

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION

ALGEBRA I

Tuesday, August 16, 2022 — 8:30 to 11:30 a.m., only

Steve leat 107 Student Name

School Name

The possession or use of any communications device is strictly prohibited when taking this examination. If you have or use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

JMAT

Print your name and the name of your school on the lines above.

A separate answer sheet for **Part I** has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet.

This examination has four parts, with a total of 37 questions. You must answer all questions in this examination. Record your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in **Parts II**, **III**, and **IV** directly in this booklet. All work should be written in pen, except for graphs and drawings, which should be done in pencil. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale.

The formulas that you may need to answer some questions in this examination are found at the end of the examination. This sheet is perforated so you may remove it from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will *not* be scored.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice ...

A graphing calculator and a straightedge (ruler) must be available for you to use while taking this examination.

DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN.

Part I

Answer all 24 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. Record your answers on your separate answer sheet. [48]

0 3/8+4

Use this space for computations.

1	If $f(x) = \frac{3x+4}{2}$ then $f(8)$ is		$-\frac{1}{6} = -\frac{3}{6}$	5) + 4	computations.
•	$1 \int (x)^{2} 2$, $1 \int (0)^{15}$		· (b)	Z	
	(1) 21	14	fra = 2	28	
	(2) 16	(4) 4	, (o)	2	· · · · · · · · · · · · · · · · · · ·
			f(8) = 1	4	
2	If $x \neq 0$, then the common rate	atio of the s	sequence x , $2x^2$,	$4x^3, \ 8x^4,$	
	$16x^5, \dots$ is		x - x	, ,	
	$(\mathbf{O}) 2x$	(3) <i>x</i>	$\gamma \sqrt{2} = \chi$	(zx)	
	(0) 0	$(1)^{1}$		x2(2X)	
	(2) 2	$(4) \frac{1}{2}x$	$4\chi^{2} = 2$		
			$8\chi^{4} = 4\chi^{2}$	$\langle 2X \rangle$	
3	The expression $36x^2 - 9$ is equi	ivalent to	36X2	- 9 is a di-	Ference of perfect squares
	(1) $(6x - 3)^2$	(6) $(6x + 3)$	(6x - 3)	A2 R	2 - (A+B) (A-B)
	(2) $(18x - 4.5)^2$	(4) (18x +	(4.5)(18x - 4.5)	H = C	(x12)((x-3)
				36×2-7	= (6x+3) (or 3)
	$C_{\text{rescales by }} = \frac{1}{2} \frac{1}{2$			F	E. G.L.
4	Given the relation $R = \{(-4,2)\}$, (3,6), (x,8),	(-1,4)	n A	1. La and
	Which value of x would make the	nis relation a	function?	Htune	tion has blie
	(X) -4 (-4, 2) and (-4, 8)	(8)3 (3	3,6) and (3,8)	and or	nly one value
	(2)-1(-1,4)and(-1,B)	0 0	8)	C.C.	every value
				of y to	
5	$\begin{array}{c} X Y \\ \text{If the point } (K 5) \text{ lies on the lies} \end{array}$			ot A.	
J	the value of K is	ne wnose eq	y = 1	= 7, then	- 7
	(1) -8	(3) 22		3X + Y	- 1
	(2) -4	(0) <u></u> (2) <u>4</u>		3 (K)+(-"	5) = 1
				28	=12
					÷4
6	The expression $\frac{1}{-r(6r^2 - 3r + 9)}$	9) is equival	ent to	<u> </u>	0
	(1) 0 - 2 - 2 + 2		2 + 0	→×(6×2.	- 5X + Y)
	$(1) 2x^2 - x + 3$	$(1) 2x^3 - x^3$	$x^2 + 3x$	9×3	$-X^{2} + 3X$
	(2) $2x^2 + 3x + 3$	$(4) 2x^3 + 3$	$x^2 + 3x$	21	

Algebra I – Aug. '22

Use this space for computations.

7 The graphs below represent four polynomial functions. Which of these functions has zeros of 2 and -3?

12	At Berkeley Central High School, a survey was conducted to	see
		1
	if students preferred cheeseburgers, pizza, or hot dogs for lu	nch.
	The results of this survey are shown in the table below	

	Cheeseburgers	Pizza	Hot Dogs	Totals
Females	32	44	24	100
Males	36	30	34	100
Totals	68	74	58	200

(a) f(x), h(x), g(x)

Based on this survey, what percent of the students preferred pizza? 74 total pizza lovers 200 total students

(1) 30(3) 44

(2) 37 (4) 74

Algebra I – Aug. '22

(2) g(x), h(x), f(x)

 $\frac{74}{37} = .37 = 37\%$

Use this space for 13 Which situation could be modeled by a linear function? computations. (1) The value of a car depreciates by 7% annually. exponential • A gym charges a \$50 initial fee and then \$30 monthly. $C_{ost} = 30(m) + 50$ (3) The number of bacteria in a lab doubles weekly. Exponential (4) The amount of money in a bank account increases by 0.1% exponential

14 Which function has the *smallest y*-intercept value?

monthly.

$$h(x) = \sqrt{x} - 3 \qquad f(x) = x^2 + 2x - 1 (4) - 2$$

15 When solving $x^2 - 10x - 13 = 0$ by completing the square, which $\chi^{2} - 10x = 13$ equation is a step in the process? $\chi^{2} - 10 \times + (\frac{19}{2})^{2} = 13 + (\frac{19}{2})^{2}$ $(\chi - 5)^{2} = 13 + 25$ $\chi - (\chi - 5)^{2} = 38$ (a) $(x-5)^2 = 38$ (3) $(x - 10)^2 = 38$ (4) $(x - 10)^2 = 12$ (2) $(x - 5)^2 = 12$ 16 When $3x^2 + 7x - 6 + 2x^3$ is written in standard form, the leading coefficient is (1) 7(3) 3> 2x³+3x²+7x-6 1 leading coefficient = 2 IOVER (4) - 6**(1)** 2

Algebra I – Aug. '22

[OVER]

17 Which of the equations below have the same solution?

18 In an organism, the number of cells, C(d), after d days can be represented by the function $C(d) = 120 \cdot 2^{3d}$. This function can also be expressed as

 $C(d) = 120 \cdot 2^{3d}$ $C(d) = 120 \cdot 2^{3(d)}$ $C(d) = 120 \cdot 8^{d}$

Use this space for

(1) $C(d) = 240^{3d}$ (2) $C(d) = 960 \cdot 2^d$

19 In the process of solving the equation $10x^2 - 12x - 16x = 6$, George In the process of solving the equation $10x^2 - 12x - 10x - 0$, George wrote $2(5x^2 - 14x) = 2(3)$, followed by $5x^2 - 14x = 3$. Which properties justify George's process? A. addition property of equality B. division property of equality D stribution C and C an

(3) $C(d) = 120 \cdot 6^d$

(b) $C(d) = 120 \cdot 8^d$

- C. commutative property of addition
- D. distributive property
- (1) A and C(3) D and C
- (2) A and B😰 D and B

20 A sequence is defined recursively by

$$a_{1} = -2$$

$$a_{n} = 3a_{n-1} + 1$$
What is the value of a_{4} ?
(c) -41
(2) -14
(2) -14
(4) 67
(4) 67
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5) +1
(5

21 A swimmer set a world record in the women's 1500-meter freestyle, finishing the race in 15.42 minutes. If 1 meter is approximately 3.281 feet, which set of calculations could be used to convert her speed to miles per hour?

(1)	1500 meters	60 min	1 meter	1 mile		meters	. min . mile	-
(1)	15.42 min	1 hour	3.281 feet	5280 feet	-4	min . h	our feet	
	1500 meters	60 min	3.281 feet	1 mile		miles		
U	15.42 min	1 hour	Imeter	5280 feet	4	hours		
(3)	$\frac{1500 \text{ meters}}{15.42}$	$\frac{3.281 \text{fe}}{1}$	et 1 mile		-> -	niles		
	15.42 min		r 5280166	et		nin Li	o <	
(4)	$\frac{1500 \text{ meters}}{15.42 \text{ min}}$	$\frac{60\mathrm{mm}}{1\mathrm{hour}}$	$\frac{1 \text{ mile}}{5280 \text{ feet}}$	-27	me	ters mi	Ŧ	
	10.12	Inour	02001000		no			

22 The diagram below shows the graph of h(t), which models the height, in feet, of a rocket t seconds after it was shot into the air.

Use this space for computations.

23 The table below shows the time, in hours, spent by students on electronic devices and their math test scores. The data collected model a linear regression.

2> Use graphing calculator Time Spent on an **Math Test Score** Electronic Device (hours) 3 85 1 99 4 81 0 98 3 90 7 65 5 .78 2 90

r = -.9771821586(=-.98

What is the correlation coefficient, to the nearest hundredth, for these data?

((3) 0.98
(2) - 0.95	$(4) \ 0.95$

24 The volume of a trapezoidal prism can be found using the formula

 $V = \frac{1}{2}a(b + c)h$. Which equation is correctly solved for *b*? (1) $b = \frac{V}{2ah} + c$ (3) $b = \frac{2V}{ah} + c$

(2)
$$b = \frac{V}{2ah} - c$$
 (2) $b = \frac{2V}{ah} - c$

 $V = \pm a(b+c)h$ ZV = a(b+c)h $\frac{2V}{aYh} = b+c$ $\frac{2V}{aYh} - c = b$

$$b = \frac{2V}{ah} - C$$

Part II

Answer all 8 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [16]

26 The table below shows the value of a particular car over time.

Λ.		-	- A .
	Time (years)	Value (dollars)	
5/	0	20,000	-9450
52	5	10,550	-119RO
~ ~ ~	10	5570	> 2630
	15	2940	~ 1200
> `	20	1550	1510

Determine whether a linear or exponential function is more appropriate for modeling this data. Explain your choice.

slope =
$$\frac{\Lambda y}{\Lambda x}$$
 = $\frac{5}{9450}$ and $\frac{5}{97}$ and $\frac{5}{2430}$ or $\frac{5}{1390}$
The slope is not constant. Therefore,
exponential is more appropriate.

27 Is the product of $\sqrt{8}$ and $\sqrt{98}$ rational or irrational? Justify your answer.

 $JB \cdot J \overline{98} = \overline{784} = 28$ Rational 28 is a rational number because it can be expressed as the ratio of two integers, as in 28

[OVER]

28 The ages of the last 16 United States presidents on their first inauguration day are shown in the table below.

, 51	,54	<u>,</u> 51	<u>,</u> 60
£2	<u>,</u> 43	55	56
61	<i>,</i> 52	69	<i>,</i> 64
, 46	,54	AT	70

$$Q_{1} = 51$$

$$IQR = Q_{3} - Q_{1}$$

$$Median = 54.5$$

$$IQR = 61.5 - 51$$

$$IQR = 10.5$$

$$Max = 70$$

17

29 The cost of one pound of grapes, g, is 15 cents more than one pound of apples, a. g = a + 15The cost of one pound of bananas, b, is twice as much as one pound of grapes. b = 29

Write an equation that represents the cost of one pound of bananas in terms of the cost of one pound of apples.

$$b = 29$$

 $g = a + 15$
 $b = 2(a + 15)$
 $b = 2a + 30$

30 A student is given the functions $f(x) = (x + 1)^2$ and $g(x) = (x + 3)^2$.

Describe the transformation that maps f(x) onto g(x).

Every point on the graph of f(x) moves 2 units to the left.

31 Solve $3x^2 - 5x - 7 = 0$ algebraically for all values of x, rounding to the *nearest tenth*.

$$Qx^{2} + bx + C = 0$$

$$3x^{2} - 5x - 7 = 0$$

$$a=3 \quad b=-5 \quad c=-7$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-(-5) \pm \sqrt{(-5)^{2} - (4)(3)(7)}}{2(3)}$$

$$x = \frac{5 \pm \sqrt{25 + 84}}{6}$$

$$x = \frac{5 \pm \sqrt{10.94}}{6}$$

$$x = \frac{5 \pm \sqrt{10.94}}{6}$$

$$x = \frac{5 \pm 10.44}{6}$$

$$x = \frac{-5.44}{6}$$

$$x = \frac{-5.44}{6}$$

$$x = \frac{-5.44}{6}$$

$$x = 2.4$$

32 Factor completely:
$$3y^2 - 12y - 288$$

$$\frac{3y^2}{3} - \frac{12y}{3} - \frac{288}{3}$$

$$3(y^2 - 4y - 96)$$
Factors must multiply to -96 and sum to -4
Factors of 96

$$2 \quad 48$$

$$3 \quad 32$$

$$4 \quad 24$$

$$6 \quad 16$$

$$8 \quad 12 \quad \leftarrow \text{ difference is 4}$$

$$+8 \text{ and } -12 \text{ sum to } (-4)$$

$$(+8)(-12) \text{ multiply to } (-96)$$

$$3(y+8)(y-12)$$

Part III

Answer all 4 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [16]

Algebra I - Aug. '22

q \$1.99x

35 A store sells grapes for \$1.99 per pound, strawberries for \$2.50 per pound, and pineapples for \$2.99 each. Jonathan has \$25 to buy fruit. $f = \frac{\#_2}{5.98}$. He plans to buy 2 more pounds of strawberries than grapes. He also plans to buy 2 pineapples.
If x represents the number of pounds of grapes, write an inequality in one variable that models this scenario.
$#1.99x + #2.50(x+2) + #5.98 \leq #25.00$
Determine algebraically the maximum number of whole pounds of grapes he can buy.
$1.99x + 2.5(x+2) + 5.98 \le 25$
$1.99 \times + 2.5 \times + 5 + 5.98 \le 25$
4.49 × + 10.98 5 25
4.49X <u>< 14.02</u>
X = 3.122
He can buy [3] while pounds of grapes.
Check 1.99(3) + 2.5(3+2) + 5.98 ≤ 25
5.97 + 12.5 + 5.10 - 25 24.45 525 V
· · · ·

Part IV

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided to determine your answer. Note that diagrams are not necessarily drawn to scale. A correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [6]

37 An ice cream shop sells small and large sundaes. One day, 30 small sundaes and 50 large sundaes were sold for \$420. Another day, 15 small sundaes and 35 large sundaes were sold for \$270. Sales tax is included in all prices. Eq. 2 If x is the cost of a small sundae and y is the cost of a large sundae, write a system of equations to represent this situation. $E_{9.1}$ 30x + 50y = 420 Eq. 2 15x + 35y = 270 No Peyton thinks that small sundaes cost \$2.75 and large sundaes cost \$6.75. Is Peyton correct? Justify your answer. 2times Eq2 $30 \times +70 = 540$ Subtract Eq1 $30 \times +50 = 420$ 20 = 120Large sundaes cost \$600 Peyton is wrong. Using your equations, determine algebraically the cost of one small sundae and the cost of one Large sundaes Gost \$600 - see above large sundae. 30 x + 50 (6) = 420 30 x + 300 = 420 120 30 X Small surdaes cost \$ 400 15(4) + 35(6) = 270 Check 30(4) + 50(6) = 420 60 + 210 = 270 270 = 270 120 + 300 = 420 +300 = 420420 = 420 Eq²