January 29, 1982

Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Unless otherwise specified, answers may be left in terms of π or in radical form. Write your answers in the spaces provided.

1. If
$$F = \frac{9}{5}C + 32$$
, find the value of C when $F = 77$.

- 2. If the sum of three consecutive integers is 0, what is the smallest integer?
- 3. What is the amplitude of the graph of the equation $y = 3 \cos 2x$?
- 4. Find the positive acute angle which satisfies the equation $\tan^2 x 1 = 0$.
- 5. If x varies directly as y, and x = 4 when y = 3, what is the value of y when x = 16?
 - 6. Solve for $x: \sqrt{3x} + 3 = 12$
 - 7. Solve for $\sin A$: $\frac{a}{\sin A} = \frac{b}{\sin B}$
 - 8. If $\sin A = \cos 5A$, find the number of degrees in angle A. 8.
- 9. Find the slope of the straight line which passes through the points (3,5) and (6,9).
 - 10. Express $5\sqrt{-100} + 2\sqrt{-4}$ as a monomial in terms of i. 10_____

11_____

13____

11. Find the value of sin 750°.

ĺ

- 12. Factor: $3 \tan^2 x 7 \tan x + 4$
- 13. Express 100° in radian measure.
- 14. Find the numerical value of $8^{\frac{7}{8}} + 4^{\circ}$.
- 15. Solve the following system of equations for x in terms of r:
- 3x + y = 2r x + y = r15_____
- 16. Find the value of sin 65° 23' to four decimal places. 16_

Directions (17-30): Write in the space provided the numeral preceding the expression that best completes each statement or answers each question.

30.....

17. An equation whose roots are 1 and 2 is (1)
$$x^2 + 2x + 3 = 0$$
 (2) $x^2 - 2x + 3 = 0$ (3) $x^2 + 3x + 2 = 0$ (4) $x^2 - 3x + 2 = 0$ 17.

18. The expression (0.007)² is equal to (2) 4.9×10^{-2} (3) 4.9×10^{-5} (4) 4.9×10^{-6} 18.

19. If $\sin \theta$ and $\tan \theta$ have opposite signs, in which quadrants may angle θ lie? (1) I and II (2) II and III (3) I and III (4) II and IV 19.

20. What is the multiplicative inverse of $\frac{\sqrt{b}}{a}$ where $a \neq 0$ and $b \neq 0$? (1) $\frac{a \sqrt{b}}{b}$ (2) $\frac{\sqrt{a}}{b}$ (3) \sqrt{ab} (4) $a \sqrt{b}$ 20.

21. For which value of c will the roots of the equation $x^2 + 4x + c = 0$ be real and equal? (1) 1 (2) 2 (3) 3 (4) 4 21.

22. The value of Arc $\sin \left(\frac{\sqrt{3}}{2}\right) + \text{Arc tan 1 is}$ (1) 120° (2) 105° (3) 90° (4) 75° 22.

23. When placed in standard position, in which quadrant does an angle of $\frac{-5\pi}{6}$ radians terminate? (1) 1 (2) II (3) III (4) IV 23.

24. The numerical value of $\sin 240^\circ$ is (1) $\frac{1}{2}$ (2) $-\frac{1}{2}$ (3) $\frac{\sqrt{3}}{2}$ (4) $-\frac{\sqrt{3}}{2}$ 24.

25. The solution set of the inequality $x^2 - 5x - 6 < 0$ is (1) $(-1 < x < 6) ...(2) (-6 < x < 1)$ (3) $(x > 6 \text{ or } x < -1)$ 25.

26. If $\log 2 = A$ and $\log 3 = B$, then $\log 6$ is equal to (1) $A + B$ (2) $A - B$ (3) AB (4) $\frac{A}{B}$ 26.

27. If $f(x) = |2x + 3|$, then $f(-5)$ equals (1) -7 (2) 7 (3) -13 (4) 13 (2) 1/2 (3) 1/3 (4) 1/16 29.

28. Which relation is a function? (1) $x = y^2$ (2) $x = 2$ (3) $y = \sin x$ (4) $x^2 + y^2 = 9$ 29. In triangle ABC , $a = 3$, $b = 4$, and $c = \sqrt{13}$. What is the value of $\cos C$? (1) 1/13 (2) 1/2 (3) 1/3 (4) 1/16 29.

30. If angle x is in Quadrant II and $\sin x = 3/5$, then $\sin 2x$ is

equivalent to (1) 6/5 (2) 4/5 (3) 24/25 (4) -24/25

Part II

Answer four questions from this part. Show all work unless otherwise directed.

- 31. a Find to the nearest tenth the roots of the equation $2x^2 = 5x + 1$. [8] b If $x = \csc \theta$, in which quadrant(s) does angle θ lie? [2]
- 32. a Draw the graph of the function $y = -x^2 + 2x + 1$ whose domain is $\{-2 \le x \le 4\}$. [6]
 - b From the graph drawn in part a, find the largest value of K for which the equation $K = -x^2 + 2x + 1$ will have real roots. [2]
 - c What is the range of the function over the given domain? [2]
- 33. Using logarithms, find the value of N to the nearest hundrdeth:

$$N = -\frac{\sqrt[4]{135 \sin 42^{\circ}}}{(12.3)^2}$$
 [10]

34. a For all values of x for which the expression is defined, show that the

following is an identity:
$$\cos 2x = \frac{1 - \tan^2 x}{\sec^2 x}$$
 [6]

- b Using the formula for $\cos (x y)$, find the value of $\cos 15^{\circ}$ in radical form if $m \angle x = 45$ and $m \angle y = 30$. [4]
- 35. a On the same set of axes, sketch the graphs of $y = \sin 2x$ and $y = \frac{1}{2}$ $\cos x$ for values of x in the interval $0 \le x \le 2\pi$. [4, 4]
 - b Find a value of x in the interval $0 \le x \le 2\pi$ which satisfies the equation $\sin 2x = \frac{1}{2}\cos x$. [2]
- 36. Given triangle ABC, with $m \angle B = 35$, $m \angle C = 41$, and BC = 23 meters. Find the length of the *shortest* side of the triangle to the *nearest meter*.
 - *37. Solve the following system of equations and check.

$$\begin{array}{l}
 2x - 3y + 2z = 26 \\
 x - 2y - 3z = -5 \\
 x + y - z = -7
 \end{array}$$
[7, 3]

* This question is based on an optional topic in the syllabus.