The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA II

Thursday, January 26, $2023-1: 15$ to $4: 15$ p.m., only

- Student Name

School Name

The possession or use of any communications device is strictly prohibited when taking this examination. If you have or use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

Print your name and the name of your school on the lines above.
A separate answer sheet for Part I has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet.

This examination has four parts, with a total of 37 questions. You must answer all questions in this examination. Record your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. All work should be written in pen, except graphs and drawings, which should be done in pencil. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale.

The formulas that you may need to answer some questions in this examination are found at the end of the examination. This sheet is perforated so you may remove it from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will not be scored.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice ...

A graphing calculator and a straightedge (ruler) must be available for you to use while taking this examination.

Part I

Answer all 24 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. Record your answers on your separate answer sheet. [48]

1 Which expression is equivalent to $(x+2)^{2}-5(x+2)+6$?
(1) $x(x-1)$
(3) $(x-4)(x+3)$
(2) $(x-3)(x-2)$
(4) $(x-6)(x+1)$

2 To the nearest tenth, the solution to the equation $4300 e^{0.07 x}-123=5000$ is

Use this space for

(1) 1.1
(3) 6.3
(2) 2.5
(4) 68.5

3 The value of an automobile t years after it was purchased is given by the function $V=38,000(0.84)^{t}$. Which statement is true?
(1) The value of the car increases 84% each year.
(2) The value of the car decreases 84% each year.
(3) The value of the car increases 16% each year.
(4) The value of the car decreases 16% each year.

4 Which function represents exponential decay?
(1) $p(x)=\left(\frac{1}{4}\right)^{-x}, 4^{x}$
(3) $r(x)=2.3^{2 x}, 5.29 X$
(2) $q(x)=1.8^{-x}$ $q(x)=\left(\frac{5}{9}\right)^{x}$ computations.
5 The expression $\frac{x^{4}-5 x^{2}+4 x+14}{x+2}$ is equivalent to
(1) $x^{3}-2 x^{2}-x+6+\frac{2}{x+2}$
(2) $x^{3}-5 x+4-\frac{14}{x+2}$

(3) $x^{3}+2 x^{2}-x+2+\frac{18}{x+2}$
(4) $x^{3}+2 x^{2}-9 x+22-\frac{30}{x+2}$

$$
a_{1}=-2 r_{0}-3 s_{20}=\frac{-2-(-2)(-3)^{20}}{1}
$$

6 The sum of the first 20 terms of the series $-2+6-18+54-\ldots$ is
(1) -610
(3) $1,743,392,200$
(2) -59
(4) $2,324,522,934$

7 If $f(x)=2 x^{4}-x^{3}-16 x+8$, then $f\left(\frac{1}{2}\right)$
(1) equals 0 and $2 x+1$ is a factor of $f(x)$
(2) equals 0 and $2 x-1$ is a factor of $f(x)$
(3) does not equal 0 and $2 x+1$ is not a factor of $f(x)$

$$
F(x)=x^{3}(2 x-1)-8(2 x-1)
$$

(4) does not equal 0 and $2 x-1$ is a factor of $f(x)$

$$
=\left(x^{3}-8\right)(2 x-1)=0
$$

$$
x>2,1 / 2
$$

8 If $(6-k i)^{2}=27-36 i$, the value of k is
(1) -36
(3) 3
(2) -3
(4) 6
$(6-3 i)^{2}$
$36-36 i+9 i^{(-1)}$ $27-36 i$ computations.
9 What is the solution set of the equation $\frac{x+2}{x}+\frac{x}{3}=\frac{2 x^{2}+6}{3 x}$?
(1) $\{-3\}$
(3) $\{3\}$
(2) $\{-3,0\}$
(4) $\{0,3\}$

10 How many real solutions exist for the system of equations below?

$$
\begin{aligned}
& y=\frac{1}{4} x-8 \\
& y=\frac{1}{2} x^{2}+2 x
\end{aligned}
$$

(1) 1
(3) 3
(2) 2
(4) 0

$$
\frac{1}{2} x^{2}+2 x=\frac{1}{4} x-8 \quad 2 x^{2}+8 x=x-32
$$

11 Which equation represents a polynomial identity?
(1) $x^{3}+y^{3}=(x+y)^{3}$
(2) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

$$
6^{2} \cdot 4 a c
$$

(3) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y-y^{2}\right)$
(4) $x^{3}+y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$ $49-4(2)(32)$

12 Given $x>0$, the expression $\frac{x^{\frac{1}{5}}}{x^{\frac{1}{2}}}$ can be rewritten as
(2) $-\sqrt[10]{x^{3}}$
(4) $\sqrt[3]{x^{10}}$

13 A cyclist pedals a bike at a rate of 60 revolutions per minute. The

Use this space for computations.

 height, h, of a pedal at time t, in seconds, is plotted below.

The graph can be modeled by the function $h(t)=5 \sin (k t)$, where k is equal to
(1) 1
(3) 60

(4) $\frac{\pi}{30}$

14 Which statement about data collection is most accurate?
(1) A survey about parenting styles given to every tenth student entering the library will provide unbiased results.
(2) An observational study allows a researcher to determine the cause of an outcome.
(3) Margin of error increases as sample size increases.
(4) A survey collected from a random sample of students in a school can be used to represent the opinions of the school population.

15 If $f(x)=\frac{1}{2} x+2$, then the inverse function is
(1) $f^{-1}(x)=-\frac{1}{2} x-2$
(3) $f^{-1}(x)=2 x-4$
(2) $f^{-1}(x)=\frac{1}{2} x-1$
(4) $f^{-1}(x)=2 x+2$

$$
2 x=y+4
$$

16 Given $f(x)=x^{4}-x^{3}-6 x^{2}$, for what values of x will $f(x)>0$? $\mathcal{D}-(f ;>$
(1) $x<-2$, only
(3) $x<-2$ or $0 \leq x \leq 3$
(2) $x<-2$ or $x>3$
(4) $x>3$, only

17 For which approximate values) of x will $\log (x+5)=|x-1|-3$?
(1) 5,1
(3) $-2.41,5$
(2) $-2.41,0.41$
(4) 5 , only

18 Consider a cubic polynomial with the characteristics below.

- exactly one real root
- as $x \rightarrow \infty, f(x) \rightarrow-\infty$

Given $a>0$ and $b>0$, which equation represents a cubic polynomial with these characteristics?
$\gamma(1) f(x)=(x-a)\left(x^{2}+b\right)$
(3) $f(x)=\left(a-x^{2}\right)\left(x^{2}+b\right)$ quart tic
(2) $f(x)=(a-x)\left(x^{2}+b\right)$ $-(x-a)\left(x^{2}+b\right)$

19 Betty conducted a survey of her class to see if they like pizza. She gathered 200 responses and 65% of the voters said they did like pizza. Betty then ran a simulation of 400 more surveys, each with 200 responses, assuming that 65% of the voters would like pizza. The output of the simulation is shown below.

Considering the middle 95% of the data, what is the margin of error for the simulation?
(1) 0.01
(2) 0.02
(3) 0.05
(4) 0.07
$2 \times 0,035$

20 If $\cos A=\frac{\sqrt{5}}{3}$ and $\tan A<0$, what is the value of $\sin A$?
(1) $\frac{2}{3}$
(2) $-\frac{\sqrt{5}}{3}$
((3) $-\frac{2}{3}$
(4) $\frac{3}{\sqrt{5}}$
$\sin ^{2} A+\left(\frac{\sqrt{5}}{3}\right)^{2}=1$
$\sin ^{2} A+\frac{5}{9}=\frac{9}{9}$

$$
\begin{aligned}
& \sin ^{2} N=\frac{4}{9} \\
& \sin A= \pm \frac{2}{3}
\end{aligned}
$$

21 A tree farm initially has 150 trees. Each year, 20\% of the trees are cut

Use this space for computations.

 down and 80 seedlings are planted. Which recursive formula models the number of trees, a_{n}, after n years?(1) $a_{1}=150$
(2) $\begin{aligned} a_{n} & =a_{n-1}(0.2)+80 \\ a_{1} & =150 \\ a_{n} & =a_{n-1}(0.8)+80\end{aligned}$
$1,2=8$
(3) $a_{n}=150(0.2)^{n}+8 \phi$
(4) $a_{n}=150(0.8)^{\pi}+80$
not recursive

22 Which equation represents a parabola with a focus of $(4,-3)$ and directrix of $y=1$?
(1) $(x-1)^{2}=4(y+3)$
(3) $(x+4)^{2}=4(y-3)$
(2) $(x-1)^{2}=-8(y-3)$
(4) $(x-4)^{2}=-8(y+1)$

23 Mia has a student loan that is in deferment, meaning that she does
 not need to make payments right now. The balance of her loan account during her deferment can be represented by the function $f(x)=35,000(1.0325)^{x}$, where x is the number of years since the deferment began. If the bank decides to calculate her balance showing a monthly growth rate, an approximately equivalent function would be
(1) $f(x)=35,000(1.0027)^{12 x}$
(3) $f(x)=35,000(1.0325)^{12 x}$
(2) $f(x)=35,000(1.0027)^{\frac{x}{12}}$
(4) $f(x)=35,000(1.0325)^{\frac{x}{12}}$
$(1,03) 51 / 12)^{12 x}$

24 Which graph shows a quadratic function with two imaginary zeros? computations.

(1)

(2)

(3)

(4)
no x-intercepts

Part II
Answer all 8 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [16]

25 Algebraically determine the zeros of the function below.

$$
\begin{aligned}
& r(x)=3 x^{3}+12 x^{2}-3 x-12 \\
& x\left(x^{3}+4 x^{2}-x-4\right)=0 \\
& x^{2}(x+4)-1(x+4)=0 \\
& \left(x^{2}-1\right)(x+4)=0 \\
& \pm 1-4
\end{aligned}
$$

26 Given $a>0$, solve the equation $a^{x+1}=\sqrt[3]{a^{2}}$ for x algebraically.

$$
\begin{aligned}
a^{x+1} & =a^{\frac{2}{3}} \\
x+1 & =\frac{2}{3} \\
x & =-\frac{1}{3}
\end{aligned}
$$

27 Given $P(A)=\frac{1}{3}$ and $P(B)=\frac{5}{12}$, where A and B are independent events, determine $P(A \cap B)$.

28 The scores on a collegiate mathematics readiness assessment are approximately normally distributed with a mean of 680 and a standard deviation of 120 .

Determine the percentage of scores between 690 and 900 , to the nearest percent.

$$
43 \%
$$

29 Consider the data in the table below.

\mathbf{x}	1	2	3	4	5	6
\mathbf{y}	3.9	6	11	18.1	28	40.3

State an exponential regression equation to model these data, rounding all values to the nearest thousandth.

$$
x=2.459(1.616)^{x}
$$

30 Write the expression $A(x) \bullet B(x)-3 C(x)$ as a polynomial in standard form.

$$
\begin{aligned}
& \begin{aligned}
& A(x)=x^{3}+2 x-1 \\
& B x(x)=x^{2}+7 \\
& C(x)=x^{4}-5 x
\end{aligned} \\
&\left(x^{3}+2 x-1\right)\left(x^{2}+7\right)-3\left(x^{4}-5 x\right) \\
& x^{5}+7 x^{3}+2 x^{3}+14 x-x^{2}-7-3 x^{4}+18 x \\
& x^{5}-3 x^{4}+9 x^{3}-x^{2}+29 x-7
\end{aligned}
$$

31 Over the set of integers, completely factor $x^{4}-5 x^{2}+4$.

$$
\begin{gathered}
\left(x^{2}-4\right)\left(x^{2}-1\right) \\
(x+2)(x-2)(x+1)(x-1)
\end{gathered}
$$

32 Natalia's teacher has given her the following information about angle θ.
$-\pi<0<2 \pi$ Quadrant 杖 or IV
Explain how Natalia can determine if the value of $\tan \theta$ is positive or negative.
θ must be in Quadrant IV, where
$\tan \theta$ is negative.

Part III
Answer all 4 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [16]

33 Solve the equation $\sqrt{49-10 x}+5=2 x$ algebraically.

$$
\begin{aligned}
\sqrt{49-10 x} & =2 x-5 \\
49-10 x & =4 x^{2}-20 x+25
\end{aligned}
$$

Algebra II - Jan. ' 23

34 Joette is playing a carnival game. To win a prize, one has to correctly guess which of five equally sized regions a spinner will land on, as shown in the diagram below.

She complains that the game is unfair because her favorite number, 2 , has only been spun once in ten times she played the game.

State the proportion of 2's that were spun.

State the theoretical probability of spinning a 2.

Question 34 is continued

The simulation output below shows the results of simulating ten spins of a fair spinner, repeated 100 times.

Does the output indicate that the carnival game was unfair? Explain your answer. $N_{0, ~ s i n e e ~ 0.10 ~ c l e a r l y ~ f a l l s ~ m i t h i n ~ i s y ~}^{c}$ of 0.20 .

35 Graph $c(x)=-9(3)^{x-4}+2$ on the axes below.

Describe the end behavior of $c(x)$ as x approaches positive infinity.

$$
c(x) \rightarrow-\infty
$$

Describe the end behavior of $c(x)$ as x approaches negative infinity.

$$
c(x) \rightarrow 2
$$

36 The monthly high temperature (${ }^{\circ} \mathrm{F}$) in Buffalo, New York can be modeled by $B(m)=24.9 \sin (0.5 m-2.05)+55.25$, where m is the number of the month and January $=1$.

Find the average rate of change in the monthly high temperature between June and October, to the nearest hundredth.

$$
\frac{B(10)-B(6)}{10-6} \approx-3.88
$$

Explain what this value represents in the given context.
Buffalo's monthly high temperature
From June to October decreases
about $4^{\circ} \mathrm{F}$ each
month on
average.

Part IV

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided to determine your answer. Note that diagrams are not necessarily drawn to scale. A correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [6]

37 Objects cool at different rates based on the formula below.
$T=\left(T_{0}-T_{R}\right) e^{-r t}+T_{R}$
T_{0} : initial temperature
T_{R} : room temperature
r : rate of cooling of the object
t : time in minutes that the object cools to a temperature, T

Mark makes T-shirts using a hot press to transfer designs to the shirts. He removes a shirt from a press that heats the shirt to $400^{\circ} \mathrm{F}$. The rate of cooling for the shirt is 0.0735 and the room temperature is $75^{\circ} \mathrm{F}$. Using this information, write an equation for the temperature of the shirt, T, after t minutes.

$$
T=(400-75) e^{-0.0735 t}+75
$$

Use the equation to find the temperature of the shirt, to the nearest degree, after five minutes.

$$
325 e^{-0.0735(5)}+75 \approx 300
$$

Question 37 is continued on the next page.

Question 37 is continued
At the same time, Mark's friend Jeanine removes a hoodie from a press that heats the hoodie to $450^{\circ} \mathrm{F}$. After eight minutes, the hoodie measured $270^{\circ} \mathrm{F}$. The room temperature is still $75^{\circ} \mathrm{F}$. Determine the rate of cooling of the hoodie, to the nearest ten thousandth.

$$
270=(450-75) e^{-8 r}+75
$$

$$
r \approx-0.0817
$$

The T-shirt and hoodie were removed at the same time. Determine when the temperature will be the same, to the nearest minute.

$$
\begin{aligned}
325 e^{-0.0735 t} & +75
\end{aligned}=375 e^{-0.0817 t} \ngtr 75
$$

