Algebra II Regents Exam 0124
www.jmap.org

0124aii Regents Exam

1 A cafeteria food manager studied the lunchtime eating habits of a group of employees in their office building. The purpose of the study was to determine the proportion of employees who purchased lunch in the cafeteria, brought their lunch from home, or purchased lunch from an outside vendor. This collection of data would best be classified as

1) a census
2) an observational study
3) an experiment
4) a simulation

2 Which graph has imaginary roots?
1)

3)

3 Given 3 is a root of $f(x)=x^{4}-x^{3}-21 x^{2}+45 x$, what are the other unique roots of $f(x)$?

1) -5 , only
2) -5 and 0
3) $-3,1$ and 5
4) $-5,-3$ and 0

4 Given $p \neq q, p=\left(\frac{1}{2}\right)^{q}$, expressed in logarithmic form, is equivalent to

1) $\log _{p}\left(\frac{1}{2}\right)=q$
2) $\quad \log _{q}(p)=\frac{1}{2}$
3) $\log _{\frac{1}{2}}(p)=q$
4) $\log _{\frac{1}{2}}(q)=p$

5 Which graph best represents the graph of $f(x)=(x+a)^{2}(x-b)$, where a and b are positive real numbers?
1)

3)

6 The equations $y=3 t+6$ and $y=(1.82)^{t}$ approximately model the growth of two separate populations where $t>0$. What is the best approximation of the time, t, at which the populations are the same?

1) -1.9
2) 0.3
3) 5.1
4) 21.3

7 Given $y=-2 x$ and $x^{2}+y^{2}=5$, the point of intersection in Quadrant II is

1) $(1,-2)$
2) $(-2,1)$
3) $(-1,1)$
4) $(-1,2)$

8 The rational expression $\frac{2 x^{4}-5 x^{2}+3 x-2}{x-3}$ is equivalent to

1) $2 x^{3}-5 x-12-\frac{38}{x-3}$
2) $2 x^{3}+6 x^{2}+13 x+42+\frac{124}{x-3}$
3) $2 x^{3}-5 x+18-\frac{56}{x-3}$
4) $2 x^{3}-6 x^{2}+13 x-36+\frac{106}{x-3}$

9 The equation of the parabola that has its focus at the point $(-3,2)$ and directrix at $y=0$ is

1) $y=\frac{1}{4}(x+3)^{2}+1$
2) $y=\frac{1}{4}(x-3)^{2}+1$
3) $y=\frac{1}{8}(x+3)^{2}+1$
4) $y=\frac{1}{8}(x-3)^{2}+1$

10 The seventh term of the geometric sequence $\sqrt{6},-2 \sqrt{3}, 2 \sqrt{6},-4 \sqrt{3} \ldots$ is

1) $6 \sqrt{6}$
2) $-6 \sqrt{3}$
3) $8 \sqrt{6}$
4) $-8 \sqrt{3}$

11 A company wishes to determine the cooking time for one pound of spaghetti. The company's technicians cooked one pound of spaghetti and recorded the time needed for the spaghetti to be ready to eat. Repeating this process 35 times resulted in an approximately normal distribution, with a mean of 9.82 minutes and a standard deviation of 1.4 minutes. In which interval should the middle 95% of cooking times fall?

1) $(8.42,11.22)$
2) $(7.02,12.62)$
3) $(9.35,10.29)$
4) $(6.82,11.32)$

12 Given $f(x)=2 x^{2}+7 x-15$ and $g(x)=3-2 x$, what is $\frac{f(x)}{g(x)}$ for all defined values?

1) $-x-5$
2) $-x+5$
3) $x-5$
4) $x+5$

13 Which equation is equivalent to $P=210 x^{\frac{4}{3}} y^{\frac{7}{3}}$

1) $P=\sqrt[3]{210 x^{4} y^{7}}$
2) $P=70 x y^{23} \sqrt[3]{x y}$
3) $P=210 x y^{2} \sqrt[3]{x y}$
4) $P=210 x y^{2} \sqrt[3]{x^{3} y^{5}}$

14 The average cost of a gallon of milk in the United States between the years of 1995 and 2018 can be modeled by the equation $P(t)=-0.0004 t^{3}+0.0114 t^{2}-0.0150 t+2.6602$, where $P(t)$ represents the cost, in dollars, and t is time in years since January 1995. During this time period, in what year $\operatorname{did} P(t)$ reach its maximum?

1) 1995
2) 2013
3) 2014
4) 2018

15 The temperature, F, in degrees Fahrenheit, after t hours of a roast put into an oven is given by the equation $F=325-185 e^{-0.4 t}$. What was the temperature of the roast when it was put into the oven?

1) 325
2) 200
3) 185
4) 140

16 The roots of the equation $0=x^{2}+6 x+10$ in simplest $a+b i$ form are

1) $-3 \pm 2 i$
2) $-6 \pm i$
3) $-3 \pm i$
4) $-3 \pm i \sqrt{2}$

17 Which equation does not represent an identity?

1) $x^{2}-y^{2}=(x+y)(x-y)$
2) $(x-y)^{2}=(x-y)(x-y)$
3) $(x+y)^{2}=x^{2}+2 x y+y^{2}$
4) $(x+y)^{3}=x^{3}+3 x y+y^{3}$

18 Two surveys were conducted to estimate the proportion of teens who use social media at least once per day.

Based on these results, it was determined that approximately 75% of teens use social media at least once per day. What is the best explanation of the difference in the results between the two surveys?

1) The smaller sample size of five teens resulted in a smaller margin of error and should provide a more accurate estimate.
2) The larger sample size of 50 teens resulted in a smaller margin of error and should provide a more accurate estimate.
3) The smaller sample size of five teens resulted in a bigger margin of error and should provide a more accurate estimate.
4) The larger sample size of 50 teens resulted in a bigger margin of error and should provide a more accurate estimate.

19 Given $f(x)=x^{3}-3$ and $f^{-1}(x)=\sqrt[3]{x-3 b}$, the value of b is

1) 1
2) -1
3) 3
4) -3

20 Robert is buying a car that costs $\$ 22,000$. After a down payment of $\$ 4000$, he borrows the remainder from a bank, a six year loan at 6.24% annual interest rate. The following formula can be used to calculate his monthly loan payment.

$$
\begin{gathered}
R=\frac{(P)(i)}{1-(1+i)^{-t}} \\
R=\text { monthly payment } \\
P=\text { loan amount } \\
i=\text { monthly interest rate } \\
t=\text { time, in months }
\end{gathered}
$$

Robert's monthly payment will be

1) $\$ 298.31$
2) $\$ 300.36$
3) $\$ 307.35$
4) $\$ 367.10$

21 Given $\tan \theta=-\frac{4}{3}$ where $\frac{\pi}{2}<\theta<\pi$, what is the value of $\sec \theta$?

1) $-\frac{5}{3}$
2) $-\frac{3}{5}$
3) $\frac{4}{5}$
4) $\frac{5}{3}$

22 To solve the equation $\frac{7}{x+7}+\frac{4 x}{x-7}=\frac{3 x+7}{x-7}$, Joan's first step is to multiply both sides by the least common denominator. Which statement is true?

1) -14 is an extraneous solution.
2) 7 is an extraneous solution.
3) 7 and -7 are extraneous solutions.
4) There are no extraneous solutions.

23 Beginning July 1, 2019, Michelle deposited $\$ 250$ into an account that yields 0.15% each month. She continued to make $\$ 250$ deposits into this account on the first of each month for 3 years. Which expression represents the amount of money that was in the account after her last deposit was made on June 1, 2022 ?

1) $250(1.0015)^{3}$
2) $250(1.0015)^{36}$
3) $\frac{250-250(1.0015)^{3}}{1-1.0015}$
4) $\frac{250-250(1.0015)^{36}}{1-1.0015}$

24 A study of the red tailed hawk population in a given area shows the population, $H(t)$, can be represented by the function $H(t)=50(1.19)^{t}$ where t represents the number of years since the study began. In terms of the monthly rate of growth, the population can be best approximated by the function

1) $H(t)=50(1.015)^{12 t}$
2) $H(t)=50(1.15)^{\frac{t}{12}}$
3) $H(t)=50(1.19)^{12 t}$
4) $H(t)=50(1.19)^{\frac{t}{12}}$

25 Factor $x^{3}+4 x^{2}-9 x-36$ completely.

26 Determine if $x+4$ is a factor of $2 x^{3}+10 x^{2}+4 x-16$. Explain your answer.

27 An initial investment of $\$ 1000$ reaches a value, $V(t)$, according to the model $V(t)=1000(1.01)^{4 t}$, where t is the time in years. Determine the average rate of change, to the nearest dollar per year, of this investment from year 2 to year 7 .

28 When $\left(\frac{1}{\sqrt[3]{y^{2}}}\right) y^{4}$ is written in the form y^{n}, what is the value of n ? Justify your answer.

29 The heights of the members of a ski club are normally distributed. The average height is 64.7 inches with a standard deviation of 4.3 inches. Determine the percentage of club members, to the nearest percent, who are between 67 inches and 72 inches tall.

30 The explicit formula $a_{n}=6+6 n$ represents the number of seats in each row in a movie theater, where n represents the row number. Rewrite this formula in recursive form.

31 Express $\left(2 x i^{3}-3 y\right)^{2}$ in simplest form.

32 A survey was given to 1250 randomly selected high school students at the end of their junior year. The survey offered four post-graduation options: two-year college, four-year college, military, or work. Of the 1250 responses, 475 chose a four-year college. State one possible conclusion that can be made about the population of high school juniors, based on this survey.

33 A researcher wants to determine if nut allergies and milk allergies are related to each other. The researcher surveyed 1500 people and asked them if they are allergic to nuts or milk. The survey results are summarized in the table below.

	Allergic to Nuts	Not Allergic to Nuts
Allergic to Milk	3	42
Not Allergic to Milk	12	1443

Determine the probability that a randomly selected survey respondent is allergic to milk. Determine the probability that a randomly selected survey respondent is allergic to milk, given that the person is allergic to nuts. Based on the survey data, determine whether nut allergies and milk allergies are independent events. Justify your answer.

34 Algebraically solve for x : $2 x=6+2 \sqrt{x-1}$

35 During the summer, Adam saved $\$ 4000$ and Betty saved $\$ 3500$. Adam deposited his money in Bank A at an annual rate of 2.4% compounded monthly. Betty deposited her money in Bank B at an annual rate of 4% compounded quarterly. Write two functions that represent the value of each account after t years if no other deposits or withdrawals are made, where Adam's account value is represented by $A(t)$, and Betty's by $B(t)$. Using technology, determine, to the nearest tenth of a year, how long it will take for the two accounts to have the same amount of money in them. Justify your answer.

Algebra II Regents Exam 0124
www.jmap.org
36 On the graph below, draw at least one complete cycle of a sine graph passing through point $(0,2)$ that has an amplitude of 3 , a period of π, and a midline at $y=2$.

Based on your graph, state an interval in which the graph is increasing.

37 A manufacturer of sweatshirts finds that profits and costs fluctuate depending on the number of products created. Creating more products doesn't always increase profits because it requires additional costs, such as building a larger facility or hiring more workers. The manufacturer determines the profit, $p(x)$, in thousands of dollars, as a function of the number of sweatshirts sold, x, in thousands. This function, p, is given below.

$$
p(x)=-x^{3}+11 x^{2}-7 x-69
$$

Graph $y=p(x)$, over the interval $0 \leq x \leq 9$, on the set of axes below.

Over the given interval, state the coordinates of the maximum of p and round all values to the nearest integer. Explain what this point represents in terms of the number of sweatshirts sold and profit. Determine how many sweatshirts, to the nearest whole sweatshirt, the manufacturer would need to produce in order to first make a positive profit. Justify your answer.

0124aii Regents Exam

Answer Section

1 ANS: $3 \quad$ PTS: 2
TOP: Analysis of Data
2 ANS: 2
PTS: 2
TOP: Using the Discriminant
3 ANS: 2

3	1	-1	-21	45	0
		3	6	-45	0
	1	2	-15	0	0

$x^{3}+2 x^{2}-15 x=0$
$x\left(x^{2}+2 x-15\right)=0$
$x(x+5)(x-3)=0$
$x=0,-5,3$
PTS: 2 REF: 012403aii NAT: A.APR.B. 3 TOP: Solving Polynomial Equations
4 ANS: 3
PTS: 2
REF: 012404aii NAT: A.APR.B. 3
TOP: Express Exponentials as Logarithms
5 ANS: $1 \quad$ PTS: 2
TOP: Graphing Polynomial Functions
6 ANS: 3

PTS: 2
REF: 012406aii

REF: 012401aii NAT: S.IC.B. 3
REF: 012402aii NAT: A.REI.B. 4
KEY: determine nature of roots given equation

REF: 012405aii NAT: A.APR.B. 3

NAT: A.REI.D. 11 TOP: Other Systems

7 ANS: 4

PTS: 2 REF: 012407aii NAT: A.REI.C. 7 TOP: Quadratic-Linear Systems
8 ANS: 2
$x - 3 \longdiv { 2 x ^ { 4 } + 0 x ^ { 3 } + 6 x ^ { 2 } + 1 3 x + 4 2 }$
$2 x^{4}-6 x^{3}$
$6 x^{3}-5 x^{2}$
$6 x^{3}-18 x^{2}$
$13 x^{2}+3 x$
$13 x^{2}-39 x$
$42 x-2$
$42 x-126$
124

PTS: 2
REF: 012408aii NAT: A.APR.D. 6 TOP: Rational Expressions
KEY: division
9 ANS: 1
Distance from the focus to the directrix is 2 , so $p=1$. Vertex is $(-3,1) . y=\frac{1}{4(1)}(x+3)^{2}+1$
PTS: 2 REF: 012409aii NAT: G.GPE.A. 2 TOP: Graphing Quadratic Functions
10 ANS: 3
$r=\frac{-2 \sqrt{3}}{\sqrt{6}}=\frac{-2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{-2 \sqrt{2}}{2}=-\sqrt{2} \quad a_{7}=\sqrt{6}(-\sqrt{2})^{7-1}=\sqrt{6}(-\sqrt{2})^{6}=\sqrt{6} \cdot 2^{3}=8 \sqrt{6}$
PTS: 2
REF: 012410aii NAT: F.BF.A. 1 TOP: Sequences
KEY: explicit

11 ANS: 2
$9.82 \pm 2(1.4)$
PTS: 2 REF: 012411aii NAT: S.IC.B. 4 TOP: Analysis of Data
12 ANS: 1
$\frac{f(x)}{g(x)}=\frac{2 x^{2}+7 x-15}{3-2 x}=\frac{(2 x-3)(x+5)}{-(2 x-3)}=\frac{x+5}{-1}=-x-5$
PTS: 2 REF: 012412aii NAT: F.BF.A. 1 TOP: Operations with Functions
13 ANS: 3
$P=210 x^{\frac{4}{3}} y^{\frac{7}{3}}=210 x^{\frac{3}{3}} x^{\frac{1}{3}} y^{\frac{6}{3}} y^{\frac{1}{3}}=210 x \cdot x^{\frac{1}{3}} y^{2} y^{\frac{1}{3}}=210 x y^{2} \sqrt[3]{x y}$
PTS: 2 REF: 012413aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
14 ANS: 2

PTS: 2 REF: 012414aii NAT: F.IF.B. 4 TOP: Graphing Polynomial Functions
15 ANS: 4
$F=325-185 e^{-0.4(0)}=325-185=140$
PTS: 2 REF: 012415aii NAT: F.IF.B. 4 TOP: Evaluating Exponential Expressions
16 ANS: 3
$x^{2}+6 x+9=-10+9$

$$
\begin{aligned}
(x+3)^{2} & =-1 \\
x+3 & = \pm i \\
x & =-3 \pm i
\end{aligned}
$$

PTS: 2 REF: 012416aii NAT: A.REI.B. 4 TOP: Solving Quadratics
KEY: complex solutions | completing the square
17
$(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$
PTS: 2 REF: 012417aii NAT: A.APR.C. 4 TOP: Polynomial Identities
18 ANS: 3
PTS: 2
REF: 012418aii NAT: S.IC.B. 6
TOP: Analysis of Data

19 ANS: 2
$y=x^{3}-3$
$x=y^{3}-3$
$x+3=y^{3}$
$\sqrt[3]{x+3}=y$
PTS: 2 REF: 012419aii NAT: F.BF.B. 4 TOP: Inverse of Functions
KEY: polynomial
20 ANS: 2
$i=\frac{6.24 \%}{12}=.52 \% \quad R=\frac{(18000)(.52 \%)}{1-(1+.52 \%)^{-12 \cdot 6}} \approx 300.36$
PTS: 2 REF: 012420aii NAT: F.IF.B. 4 TOP: Evaluating Exponential Expressions
21 ANS: 1
$\cos \theta=-\frac{3}{5} ; \sec \theta=-\frac{5}{3}$
PTS: 2 REF: 012421aii NAT: F.TF.C. 8 TOP: Determining Trigonometric Functions
22 ANS: 3

$$
\begin{gathered}
\left(x^{2}-49\right)\left(\frac{7}{x+7}+\frac{4 x}{x-7}=\frac{3 x+7}{x-7}\right) \\
7(x-7)+4 x(x+7)=(3 x+7)(x+7) \\
7 x-49+4 x^{2}+28 x=3 x^{2}+21 x+7 x+49 \\
4 x^{2}+35 x-49=3 x^{2}+28 x+49 \\
x^{2}+7 x-98=0 \\
(x+14)(x-7)=0 \\
x=-14,7
\end{gathered}
$$

PTS: 2
REF: 012422aii
NAT: A.REI.A. 2
TOP: Solving Rationals
ANS: 4
TOP: Series
PTS: 2 REF: 012423ai
NAT: A.SSE.B. 4

ANS: 1
$50\left(1.19^{\frac{1}{12}}\right)^{12 t} \approx 50(1.015)^{12 t}$
PTS: 2 REF: 012424aii NAT: A.SSE.B. 3 TOP: Modeling Exponential Functions
25 ANS:
$x^{3}+4 x^{2}-9 x-36=x^{2}(x+4)-9(x+4)=\left(x^{2}-9\right)(x+4)=(x+3)(x-3)(x+4)$
PTS: 2
REF: 012425aii NAT: A.SSE.A. 2 TOP: Factoring Polynomials

26 ANS:

Since -4 is a zero, $x+4$ is a factor.
PTS: 2 REF: 012426aii NAT: A.APR.B. 2 TOP: Remainder and Factor Theorems
27 ANS:
$\frac{V(7)-V(2)}{7-2} \approx 48$
PTS: 2 REF: 012427aii NAT: F.IF.B. 6 TOP: Rate of Change
28 ANS:
$\left(\frac{1}{\sqrt[3]{y^{2}}}\right) y^{4}=\frac{y^{\frac{12}{3}}}{y^{\frac{2}{3}}}=y^{\frac{10}{3}} \quad n=\frac{10}{3}$
PTS: 2 REF: 012428aii NAT: N.RN.A. 2 TOP: Radicals and Rational Exponents
29 ANS:

25

PTS: 2
KEY: percent
30 ANS:
$a_{1}=12$
$a_{n}=a_{n-1}+6$
PTS: 2 REF: 012430aii NAT: F.BF.A. 2 TOP: Sequences
31 ANS:
$\left(2 x i^{3}-3 y\right)^{2}=4 x^{2} i^{6}-12 x y i^{3}+9 y^{2}=-4 x^{2}+12 x y i+9 y^{2}$

PTS: 2 REF: 012431aii NAT: N.CN.A. 2 TOP: Operations with Complex Numbers

32 ANS:
About $38 \%\left(\frac{475}{1250}\right)$ of high school juniors in the population will choose a four-year college.
PTS: 2 REF: 012432aii NAT: S.IC.A. 2 TOP: Analysis of Data
33 ANS:
$\frac{3+42}{1500}=3 \% \frac{3}{3+12}=20 \%$ No, because a person is more likely to be allergic milk if he is also allergic to nuts.
PTS: 4 REF: 012433aii NAT: S.CP.A. 4 TOP: Conditional Probability
34 ANS:

$$
\begin{aligned}
2 x-6 & =2 \sqrt{x-1} \quad 2 \text { is extraneous. } \\
4 x^{2}-24 x+36 & =4(x-1) \\
x^{2}-6 x+9 & =x-1 \\
x^{2}-7 x+10 & =0 \\
(x-5)(x-2) & =0 \\
x & =2,5
\end{aligned}
$$

PTS: 4 REF: 012434aii NAT: A.REI.A. 2 TOP: Solving Radicals
KEY: extraneous solutions
35 ANS:
$A(t)=4000\left(1+\frac{2.4 \%}{12}\right)^{12 t} \quad B(t)=3500\left(1+\frac{4 \%}{4}\right)^{4 t} \quad 8.4$, the value of t for which $A(t)=B(t)$
PTS: 4 REF: 012435aii NAT: A.REI.D. 11 TOP: Other Systems
36 ANS:

$$
0<x<\frac{\pi}{4}
$$

PTS: 4
REF: 012436aii
NAT: F.IF.C. 7 TOP: Graphing Trigonometric Functions
KEY: graph

37 ANS:

$(7,78)$ If 7000 sweatshirts are sold, the profit is $\$ 78,000.3,549$, because that is when $p(x)$ is first greater than 0 .

PTS: 6 REF: 012437aii NAT: F.IF.C. 7 TOP: Graphing Polynomial Functions

