examination. If you have or use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

Print your name and the name of your school on the lines above.
A separate answer sheet for Part I has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet.

This examination has four parts, with a total of 37 questions. You must answer all questions in this examination. Record your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. All work should be written in pen, except graphs and drawings, which should be done in pencil. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. The formulas that you may need to answer some questions in this examination are found at the end of the examination. This sheet is perforated so you may remove it from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will not be scored.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice...
A graphing calculator and a straightedge (ruler) must be available for you to use while taking this examination.

Part I

Answer all 24 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. Record your answers on your separate answer sheet. [48]

1 When solving the equation $4\left(3 x^{2}+2\right)-9=8 x^{2}+7$, Emily wrote
Use this space for computations. $4\left(3 x^{2}+2\right)=8 x^{2}+16$ as her first step. Which property justifies Emily's first step?
(2) addition property of equality
(2) commutative property of addition
(3) multiplication property of equality
(4) distributive property of multiplication over addition

$$
\begin{aligned}
& 4\left(3 x^{2}+2\right)-9=8 x^{2}+7 \\
& +9=8 x^{2}+16
\end{aligned}
$$

2 Officials in a town use a function, C, to analyze traffic patterns. $C(n)$ represents the rate of traffic through an intersection where n is the number of observed vehicles in a specified time interval. What would be the most appropriate domain for the function?

$$
\begin{array}{ll}
\text { (1) }\{\ldots-2,-1,0,1,2,3, \ldots\} & \text { (of) }\left\{0, \frac{1}{2}, 1,1 \frac{1}{2}, 2,2 \frac{1}{2}\right\} \\
\text { (2) }\{-2,-1,0,1,2,3\} & \{0,1,2,3, \ldots\}
\end{array}
$$

cannot be negatiuencmmers
ortractions.

3 If $A=3 x^{2}+5 x-6$ and $B=-2 x^{2}-6 x+7$, then $A-B$ equals
(1) $-5 x^{2}-11 x+13$
(3) $-5 x^{2}-x+1$

- $5 x^{2}+11 x-13$
(4) $5 x^{2}-x+1$

$$
\begin{aligned}
& 3 x^{2}+5 x-6 \\
& \text { smbtrect }\left(-2 x^{2}-6 \times+7\right) \\
& \text { Ant: To subtcect, changethe signcany, by } \\
& 3 x^{3}+3 x-6 \\
& \left.\frac{2 x^{2}+6 x-1}{5 x^{2}+11 x-13}\right]
\end{aligned}
$$

4 Given:

$$
\begin{aligned}
& y+x>2 \\
& y \leq 3 x-2
\end{aligned}
$$

Which graph shows the solution of the given set of inequalities?

(X)

(3)

(3)

(4)

Use this space for computations.

$$
y+x>2
$$

$y>-x+2$
7λ
slope is -1 y-intercept is 2 shade above the dotted line This eliminates graphs land 3

This eliminates

5 Which value of x satisfies the equation $\frac{7}{3}\left(x+\frac{9}{28}\right)=20$?
8.25
(3) 19.25
(2) 8.89
(4) 44.92

$$
\frac{7}{3}(x)+\frac{7}{3}\left(\frac{8}{28}\right)=20
$$

$$
\frac{28 x+9}{12}=20
$$

$$
28 x+9=12(20) \underset{\sim}{12} \Rightarrow 28=231 \quad\left(\frac{4}{4}\right) \frac{7 x}{3}+\frac{3}{4}\left(\frac{3}{3}\right)=20
$$

$$
28 x+9=240 \quad x=\frac{231}{28} \quad \frac{28 x}{12}+\frac{9}{12}=20
$$

Algebra I (Common Core) - June '14

$$
x=\frac{8.251}{5 \text { top }}
$$

6 The table below shows the average yearly balance in a savings

Use this space for computations.

 account where interest is compounded annually. No money is deposited or withdrawn after the initial amount is deposited.| Year | Balance, in Dollars |
| :---: | :---: |
| 0 | 380.00 |
| 10 | 562.49 |
| 20 | 832.63 |
| 30 | 1232.49 |
| 40 | 1824.39 |
| 50 | 2700.54 |

Which type of function best models the given data?
(1) lipear function with a negative rate of change
(2) lipear function with a positive rate of change
(3) exponential decay function
(5) exponential growth function

9 A ball is thrown into the air from the edge of a 48-foot-high cliff so that it eventually lands on the ground. The graph below shows the height, y, of the ball from the ground after x seconds

For which interval is the ball's height always decreasing?

$$
\begin{aligned}
& a=1 \quad b=4 \quad c=-16 \\
& x^{2}+4 x-16=0
\end{aligned}
$$

(1) $0 \leq x \leq 2.5$
(3) $2.5<x<5.5$
(2) $0<x<5.5$
(4) $x \geq 2$

Use this space for computations.
D.

See formula sheet for Quadratic Formula $x=\frac{-y \pm \sqrt{b^{2}-4 a c}}{2 a}$ 10 What are the roots of the equation $x^{2}+4 x-16=0$?

$$
x=\frac{-(4) \pm \sqrt{(4)^{2}-4(1)(-16)}}{2(1)}
$$

(1) $2 \pm 2 \sqrt{5}$
(3) $2 \pm 4 \sqrt{5}$
(-2 $\pm 2 \sqrt{5}$
(4) $-2 \pm 4 \sqrt{5}$

$$
x=\frac{-4 \pm \sqrt{16+64}}{2}
$$

$$
x=\frac{-4 \pm \sqrt{80}}{2}
$$

$$
x=\frac{-4 \pm \sqrt{16} \sqrt{5}}{2}
$$

[6]

$$
x=\frac{-4 \pm 4 \sqrt{5}}{2}
$$

Use this space for
11 What is the correlation coefficient of the linear fit of the data shown below, to the nearest hundredth? computations.

Positive
Correlation

(1) 1.00
(2) 0.93
(1) -1.00

This date has a negative correlation. Eliminate 1 and 2

$$
\text { Correlations of }+1
$$

or -1 are on straight
lines. This data does
not fall on a straight

12 Keith determines the zeros of the function $f(x)$ to be -6 and 5. What could be Keith's function?
(1) $f(x)=(x+5)(x+6)$
(3) $f(x)=(x-5)(x+6)$

To find the factors
(2) $f(x)=(x+5)(x-6)$
(4) $f(x)=(x-5)(x-6)$ of a quadratic, work backerords from the zeros.

If $x=-6$, then $x+6=6$ and $(x+6)$ is a facts
If $x=5$, the $x-5=0$ and $(x-5)$ is a facto

Which expression results in a rational number?
(1) $L+M$
$N+P \Rightarrow 4+3=7$
(2) $M+N$
(4) $P+L$

14 Which system of equations has the same solution as the system below?

$$
\begin{gathered}
2 x+2 y=16 \\
3 x-y=4
\end{gathered}
$$

(3) $x+y=6$
$3 x-y=4$
(4) $6 x+6 y=48$
$6 x+2 y=8$
If you multiply both sides of an

15 The table below represents the function F.

$$
\begin{aligned}
& \text { between }{ }^{\text {ben }} \\
& \text { verities do not }
\end{aligned}
$$

\boldsymbol{x}	3	4	6	7	8
$\boldsymbol{F}(\boldsymbol{x})$	9	17	65	129	257

The equation that represents this function is

$$
\begin{aligned}
& 9=2^{3}+1 \\
& 17=2^{4}+1 \\
& 65=2^{6}+1
\end{aligned}
$$

(1) $F(x)=3^{x}$
(2) $F(x)=2^{x}+1$
(2) $F(x)=3 x$

$$
\begin{aligned}
& 9=3(3) \\
& 17 \neq 3(4)
\end{aligned}
$$

$$
\begin{array}{ll}
F(x)=2 x+3 & 17=2^{4}+1 \\
9 & =2(3)+3 \\
17 & \neq 2(4)+3
\end{array} 165=2^{6}+1
$$

16 John has four more nickels than dimes in his pocket, for a total of $\$ 1.25$. Which equation could be used to determine the number of dimes, x, in his pocket?
(1) $0.10(x+4)+0.05(x)=\$ 1.25$

$$
\text { Let } x=+ \text { dimes }
$$

- $0.05(x+4)+0.10(x)=\$ 1.25$
(3) $0.10(4 x)+0.05(x)=\$ 1.25$
(4) $0.05(4 x)+0.10(x)=\$ 1.25$

$$
\operatorname{Let}(x+4)=\# \text { nickles }
$$

$$
.05(\# \text { nickles })+.10(\pm \text { dimes })=\$ 1.25
$$

17 If $f(x)=\frac{1}{3} x+9$, which statement is always true?
(1) $f(x)<0$
(3) If $x<0$, then $f(x)<0$.
(2) $f(x)>0$
2. If $x>0$, then $f(x)>0$.
(1) is not true for positive values of x
(2) is not true When $x \leq-27$

Algebra I (Common Core) - June '14
(3) is not true for $x=-1$

$$
\begin{aligned}
& \text { (1) } 2 x+2 y=16 \\
& 6 x-2 y=6 \\
& \begin{aligned}
2(3 x-y) & =2(4) \\
x-2 y & =8
\end{aligned}
\end{aligned}
$$

18 The Jamison family kept a log of the distance they traveled during a

Use this space for computations. trip, as represented by the graph below.

During which interval was their average speed the greatest?
(14) the first hour to the second hour
(2) the second hour to the fourth hour
(3) the sixth hour to the eighth hour
(4) the eighth hour to the tenth hour

19 Christopher looked at his quiz scores shown below for the first and second semester of his Algebra class.

Semester 1: 78, 91, 88, 83, 94
Semester 2: $91,96,80,77,88,85,92$
Which statement about Christopher's performance is correct?

(1) The interquartile range for semester 1 is greater than the interquartile range for semester 2.
(2) The median score for semester 1 is greater than the median score for semester 2.
(․) The mean score for semester 2 is greater than the mean score for semester 1.
$87>86.8$
(4) The third quartile for semester 2 is greater than the third quartile for semester 1.

20 The graph of $y=f(x)$ is shown below. computations.

$$
\begin{aligned}
f(z)= & \text { the } y \text { value } \\
& \operatorname{tar} x=2 \\
& \text { Intaiscase } \\
& f(z)=0
\end{aligned}
$$

Which point could be used to find $f(2)$?

- A
(2) B
(3) C
(4) D

21 A sunflower is 3 inches tall at week 0 and grows 2 inches each week. Which functions) shown below can be used to determine the height, $f(n)$, of the sunflower in n weeks?
I. $f(n)=2 n+3$
II. $f(n)=2 n+3(n-1) \quad 3 \neq 2(0)+3(0-1)$
III. $f(n)=f(n-1)+2$ where $f(0)=3$
(1) I and II
(3) III, only
(2) II, only
(4) I and III

If $f(n)=2 n+3$, we can
eliminate 2 and 3 because the answer must include I. II does not work for $(0,3)$. Therefore we choose answer 44 . Algebra I (Common Core) - June '14

$n \mid f(n)$ 0 1
27

$$
39
$$

$$
411
$$

$$
f(n)=2 n+3
$$

22 A cell phone company charges $\$ 60.00$ a month for up to 1 gigabyte
Use this space for of data. The cost of additional data is $\$ 0.05$ per megabyte. If d represents the number of additional megabytes used and c represents the total charges at the end of the month, which linear equation can be used to determine a user's monthly bill?
(1) $c=60-0.05 d$
(3) $c=60 d-0.05$
(2) $c=60.05 d$
(3) $c=60+0.05 d$

$$
\text { cost }=\# 60 \text { constant }+.05 d
$$

23 The formula for the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$. The radius, r, \geq ISolate of the cone may be expressed as
(c) $\sqrt{\frac{3 V}{\pi h}}$
(3) $3 \sqrt{\frac{V}{\pi h}}$

$$
\sqrt{\frac{V}{3 \pi h}}
$$

(2) $\sqrt{\frac{V}{3 \pi h}}$
(4) $\frac{1}{3} \sqrt{\frac{V}{\pi h}}$

$$
V=\frac{1}{3} \pi r^{2} h
$$

$$
\frac{V}{\frac{1}{3} \pi h}=r^{2}
$$

24 The diagrams below represent the first three terms of $\overrightarrow{\mathrm{a}}$ sequence.

$$
\frac{3}{\frac{\pi h}{3}}=r^{2} \rightarrow \frac{3 v}{\pi h}=r^{2}
$$

Term 1
12 shaded

Term 2
16 shaded

Term 3
20 shaded

Assuming the pattern continues, which formula determines a_{n}, the number of shaded squares in the nth term?
(1) $a_{n}=4 n+12$
(3) $a_{n}=4 n+4$
($a_{n}=4 n+8$
(4) $a_{n}=4 n+2$

$$
\begin{aligned}
& a_{(1)}=4(1)+8=12 \\
& a_{(2)}=4(2)+8=16 \\
& a_{(3)}=4(3)+8=20
\end{aligned}
$$

Algebra I (Common Core) - June ' 14

Part II

Answer all 8 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [16]

25 Draw the graph of $y=\sqrt{x}-1$ on the set of axes below.

Algebra I (Common Core) - June '14

26 The breakdown of a sample of a chemical compound is represented by the function $p(t)=300(0.5)^{t}$, where $p(t)$ represents the number of milligrams of the substance and t represents the time, in years. In the function $p(t)$, explain what 0.5 and 300 represent.

27 Given $2 x+a x-7>-12$, determine the largest integer value of a when $x=-1$.

Algebra I (Common Core) - June '14

28 The vertex of the parabola represented by $f(x)=x^{2}-4 x+3$ has coordinates $(2,-1)$. Find the coordinates of the vertex of the parabola defined by $g(x)=f(x-2)$. Explain how you arrived at your answer.
[The use of the set of axes below is optional.]

$$
\begin{aligned}
f(x) & =x^{2}-4 x+3 \quad \text { axis } \\
g(x) & =f(x-2) \\
\therefore g(x) & =(x-2)^{2}-4(x-2)+3 \\
g(x) & =(x-2)(x-2)-4(x-2)+3 \\
g(x) & =x^{2}-2 x-2 x-4-4 x-8+3 \\
g(x) & =x^{2}-8 x+15 \\
a & =1 \quad b=8 \quad c-15
\end{aligned}
$$

axis of symmetry

$$
x=\frac{-b}{2 a}
$$

Explanation
I substituted one function
ito another,
wrote ar
new function
then solved for the
vertex of the new function.

29 On the set of axes below, draw the graph of the equation $y=-\frac{3}{4} x+3 \leqslant y-i n t e r c e p$

$$
\tau_{\text {slope }}=\frac{\operatorname{cisec}^{r n}}{r m}=\frac{-3}{4}
$$

Is the point $(3,2)$ a solution to the equation? Explain your answer based on the graph drawn.

30 The function f has a domain of $\{1,3,5,7\}$ and a range of $\{2,4,6\}$. Could f be represented by $\{(1,2),(3,4),(5,6),(7,2)\}$?

YES The coordinates
Justify your answer.
 the domain and the cor et.

on intersections ot

Hes
$y=2$
$y=4$
$y=6$
 the domain ad

v The domain is on the

$$
\begin{aligned}
& \text { vertical limes } \begin{array}{r}
x=1 \\
x=3
\end{array} \\
& x=3 \\
& x=5 \\
& x=7
\end{aligned}
$$

31 Factor the expression $x^{4}+6 x^{2}-7$ completely.

Algebra I (Common Core) - June '14

32 Robin collected data on the number of hours she watched television on Sunday through Thursday nights for a period of 3 weeks. The data are shown in the table below.

	Sun	Mon	Tues	Wed	Thurs
Week 1	4	3	3.5	2	2
Week 2	4.5	5	2.5	3	1.5
Week 3	4	3	1	1.5	2.5

Using an appropriate scale on the number line below, construct a box plot for the 15 values.

Part III
Answer all 4 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [16]

33 Write an equation that defines $m(x)$ as a trinomial where $m(x)=(3 x-1)(3-x)+4 x^{2}+19$.

$$
\begin{aligned}
& m(x)=(3 x-1)(3-x)+4 x^{2}+19 \\
& m(x)=7 x-3 x^{2}-3+x+4 x^{2}+19 \\
& m(x)=-3 x^{2}+4 x^{2}+9 x+x-3+19 \\
& m(x)=x^{2}+10 x+16
\end{aligned}
$$

Solve for x when $m(x)=0$.

Algebra I (Common Core) - June 'lu

34 A rectangular garden measuring 12 meters by 16 meters is to have a walkway installed around it with a width of x meters, as shown in the diagram below. Together, the walkway and the garden have an area of 396 square meters.

Write an equation that can be used to find x, the width of the walkway

$$
\begin{aligned}
\text { Area (rectangle) } & =(\text { Length }) \text { Wd th } \\
396 & =(16+2 x)(12+2 x)
\end{aligned}
$$

Describe how your equation models the situation.
The garden and wail moke a rectangle with are of $3: 6$ sq. meters. The garden is 16 meters. plus two walk y s (x) Pong, hence the expression $16+2 x$ for length. The garden is $(12+2 x)$ wide Determine and state the width of the walkway, in meters.

$$
\begin{aligned}
& 396=(16+2 x)(2+2 x) \\
& 396=192+32 x+24 x+4 x^{2} \\
& 396=192+56 x+4 x^{2} \\
& 0=-204+56 x+4 x^{2} \\
& 4 x^{2}+56 x-204=0 \\
& a \quad c
\end{aligned}
$$

Algebra I (Common Core) - June ' 14

35 Caitlin has a movie rental card worth $\$ 175$. After she rents the first movie, the card's value is $\$ 172.25$. After she rents the second movie, its value is $\$ 169.50$. After she rents the third movie, the card is worth $\$ 166.75$.
$172.25+x=175$ $y=2.75$

$$
169.50+x=172.25
$$

$$
166 .
$$

Assuming the pattern continues, write an equation to define $A(n)$, the amount of money on the rental card after n rentals.

$$
A_{n}=175-2.75(n)
$$

Caitlin rents a movie every Friday night. How many weeks in a row can she afford to rent a movie, using her rental card only? Explain how you arrived at your answer.

Algebra I (Common Core) - June '14

36 An animal shelter spends $\$ 2.35$ per day to care for each cat and $\$ 5.50$ per day to care for each dog. Pat noticed that the shelter spent $\$ 89.50$ caring for cats and dogs on Wednesday.

$$
\operatorname{Let}(C)= \pm \operatorname{cots} \quad \operatorname{let}(d)= \pm)^{2} \operatorname{cog}
$$

Write an equation to represent the possible numbers of cats and dogs that could have been at the shelter on Wednesday.

$$
2.35(c)+5.50(d)=89.50
$$

Pat said that there might have been 8 cats and 14 dogs at the shelter on Wednesday. Are Pat's numbers possible? Use your equation to justify your answer.

Later, Pat found a record showing that there were a total of 22 cats and dogs at the shelter on Wednesday. How many cats were at the shelter on Wednesday?

$$
\begin{aligned}
& c+d=22 \\
& \text { Use System of Equationstoslue } \\
& 2.35 c+5.50 d=89.50 \\
& c+d=22 \Rightarrow d=(22-c \\
& \begin{aligned}
2.35 c+5.50(22-c) & =89.50 \\
2.35 c+121-5.5 c & =89.50 \\
-3.15 c+121 & =89.50 \\
-3.15 c & =
\end{aligned} \rightarrow c=-31.50
\end{aligned}
$$

Part IV

Answer the question in this part. A correct answer will receive $\mathbf{6}$ credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. A correct numerical answer with no work shown will receive only 1 credit. The answer should be written in pen. [6]

37 A company is considering building a manufacturing plant. They determine the weekly production cost at site A to be $A(x)=3 x^{2}$ while the production cost at site B is $B(x)=8 x+3$, where x represents the number of products, in hundreds, and $A(x)$ and $B(x)$ are the production costs, in hundreds of dollars.

Graph the production cost functions on the set of axes below and label them site A and site B.

Question 37 is continued on the next page.

Question 37 continued

State the positive values) of x for which the production costs at the two sites are equal. Explain how you determined your answer.

If the company plans on manufacturing 200 products per week, which site should they use? Justify your answer.

Algebra I (Common Core) - June 'I4

High School Math Reference Sheet

1 inch $=2.54$ centimeters	1 kilometer $=0.62$ mile	1 cup $=8$ fluid ounces
1 meter $=39.37$ inches	1 pound $=16$ ounces	1 pint $=2$ cups
1 mile $=5280$ feet	1 pound $=0.454$ kilogram	1 quart $=2$ pints
1 mile $=1760$ yards	1 kilogram $=2.2$ pounds	1 gallon $=4$ quarts
1 mile $=1.609$ kilometers	1 ton $=2000$ pounds	1 gallon $=3.785$ liters
		1 liter $=0.264$ gallon
	1 liter $=1000$ cubic centimeters	

Triangle	$A=\frac{1}{2} b h$
Parallelogram	$A=b h$
Circle	$A=\pi r^{2}$
Circle	$C=\pi d$ or $C=2 \pi r$
General Prisms	$V=B h$
Cylinder	$V=\pi r^{2} h$
Sphere	$V=\frac{4}{3} \pi r^{3}$
Cone	$V=\frac{1}{3} \pi r^{2} h$
Pyramid	$V=\frac{1}{3} B h$

Pythagorean Theorem	$a^{2}+b^{2}=c^{2}$
Quadratic Formula	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Arithmetic Sequence	$a_{n}=a_{1}+(n-1) d$
Geometric Sequence	$a_{n}=a_{1} r^{n-1}$
Geometric Series	$S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r}$ where $r \neq 1$
Radians	1 radian $=\frac{180}{\pi}$ degrees
Degrees	1 degree $=\frac{\pi}{180}$ radians
Exponential Growth/Decay	$A=A_{0} e^{k\left(t-t_{0}\right)}+B_{0}$

