1 Which statement is not always true?
 1) The product of two irrational numbers is irrational.
 2) The product of two rational numbers is rational.
 3) The sum of two rational numbers is rational.
 4) The sum of a rational number and an irrational number is irrational.

2 A satellite television company charges a one-time installation fee and a monthly service charge. The total cost is modeled by the function \(y = 40 + 90x \). Which statement represents the meaning of each part of the function?
 1) \(y \) is the total cost, \(x \) is the number of months of service, \$90 is the installation fee, and \$40 is the service charge per month.
 2) \(y \) is the total cost, \(x \) is the number of months of service, \$40 is the installation fee, and \$90 is the service charge per month.
 3) \(x \) is the total cost, \(y \) is the number of months of service, \$40 is the installation fee, and \$90 is the service charge per month.
 4) \(x \) is the total cost, \(y \) is the number of months of service, \$90 is the installation fee, and \$40 is the service charge per month.

3 If \(4x^2 - 100 = 0 \), the roots of the equation are
 1) \(-25\) and \(25\)
 2) \(-25\), only
 3) \(-5\) and \(5\)
 4) \(-5\), only
4 Isaiah collects data from two different companies, each with four employees. The results of the study, based on each worker’s age and salary, are listed in the tables below.

<table>
<thead>
<tr>
<th>Company 1</th>
<th>Company 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker’s Age in Years</td>
<td>Salary in Dollars</td>
</tr>
<tr>
<td>25</td>
<td>30,000</td>
</tr>
<tr>
<td>27</td>
<td>32,000</td>
</tr>
<tr>
<td>28</td>
<td>35,000</td>
</tr>
<tr>
<td>33</td>
<td>38,000</td>
</tr>
</tbody>
</table>

Which statement is true about these data?

1) The median salaries in both companies are greater than $37,000.
2) The mean salary in company 1 is greater than the mean salary in company 2.
3) The salary range in company 2 is greater than the salary range in company 1.
4) The mean age of workers at company 1 is greater than the mean age of workers at company 2.
5) Which point is not on the graph represented by $y = x^2 + 3x - 6$?
 1) $(-6, 12)$
 2) $(-4, -2)$
 3) $(2, 4)$
 4) $(3, -6)$

6) A company produces x units of a product per month, where $C(x)$ represents the total cost and $R(x)$ represents the total revenue for the month. The functions are modeled by $C(x) = 300x + 250$ and $R(x) = -0.5x^2 + 800x - 100$. The profit is the difference between revenue and cost where $P(x) = R(x) - C(x)$. What is the total profit, $P(x)$, for the month?
 1) $P(x) = -0.5x^2 + 500x - 150$
 2) $P(x) = -0.5x^2 + 500x - 350$
 3) $P(x) = -0.5x^2 - 500x + 350$
 4) $P(x) = -0.5x^2 + 500x + 350$
7 What is one point that lies in the solution set of the system of inequalities graphed below?

1) (7, 0)
2) (3, 0)
3) (0, 7)
4) (−3, 5)

8 The value of the x-intercept for the graph of $4x - 5y = 40$ is

1) 10
2) $\frac{4}{5}$
3) $\frac{-4}{5}$
4) −8

9 Sam and Jeremy have ages that are consecutive odd integers. The product of their ages is 783. Which equation could be used to find Jeremy’s age, j, if he is the younger man?

1) $j^2 + 2 = 783$
2) $j^2 - 2 = 783$
3) $j^2 + 2j = 783$
4) $j^2 - 2j = 783$

10 A population that initially has 20 birds approximately doubles every 10 years. Which graph represents this population growth?

1)
2)
3)
4)

11 Let f be a function such that $f(x) = 2x - 4$ is defined on the domain $2 \leq x \leq 6$. The range of this function is

1) $0 \leq y \leq 8$
2) $0 \leq y < \infty$
3) $2 \leq y \leq 6$
4) $-\infty < y < \infty$
12 Which situation could be modeled by using a linear function?
 1) a bank account balance that grows at a rate of 5% per year, compounded annually
 2) a population of bacteria that doubles every 4.5 hours
 3) the cost of cell phone service that charges a base amount plus 20 cents per minute
 4) the concentration of medicine in a person’s body that decays by a factor of one-third every hour

13 Which graph shows a line where each value of y is three more than half of x?
14 The table below shows the average diameter of a pupil in a person’s eye as he or she grows older.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Average Pupil Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>4.7</td>
</tr>
<tr>
<td>30</td>
<td>4.3</td>
</tr>
<tr>
<td>40</td>
<td>3.9</td>
</tr>
<tr>
<td>50</td>
<td>3.5</td>
</tr>
<tr>
<td>60</td>
<td>3.1</td>
</tr>
<tr>
<td>70</td>
<td>2.7</td>
</tr>
<tr>
<td>80</td>
<td>2.3</td>
</tr>
</tbody>
</table>

What is the average rate of change, in millimeters per year, of a person’s pupil diameter from age 20 to age 80?
1) 2.4 2) 0.04 3) −2.4 4) −0.04

15 Which expression is equivalent to $x^4 - 12x^2 + 36$?
1) $(x^2 - 6)(x^2 - 6)$
2) $(x^2 + 6)(x^2 + 6)$
3) $(6 - x^2)(6 + x^2)$
4) $(x^2 + 6)(x^2 - 6)$

16 The third term in an arithmetic sequence is 10 and the fifth term is 26. If the first term is a_1, which is an equation for the nth term of this sequence?
1) $a_n = 8n + 10$
2) $a_n = 8n - 14$
3) $a_n = 16n + 10$
4) $a_n = 16n - 38$

17 The graph of the equation $y = ax^2$ is shown below.

If a is multiplied by $-\frac{1}{2}$, the graph of the new equation is
1) wider and opens downward
2) wider and opens upward
3) narrower and opens downward
4) narrower and opens upward

18 The zeros of the function $f(x) = (x + 2)^2 - 25$ are
1) −2 and 5
2) −3 and 7
3) −5 and 2
4) −7 and 3
19. During the 2010 season, football player McGee’s earnings, \(m \), were 0.005 million dollars more than those of his teammate Fitzpatrick’s earnings, \(f \). The two players earned a total of 3.95 million dollars. Which system of equations could be used to determine the amount each player earned, in millions of dollars?

1) \(m + f = 3.95 \)
2) \(m + 0.005 = f \)
3) \(f + 0.005 = m \)
4) \(m + f = 3.95 \)

20. What is the value of \(x \) in the equation \(\frac{x - 2}{3} + \frac{1}{6} = \frac{5}{6} \)?

1) 4
2) 6
3) 8
4) 11

21. The table below shows the number of grams of carbohydrates, \(x \), and the number of Calories, \(y \), of six different foods.

<table>
<thead>
<tr>
<th>Carbohydrates (x)</th>
<th>Calories (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>120</td>
</tr>
<tr>
<td>9.5</td>
<td>138</td>
</tr>
<tr>
<td>10</td>
<td>147</td>
</tr>
<tr>
<td>6</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>108</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
</tr>
</tbody>
</table>

Which equation best represents the line of best fit for this set of data?

1) \(y = 15x \)
2) \(y = 0.07x \)
3) \(y = 0.1x - 0.4 \)
4) \(y = 14.1x + 5.8 \)
22 A function is graphed on the set of axes below.

Which function is related to the graph?

1) \(f(x) = \begin{cases} x^2, & x < 1 \\ x - 2, & x > 1 \end{cases} \)

2) \(f(x) = \begin{cases} x^2, & x < 1 \\ \frac{1}{2}x + \frac{1}{2}, & x > 1 \end{cases} \)

3) \(f(x) = \begin{cases} x^2, & x < 1 \\ 2x - 7, & x > 1 \end{cases} \)

4) \(f(x) = \begin{cases} x^2, & x < 1 \\ \frac{3}{2}x - \frac{9}{2}, & x > 1 \end{cases} \)

23 The function \(h(t) = -16t^2 + 144 \) represents the height, \(h(t) \), in feet, of an object from the ground at \(t \) seconds after it is dropped. A realistic domain for this function is

1) \(-3 \leq t \leq 3\)

2) \(0 \leq t \leq 3\)

3) \(0 \leq h(t) \leq 144\)

4) all real numbers

24 If \(f(1) = 3 \) and \(f(n) = -2f(n - 1) + 1 \), then \(f(5) = \)

1) \(-5\)

2) \(11\)

3) \(21\)

4) \(43\)

25 In the equation \(x^2 + 10x + 24 = (x + a)(x + b) \), \(b \) is an integer. Find algebraically all possible values of \(b \).

26 Rhonda deposited \$3000\) in an account in the Merrick National Bank, earning 4.2% interest, compounded annually. She made no deposits or withdrawals. Write an equation that can be used to find \(B \), her account balance after \(t \) years.

27 Guy and Jim work at a furniture store. Guy is paid \$185\) per week plus 3\% of his total sales in dollars, \(x \), which can be represented by \(g(x) = 185 + 0.03x \). Jim is paid \$275\) per week plus 2.5\% of his total sales in dollars, \(x \), which can be represented by \(f(x) = 275 + 0.025x \). Determine the value of \(x \), in dollars, that will make their weekly pay the same.

28 Express the product of \(2x^2 + 7x - 10 \) and \(x + 5 \) in standard form.

29 Let \(f \) be the function represented by the graph below.

Let \(g \) be a function such that \(g(x) = -\frac{1}{2}x^2 + 4x + 3 \). Determine which function has the larger maximum value. Justify your answer.
30 Solve the inequality below to determine and state the smallest possible value for \(x \) in the solution set.
\[
3(x + 3) \leq 5x - 3
\]

31 The table below represents the residuals for a line of best fit.

<table>
<thead>
<tr>
<th>(x)</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Plot these residuals on the set of axes below.

Using the plot, assess the fit of the line for these residuals and justify your answer.

32 A student was given the equation \(x^2 + 6x - 13 = 0 \) to solve by completing the square. The first step that was written is shown below.
\[
x^2 + 6x = 13
\]

The next step in the student’s process was
\[
x^2 + 6x + c = 13 + c
\]
State the value of \(c \) that creates a perfect square trinomial. Explain how the value of \(c \) is determined.
33 On the axes below, graph \(f(x) = |3x| \).

If \(g(x) = f(x) - 2 \), how is the graph of \(f(x) \) translated to form the graph of \(g(x) \)? If \(h(x) = f(x - 4) \), how is the graph of \(f(x) \) translated to form the graph of \(h(x) \)?

34 The formula for the area of a trapezoid is

\[
A = \frac{1}{2} h(b_1 + b_2).
\]

Express \(b_1 \) in terms of \(A, h, \) and \(b_2 \). The area of a trapezoid is 60 square feet, its height is 6 ft, and one base is 12 ft. Find the number of feet in the other base.

35 Let \(f(x) = -2x^2 \) and \(g(x) = 2x - 4 \). On the set of axes below, draw the graphs of \(y = f(x) \) and \(y = g(x) \).

Using this graph, determine and state all values of \(x \) for which \(f(x) = g(x) \).

36 A school is building a rectangular soccer field that has an area of 6000 square yards. The soccer field must be 40 yards longer than its width. Determine algebraically the dimensions of the soccer field, in yards.
37 Edith babysits for \(x \) hours a week after school at a job that pays $4 an hour. She has accepted a job that pays $8 an hour as a library assistant working \(y \) hours a week. She will work both jobs. She is able to work \textit{no more than} 15 hours a week, due to school commitments. Edith wants to earn \textit{at least} $80 a week, working a combination of both jobs. Write a system of inequalities that can be used to represent the situation. Graph these inequalities on the set of axes below.

Determine and state one combination of hours that will allow Edith to earn \textit{at least} $80 per week while working \textit{no more than} 15 hours.
0814AI Common Core State Standards
Answer Section

1. ANS: 1 PTS: 2 REF: 081401ai NAT: N.RN.B.3
 TOP: Operations with Radicals KEY: classify

2. ANS: 2 PTS: 2 REF: 081402ai NAT: F.LE.B.5
 TOP: Modeling Linear Functions

3. ANS: 3 PTS: 2 REF: 081403ai NAT: A.REI.B.4
 TOP: Solving Quadratics KEY: taking square roots

4. ANS: 3

<table>
<thead>
<tr>
<th></th>
<th>Company 1</th>
<th>Company 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>median salary</td>
<td>33,500</td>
</tr>
<tr>
<td>2</td>
<td>mean salary</td>
<td>33,750</td>
</tr>
<tr>
<td>3</td>
<td>salary range</td>
<td>8,000</td>
</tr>
<tr>
<td>4</td>
<td>mean age</td>
<td>28.25</td>
</tr>
</tbody>
</table>

PTS: 2 REF: 081404ai NAT: S.ID.A.2 TOP: Central Tendency and Dispersion

5. ANS: 4 PTS: 2 REF: 081405ai NAT: F.IF.B.4
 TOP: Graphing Quadratic Functions KEY: no context

6. ANS: 2

\[P(x) = -0.5x^2 + 800x - 100 - (300x + 250) = -0.5x^2 + 500x - 350 \]

PTS: 2 REF: 081406ai NAT: F.BF.A.1 TOP: Operations with Functions

 TOP: Graphing Systems of Linear Inequalities KEY: solution set

8. ANS: 1

\[4x - 5(0) = 40 \]

\[4x = 40 \]

\[x = 10 \]

PTS: 2 REF: 081408ai NAT: F.IF.B.4 TOP: Graphing Linear Functions

9. ANS: 3 PTS: 2 REF: 081409ai NAT: A.CED.A.1
 TOP: Modeling Quadratics

10. ANS: 3 PTS: 2 REF: 081410ai NAT: F.LE.A.1
 TOP: Families of Functions KEY: bimodalgraph

11. ANS: 1

\[f(2) = 0 \]

\[f(6) = 8 \]

PTS: 2 REF: 081411ai NAT: F.IF.A.2 TOP: Domain and Range
KEY: limited domain

12. ANS: 3 PTS: 2 REF: 081412ai NAT: F.LE.A.1
 TOP: Families of Functions

 TOP: Graphing Linear Functions KEY: bimodalgraph
14. \[
\frac{4.7 - 2.3}{20 - 80} = \frac{2.4}{-60} = -0.04.
\]

PTS: 2 REF: 081414ai NAT: F.IF.B.6 TOP: Rate of Change
KEY: AI

15. ANS: 1 PTS: 2 REF: 081415ai NAT: A.SSE.A.2
TOP: Factoring Polynomials KEY: higher power AI

16. ANS: 2 PTS: 2 REF: 081416ai NAT: F.LE.A.2
TOP: Sequences

17. ANS: 1 PTS: 2 REF: 081417ai NAT: F.BF.B.3
TOP: Graphing Polynomial Functions

18. ANS: 4
\[(x + 2)^2 - 25 = 0\]
\[((x + 2) + 5)((x + 2) - 5) = 0\]
\[x = -7, 3\]

PTS: 2 REF: 081418ai NAT: A.APR.B.3 TOP: Zeros of Polynomials
KEY: AI

TOP: Modeling Linear Systems

20. ANS: 1
\[\frac{x - 2}{3} = \frac{4}{6}\]
\[6x - 12 = 12\]
\[6x = 24\]
\[x = 4\]

PTS: 2 REF: 081420ai NAT: A.REI.B.3 TOP: Solving Linear Equations
KEY: fractional expressions

TOP: Regression KEY: linear

22. ANS: 2 PTS: 2 REF: 081422ai NAT: F.IF.C.7
TOP: Graphing Piecewise-Defined Functions

23. ANS: 2
\[0 = -16t^2 + 144\]
\[16t^2 = 144\]
\[t^2 = 9\]
\[t = 3\]

PTS: 2 REF: 081423ai NAT: F.IF.B.5 TOP: Domain and Range
24 ANS: 4
\(f(1) = 3; f(2) = -5; f(3) = 11; f(4) = -21; f(5) = 43 \)

PTS: 2 REF: 081424ai NAT: F.IF.A.3 TOP: Sequences

KEY: term

25 ANS:
\(x^2 + 10x + 24 = (x + 4)(x + 6) = (x + 6)(x + 4) \). 6 and 4

PTS: 2 REF: 081425ai NAT: A.SSE.B.3 TOP: Solving Quadratics

26 ANS:
\[B = 3000(1.042)^t \]

PTS: 2 REF: 081426ai NAT: F.BF.A.1 TOP: Modeling Exponential Functions

KEY: AI

27 ANS:
\[185 + 0.03x = 275 + 0.025x \]
\[0.005x = 90 \]
\[x = 18000 \]

PTS: 2 REF: 081427ai NAT: A.REI.C.6 TOP: Solving Linear Systems

KEY: substitution

28 ANS:
\[(2x^2 + 7x - 10)(x + 5) \]
\[2x^3 + 7x^2 - 10x + 10x^2 + 35x - 50 \]
\[2x^3 + 17x^2 + 25x - 50 \]

PTS: 2 REF: 081428ai NAT: A.APR.A.1 TOP: Operations with Polynomials

KEY: multiplication

29 ANS:
g. The maximum of \(f \) is 6. For \(g \), the maximum is 11. \(x = \frac{-b}{2a} = \frac{-4}{2\left(-\frac{1}{2}\right)} = \frac{-4}{-1} = 4 \)
\[y = \frac{1}{2} (4)^2 + 4(4) + 3 = -8 + 16 + 3 = 11 \]

PTS: 2 REF: 081429ai NAT: F.IF.C.9 TOP: Comparing Functions

KEY: AI

30 ANS:
6. \(3x + 9 \leq 5x - 3 \)
\[12 \leq 2x \]
\[6 \leq x \]

PTS: 2 REF: 081430ai NAT: A.REI.B.3 TOP: Interpreting Solutions
31 ANS:

The line is a poor fit because the residuals form a pattern.

PTS: 2 REF: 081431ai NAT: S.ID.B.6 TOP: Residuals

32 ANS:

Since \((x + p)^2 = x^2 + 2px + p^2\), \(p\) is half the coefficient of \(x\), and the constant term is equal to \(p^2\). \(\left(\frac{6}{2}\right)^2 = 9\)

PTS: 2 REF: 081432ai NAT: A.REI.B.4 TOP: Solving Quadratics

KEY: completing the square

33 ANS:

\(2 \text{ down. } 4 \text{ right.}\)

PTS: 4 REF: 081433ai NAT: F.BF.B.3 TOP: Graphing Absolute Value Functions

34 ANS:

\[A = \frac{1}{2} h(b_1 + b_2) \]
\[b_1 = \frac{2(60)}{6} - 12 = 20 - 12 = 8 \]

\[\frac{2A}{h} = b_1 + b_2 \]

\[\frac{2A}{h} - b_2 = b_1 \]

PTS: 4 REF: 081434ai NAT: A.CED.A.4 TOP: Transforming Formulas
35 ANS:

\[x = -2, 1 \]

KEY: AI

36 ANS:

\[
\begin{align*}
 w(w + 40) &= 6000 \\
 w^2 + 40w - 6000 &= 0 \\
 (w + 100)(w - 60) &= 0 \\
 w &= 60, l = 100
\end{align*}
\]

PTS: 4 REF: 081436ai NAT: A.CED.A.1 TOP: Geometric Applications of Quadratics

37 ANS:

\[x + y \leq 15 \quad \text{One hour at school and eleven hours at the library.} \]

\[4x + 8y \geq 80 \]

PTS: 6 REF: 081437ai NAT: A.CED.A.3 TOP: Modeling Systems of Linear Inequalities