ELEVENTH YEAR MATHEMATICS

Monday, June 15, 1959—1:15 to 4:15 p.m., only

Part 1

Answer all questions in this part. Each correct answer will receive 2 creatts. No partial credit will be allowed. Unless otherwise specified, answers may be left in terms of * or in radical form.

at terms of a or the reacted form.	
1. Express as a single term the sum of $\sqrt{-9}$ and 4i.	1
2. Express $\frac{3}{\sqrt{3}-1}$ as an equivalent fraction with a rational	
denominator.	2
3. Solve the equation $4 \sin^2 x - 1 = 0$ for a value of x which lies in the third quadrant.	3
4. If x is a positive acute angle and $\tan x = k$, express $\cos x$ in terms of k .	4
5. Find to four decimal places the logarithm of 39.56.	5
6. Find to the nearest minute the positive acute angle whose cotangent is 1.1758.	6
7. One root of the equation $x^2 - 12x + k = 0$ is 4. Find the value of k .	7
8. Write an equation of the straight line whose slope is -2 and which passes through the point (3,0).	8
9. Find the value of $(2a)^0 + a^{-1/2}$ when $a = 9$.	9
10. Express in radian measure the principal value of arc $\sin \frac{\sqrt{2}}{2}$.	10
11. If $\cos x = 2/3$, find the value of $\cos 2x$.	11
12. Find the sum of the infinite geometric progression 1, -1/3, 1/9,	12
13. The first term of an arithmetic progression is a , the last term is l , the common difference is d and the number of terms is n . Express d in terms of a , l and n .	13
14. In triangle ABC, $a = 8$, $b = 6$, $A = 30^{\circ}$. Find sin B.	14
15. The sides of a triangle are 4, 5, 6. Find the cosine of the largest angle of the triangle.	15
16. If $\tan x = 2a$ and $\tan y = a$, express $\tan (x - y)$ in terms of a .	16

ELEVENTH YEAR MATHEMATICS-JUNE 15, 1959-2

Directions (17-19): Indicate whether each of the following is (a) true for all values of x, (b) true for only certain values of x or (c) not true for any value of x, by writing a, b or c on the line at the right,

 $\mathbf{x} \cdot \mathbf{v} \cdot \mathbf{x} + \mathbf{3} = 1.$ 18......

B. = (90° + x) = cos x. 19......

Directions (20-25): Indicate the correct completion for each of the following by writing the letter a, b, c or d on the line at the right,

 $1 - \frac{x}{2}$ 20. The complex fraction $\frac{x}{x}$ when simplified becomes (a)1

 $\frac{x}{2} - 1$ **(b)** -1 **(c)** x - 2 **(d)** 2 - x 20......

21. The expression $(\cos x - \sin x)^2$ is equivalent to (a)1 (b) $\cos 2x$ (c) $\sin 2x$ (d)1 - $\sin 2x$ 21......

22. If a quadratic equation with integral coefficients has irrational roots, the discriminant of the equation may be (a)1 (b)2 (c)-2 (d)0

23. T varies directly as the square of L. If L is multiplied by 2, T is (a) multiplied by 2 (b) multiplied by 4 (c) divided by 2 (d) divided by 4

24. In triangle ABC, a = 6, b = 10, $C = 120^{\circ}$. The area of triangle ABC is $(a)30\sqrt{3}$ (b)30 $(c)15\sqrt{3}$ (d)15

25. If log tan x = m, log cot x is equivalent to (a) $\frac{1}{m}$ (b) -m

 $(c)1-m \quad (d)-\frac{1}{m}$ 25......

Part II

23.....

24.....

Answer three questions from this part Show all work unless otherwise directed.

- 26. a. Solve the equation $\tan x + \cot x = 3$ for $\tan x$ to the nearest tenth.
 - b. How many values of x are there between 0° and 360° that satisfy the equation $\tan x + \cot x = 3$? [1]
- 27. a. Draw the graph of the equation $y = x^2 + 2x 5$ from x = -4 to x = 2, inclusive. [6]
 - b. From the graph drawn in answer to part a, estimate to tenths the roots of the equation $x^2 + 2x 5 = 0$. [2]
 - c. Find the minimum value of k for which the roots of the equation $x^2 + 2x 5 = k$ are real. [2]

ELEVENTH YEAR MATHEMATICS-JUNE 15, 1959-3

- 28. a. Sketch the graph of $y = 2 \cos x$ for values of x from 0 to 2* radians.
 - b. On the same set of axes used in a, sketch the graph of y = sin 2x for values of x from 0 to 2x radians. [4]
 - c. What is the amplitude of the function 2 cos x? [1]
 - d. What is the period of the function sin 2x? [1]
- 29. The sum of the digits of a two-digit number is 15, and the product of the digits is 56. If the tens digit is larger than the units digit, what is the number? [Only an algebraic solution will be accepted.] [3, 7]
 - 30. Solve each of the following equations for the real value of x:

a.
$$3x = \frac{1}{27}$$
 [2]

- b. $\log_{2} 8 = 3$ [2]
- c. $log_{s}x = -2/3$ [3]
- d. $x^{3/2} = 125$ [3]

Part III

Answer two questions from this part. Show all work.

- 31. A pendulum formula is given by the equation t = 6.28 $\sqrt{\frac{L}{32.2}}$ Using logarithms, find t to the nearest hundredth if L = 20.9. [10]
 - 32. a. Starting with the formula for $\sin (x + y)$, derive a formula for $\sin (x y)$. [4]
 - b. If $\sec \theta = x$ and $\csc \theta = y$, show that $x^2 + y^2 = x^2y^2$. [6]
- 33. A ship sails from point A in a direction N 58° 30' E for a distance of 28 miles to C. It then changes its course to N 82° 40' E for a distance of 36 miles to B. Find to the nearest mile the distance from A to B. [5, 5]
- 34. In triangle ABC, $\angle A = 52^{\circ}$ 10', a = 54 feet, b = 63 feet and $\angle B$ is obtuse. Find C to the nearest degree. [10]