Tuesday, August 16, 2022 - 8:30 to 11:30 a.m., only

Student Name

School Name \qquad

The possession or use of any communications device is strictly prohibited when taking this examination. If you have or use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

Print your name and the name of your school on the lines above.
A separate answer sheet for Part I has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet.

This examination has four parts, with a total of 37 questions. You must answer all questions in this examination. Record your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. All work should be written in pen, except for graphs and drawings, which should be done in pencil. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale.

The formulas that you may need to answer some questions in this examination are found at the end of the examination. This sheet is perforated so you may remove it from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will not be scored.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice ...

A graphing calculator and a straightedge (ruler) must be available for you to use while taking this examination.

Part I

Answer all 24 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. Record your answers on your separate answer sheet. [48]

1 If $f(x)=\frac{3 x+4}{2}$, then $f(8)$ is

$$
f(8)=\frac{3(8)+4}{2}
$$

Use this space for
(1) 21
(2) 16
(3) 14

$$
\begin{aligned}
& f(8)=\frac{28}{2} \\
& f(8)=14
\end{aligned}
$$

computations.

2 If $x \neq 0$, then the common ratio of the sequence $x, 2 x^{2}, 4 x^{3}, 8 x^{4}$, $16 x^{5}, \ldots$ is
(4) $2 x$
(3) x

$$
x=x
$$

(2) 2
(4) $\frac{1}{2} x$

$$
2 x^{2}=x(2 x)
$$

$4 x^{3}=2 x^{2}(2 x)$
$8 x^{4}=4 x^{3}(2 x)$
3 The expression $36 x^{2}-9$ is equivalent to $36 x^{2}-9$ is a difference of perfectsquars
(1) $(6 x-3)^{2}$
(6) $(6 x+3)(6 x-3)$
(2) $(18 x-4.5)^{2}$
(4) $(18 x+4.5)(18 x-4.5)$
$A^{2}-B^{2}=(A+B)(A-B)$
$36 x^{2}-9=(6 x+3)(6 x-3)$
4 Given the relation $R=\{(-4,2),(3,6),(x, 8),(-1,4)\}$
Which value of x would make this relation a function? (1) $-4(-4,2)$ and $(-4,8)$ (8) 3 (3,6$)$ and $(3,8)$ (2) $-1(-1,4)$ and $(-1,8)$ (0,8) and only one value.

5 If the point $(\underset{K}{X},-\stackrel{y}{5})$ lies on the line whose equation is $3 x+y=7$, then the value of K is
(1) -8
(3) 22
(2) -4
(1) 4

$$
\begin{aligned}
3 x+y & =7 \\
3(k)+(-5) & =7 \\
3 k & =12 \\
k & =4
\end{aligned}
$$

6 The expression $\frac{1}{3} x\left(6 x^{2}-3 x+9\right)$ is equivalent to
(1) $2 x^{2}-x+3$
(c) $2 x^{3}-x^{2}+3 x$
(2) $2 x^{2}+3 x+3$
(4) $2 x^{3}+3 x^{2}+3 x$

$$
\begin{array}{r}
\frac{1}{3} x\left(6 x^{2}-3 x+9\right) \\
2 x^{3}-x^{2}+3 x
\end{array}
$$

7 The graphs below represent four polynomial functions. Which of these functions has zeros of 2 and -3 ?

constant term 8 What is the constant term of the polynomial $4 d+6+3 d^{2}$?
$\begin{array}{ll}\text { (1) } 6 & \text { (3) } 3\end{array}$
(2) 2
(4) 4
variable term

9 Emily was given $\$ 600$ for her high school graduation. She invested it in an account that earns 2.4% interest per year. If she does not make any

$$
A=P(1+r)^{t}
$$ deposits or withdrawals, which expression can be used to determine the amount of money that will be in the account after 4 years?

$$
P=600
$$

$$
r=2.4 \%=.024
$$

$$
t=4
$$

10 Different ways to represent data are shown below.

Use this space for computations.

II

IV

Which data representations have a median of 2?
(0) I and II, only
(3) II and HIT, only
(2) I and UII, only
(4) I, II, and H^{\prime}

21 data points
"II is in the middle of 21 points $11^{\text {th }}$ data point is a 3 .

11 What would be the order of these quadratic functions when they are

$$
\begin{aligned}
& \qquad \begin{array}{lll}
m=-5 & m=5 & m=3 \\
f(x)=-5 x^{2} & g(x)=0.5 x^{2} & h(x)=3 x^{2}
\end{array} \quad \text { The narrowest graph has } \\
& |m|=5
\end{aligned} \quad \text { the largest lm al. }
$$

(1) $f(x), g(x), h(x)$
(2) $g(x), h(x), f(x)$ if students preferred cheeseburgers, pizza, or hot dogs for lunch.
The results of this survey are shown in the table below.

	Cheeseburgers	Pizza	Hot Dogs	Totals
Females	32	44	24	100
Males	36	30	34	100
Totals	68	74	58	200

Based on this survey, what percent of the students preferred pizza?
(1) 30
(3) 44
(2) 37
(4) 74

Algebra I - Aug. ’22

$$
\frac{24 \text { total pizza lovers }}{200 \text { total students }}
$$

$$
\begin{align*}
& 200 \text { total students } \tag{4}\\
& \frac{74}{200}=.37=37 \%
\end{align*}
$$

13 Which situation could be modeled by a linear function?
Use this space for
(1) The value of a car depreciates by 7% annually. exponential computations.
(1.) A gym charges a $\$ 50$ initial fee and then $\$ 30$ monthly. Cost $=30(\mathrm{~m})+50$
(3) The number of bacteria in a lab doubles weekly. exponential
(4) The amount of money in a bank account increases by 0.1% exponential monthly.

14 Which function has the smallest y-intercept value?

\mathbf{x}	$\mathbf{g}(\mathbf{x})$
-2	3
0	1
1	0
3	-2

(1)

(3)

$$
h(x)=\sqrt{x}-3
$$

-3

$$
f(x)=x^{2}+2 x-1
$$

(4)
\qquad
15 When solving $x^{2}-10 x-13=0$ by completing the square, which equation is a step in the process?
$(x-5)^{2}=38$
(3) $(x-10)^{2}=38$
(2) $(x-5)^{2}=12$
(4) $(x-10)^{2}=12$

$$
\begin{aligned}
x^{2}-10 x & =13 \\
x^{2}-10 x+\left(\frac{-10}{2}\right)^{2} & =13+\left(-\frac{10}{2}\right)^{2} \\
(x-5)^{2} & =13+25 \\
(x-5)^{2} & =38
\end{aligned}
$$

16 When $3 x^{2}+7 x-6+2 x^{3}$ is written in standard form, the leading coefficient is
(1) 7
(3) 3

2
(4) -6

17 Which of the equations below have the same solution?
1.. $10(x-5)=-15 \rightarrow \quad X=3.5<$ (
(1) I and II, only
(2) II and III, only
(2) I and III, only
(4) I, II, and III
II. $4+2(x-2)=9 \rightarrow X=4.5$
III. $\frac{1}{3} x=\frac{3}{2} \longrightarrow X=4.5$

Use this space for (土) computations. (II)

$$
\begin{array}{rlrl}
10(x-5) & =-15 & 4+2(x-2)=9 \\
10 x-50 & =-15 & 4+2 x-4=9 \\
10 x & =35 & 2 x=9 \\
x & =3.5 & x=4.5 \\
& (\text { III) } & &
\end{array}
$$

$$
\begin{aligned}
\frac{1}{3} x & =\frac{3}{2} \\
\frac{x}{3} & =\frac{3}{2} \\
2 x & =9 \\
x & =4.5
\end{aligned}
$$

18 In an organism, the number of cells, $C(d)$, after d days can be represented by the function $C(d)=120 \cdot 2^{3 d}$. This function can also be expressed as
(1) $C(d)=240^{3 d}$
(3) $C(d)=120 \cdot 6^{d}$
(2) $C(d)=960 \cdot 2^{d}$
(2) $C(d)=120 \cdot 8^{d}$

$$
\begin{aligned}
& C(d)=120 \cdot 2^{3 d} \\
& C(d)=120 \cdot 2^{3(d)} \\
& C(d)=120 \cdot 8^{d}
\end{aligned}
$$

19 In the process of solving the equation $10 x^{2}-12 x-16 x=6$, George wrote $2\left(5 x^{2}-14 x\right)=2(3)$, followed by $5 x^{2}-14 x=3$. Which properties justify George's process? $\quad<$ Division Property of Equality
A. addition property of equality
B. division property of equality
C. commutative property of addition
D. distributive property
(1) A and C
(3) D and C
(2) A and B
*) D and B

20 A sequence is defined recursively by

$$
\begin{gathered}
a_{1}=-2 \\
a_{n}=3 a_{n-1}+1
\end{gathered}
$$

What is the value of a_{4} ?
(사) -41
(3) 22
(2) -14
(4) 67

Use this space for computations.

21 A swimmer set a world record in the women's $1500-$ meter freestyle, finishing the race in 15.42 minutes. If 1 meter is approximately 3.281 feet, which set of calculations could be used to convert her speed to miles per hour?
(1) $\frac{1500 \text { meters }}{15.42 \text { min }} \cdot \frac{60 \text { min }}{1 \text { hour }} \cdot \frac{1 \text { meter }}{3.281 \text { feet }} \cdot \frac{1 \text { mile }}{5280 \text { feet }} \quad \sim \frac{\text { meters }{ }^{2} \text { min. mile }}{\min \cdot \text { hour. feet }{ }^{2}}$
(1) $\frac{1500 \text { meters }}{15.42 \mathrm{pmin}} \cdot \frac{60 \mathrm{mmln}}{1 \text { hour }} \cdot \frac{3.281 \text { feet }}{1 \text { meter }} \cdot \frac{1 \text { mile }}{5280 \text { feet }}$ $\rightarrow \frac{\text { miles }}{\text { hours }}$
(3) $\frac{1500 \text { meters }}{15.42 \mathrm{~min}} \cdot \frac{3.281 \text { feet }}{1 \text { meter }} \cdot \frac{1 \text { mile }}{5280 \text { feet }}$
$\xrightarrow{2} \frac{\text { miles }}{\text { min }}$
(4) $\frac{1500 \text { meters }}{15.42 \text { min }} \cdot \frac{60 \text { min }}{1 \text { hour }} \cdot \frac{1 \text { mile }}{5280 \text { feet }}$
$\rightarrow \frac{\text { meters n miles }}{\text { hours }}$

22 The diagram below shows the graph of $h(t)$, which models the height, in feet, of a rocket t seconds after it was shot into the air.

The domain of $h(t)$ is
(1) $(0,4)$
(3) $(0,64)$
(a) $[0,4]$
(4) $[0,64]$

23 The table below shows the time, in hours, spent by students on computations. electronic devices and their math test scores. The data collected model a linear regression.

Time Spent on an Electronic Device (hours)	Math Test Score
3	85
1	99
4	81
0	98
3	90
7	65
5	78
2	90

What is the correlation coefficient, to the nearest hundredth, for these data?
-0.98
(3) 0.98
(2) -0.95
(4) 0.95

24 The volume of a trapezoidal prism can be found using the formula $V=\frac{1}{2} a(b+c) h$. Which equation is correctly solved for b ?

$$
\text { (1) } b=\frac{V}{2 a h}+c
$$

$$
\text { (3) } b=\frac{2 V}{a h}+c
$$

$$
\text { (2) } b=\frac{V}{2 a h}-c
$$

$$
\text { (3) } b=\frac{2 V}{a h}-c
$$

$$
\begin{aligned}
& V=\frac{1}{2} a(b+c) h \\
& 2 V=a(b+c) h \\
& \frac{2 V}{(a x h)}=b+c \\
& \frac{2 V}{a h}-c=b \\
& b=\frac{2 V}{a h}-c
\end{aligned}
$$

Part II

Answer all 8 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [16]

25 Graph $f(x)=|x+1|$ on the set of axes below.

26 The table below shows the value of a particular car over time.

Determine whether a linear or exponential function is more appropriate for modeling this data. Explain your choice.

$$
\text { slope }=\frac{\Delta y}{\Delta x}=\frac{5}{9450} \text { and } \frac{5}{4980} \text { and } \frac{5}{2630} \text { and } \frac{5}{1390}
$$

$$
\begin{aligned}
& \text { The slope is not constant. Therefore, } \\
& \text { exponential is more appropriate. }
\end{aligned}
$$

27 Is the product of $\sqrt{8}$ and $\sqrt{98}$ rational or irrational? Justify your answer.

$$
\sqrt{8} \cdot \sqrt{98}=\sqrt{784}=28
$$

Rational
28 is a rational number because it can be expressed as the ratio of two integers, as in $\frac{28}{1}$

28 The ages of the last 16 United States presidents on their first inauguration day are shown in the table below.

51	54	51	60
62	43	55	56
61	52	60	64
46	54	47	70

Determine the interquartile range for this set of data.

$$
\min =43
$$

$$
Q_{1}=51
$$

$$
\text { Median }=54.5
$$

$$
\begin{aligned}
Q_{3} & =61.5 \\
\max & =70
\end{aligned}
$$

$$
\begin{aligned}
& I Q R=Q_{3}-Q_{1} \\
& I Q R=61.5-51 \\
& I Q R=10.5
\end{aligned}
$$

$$
\begin{aligned}
& 51=Q_{1} \\
& 54.5=Q_{2} \\
& 61.5=Q_{3}
\end{aligned}
$$

29 The cost of one pound of grapes, g, is 15 cents more than one pound of apples, $a . \quad g=a+15$ The cost of one pound of bananas, b, is twice as much as one pound of grapes. $\quad b=2 g$
Write an equation that represents the cost of one pound of bananas in terms of the cost of one pound of apples.

$$
\begin{aligned}
b & =29 \\
g & =a+15 \\
\therefore b & =2(a+15) \\
b & =2 a+30
\end{aligned}
$$

30 A student is given the functions $f(x)=(x+1)^{2}$ and $g(x)=(x+3)^{2}$.
Describe the transformation that maps $f(x)$ onto $g(x)$.

$$
\begin{aligned}
& \text { Every point on the graph of } f(x) \\
& \text { moves } 2 \text { wits to the left. }
\end{aligned}
$$

31 Solve $3 x^{2}-5 x-7=0$ algebraically for all values of x, rounding to the nearest tenth.

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& 3 x^{2}-5 x-7=0 \\
& a=3 \quad b=-5 \quad c=-7
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-(4)(3)}}{2(3)} \\
& x=\frac{5 \pm \sqrt{25+84}}{6}
\end{aligned}
$$

$$
x=\frac{5 \pm \sqrt{109}}{6}
$$

$$
x=\frac{5 \pm 10.44}{6}
$$

$$
\left.x=\frac{5+10.44}{6} \right\rvert\, x=\frac{5-10.44}{6}
$$

$$
x=\frac{15.44}{6}
$$

$$
x \approx 2.6
$$

$$
\begin{aligned}
& x=\frac{-5.44}{6} \\
& x \approx-.9
\end{aligned}
$$

32 Factor completely: $\quad 3 y^{2}-12 y-288$

$$
\begin{aligned}
& \frac{3 y^{2}}{3}-\frac{12 y}{3}-\frac{288}{3} \\
& 3\left(y^{2}-4 y-96\right)
\end{aligned}
$$

Factors must multiply to -96 and sum to -4 Factors of 96
$\begin{array}{ll} \\ 2 & 48 \\ 3 & 32 \\ 4 & 24 \\ 6 & 16 \\ 8 & 12\end{array}$

$$
\begin{aligned}
& +8 \text { and }-12 \text { sum to }(-4) \\
& (+8)(-12) m u l t i p y \text { to }(-96) \\
& 3(y+8)(y-12)
\end{aligned}
$$

Part III

Answer all 4 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [16]

33 Thomas took a 140-mile bus trip to visit his grandparents. His trip is outlined on the graph below.

Explain what might have happened in the interval between D and E.

$$
\text { Bus stopped for } 30 \mathrm{minntes}
$$

State the interval in which the bus traveled the fastest.

State how many miles per hour the bus was traveling during this interval.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{110-20}{2.5-1}=\frac{90 \text { miles }}{1.5 \text { hours }}=\frac{60 \text { miles }}{1 \text { hour }}=68 \mathrm{mph}$
What was the average rate of speed, in miles per hour, for Thomas's entire bus trip?

$$
=\frac{35 \text { miles }}{1 \text { tour }}=35 \mathrm{mph}
$$

34 Graph $f(x)$ and $g(x)$ on the set of axes below.

$$
\begin{gathered}
f(x)=x^{2}-4 x+3 \\
g(x)=\frac{1}{2} x+1
\end{gathered}
$$

Based on your graph, state one value of x that satisfies $f(x)=g(x)$. Explain your reasoning.
 functions balance.

35 A store sells grapes for $\$ 1.99$ per pound, strawberries for $\$ 2.50$ per pound, and pineapples for $\$ 2.99$ each. Jonathan has $\$ 25$ to buy fruit. $S==^{\$} 2.50(x+2)$
He plans to buy 2 more pounds of strawberries than grapes. He also plans to buy 2 pineapples.
If x represents the number of pounds of grapes, write an inequality in one variable that models this scenario.

$$
\neq 1.99 x+\# 2.50(x+2)+\# 5.98 \leq 25.00
$$

Determine algebraically the maximum number of whole pounds of grapes he can buy.

$$
\begin{aligned}
1.99 x+2.5(x+2)+5.98 & \leq 25 \\
1.99 x+2.5 x+5+5.98 & \leq 25 \\
4.49 x+10.98 & \leq 25 \\
4.49 x & \leq 14.02 \\
x & \leq 3.122
\end{aligned}
$$

He can bey 3 whole pounds of grapes.

Cher

$$
\begin{aligned}
1.99(3)+2.5(3+2)+5.98 & \leq 25 \\
5.97+12.5+5.98 & \leq 25 \\
24.45 & \leq 25
\end{aligned}
$$

36 Solve the system of inequalities graphically on the set of axes below. Label the solution set S.

$$
\begin{aligned}
& y+3 x<5 \\
& 1 \geq 2 x-y \sim y<-3 x+5 \\
& y \rightarrow-1 \leq-2 x+y \\
& 2 x-1 \leq y \\
& y \geq 2 x-1 \\
& \text { solid line }
\end{aligned}
$$

Is the point $(-5,0)$ in the solution set? Explain your answer. \square Yes the point $(-5,0)$ satisfies both inequalities.

$$
\begin{aligned}
y+3 x & <5 \\
0-15 & <5 \\
-15 & <5 .
\end{aligned}
$$

$$
\begin{aligned}
& 1 \geq 2 x-y \\
& 1 \geq 2(-5)-0 \\
& 1 \geq-10
\end{aligned}
$$

Algebra I - Aug. ’22

Part IV
Answer the question in this part. A correct answer will receive $\mathbf{6}$ credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided to determine your answer. Note that diagrams are not necessarily drawn to scale. A correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [6]

37 An ice cream shop sells small and large sundaes. One day, 30 small sundaes and 50 large sundaes were sold for $\$ 420$. Another day, 15 small sundaes and 35 large sundaes were sold for $\$ 270$ Sales tax is included in all prices.

$$
E_{q .}{ }^{2}
$$

If x is the cost of a small sundae and y is the cost of a large sundae, write a system of equations to represent this situation.

$$
\begin{array}{ll}
\text { Eq. } 1 & 30 x+50 y=420 \\
E_{q .2} 2 & 15 x+35 y=270
\end{array}
$$

Peyton thinks that small sundaes cost $\$ 2.75$ and large sundaes cost $\$ 6.75$. Is Peyton correct? Justify your answer.
2 times $E_{q} \quad 30 x+70 y=540$
Subtract Eq' $\begin{aligned} 30 x+50 y & =420 \\ 20 y & =120 \\ y & =6\end{aligned}$ Large sundaes cost \#600 Peyton is wrong.

Using your equations, determine algebraically the cost of one small sundae and the cost of one large sundae.

$$
\begin{aligned}
& \text { Large sundaes cost } \\
& \begin{aligned}
& \text { Lad. } \\
& 30 x+50(6)=420 \\
& 30 x+300=420 \\
& 30 x=120 \\
& x=4
\end{aligned}
\end{aligned}
$$

$x=4$
Small sundaes cost $\$ 400$
Chert

$$
\text { Eq } \quad \begin{aligned}
30(4)+50(6) & =420 \\
120+300 & =420 \\
420 & =420
\end{aligned} \quad E q^{2}
$$

$$
15(4)+35(6)=270
$$

$$
\begin{aligned}
60+210 & =270 \\
& =770
\end{aligned}
$$

$$
270=270
$$

$$
\sqrt{2}
$$

Algebra I - Aug. '22

