ELEVENTH YEAR MATHEMATICS

August 19, 1986

Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Unless otherwise specified, answers may be left in terms of π or in radical form. Write your answers in the spaces provided on the answer sheet. [60]

1. Solve for x in terms of a and b:

$$\frac{x}{b} = \frac{1}{a}$$

2. For what positive acute angle does $\cos x = \sin x$?

3. Solve the following system of equations for x:

$$\begin{array}{c} x + 3y = -7 \\ 3x - y = -1 \end{array}$$

4. Solve for x: $2^{x+1} + 2 = 18$

5. The distance d traveled in a given number of hours varies directly as the average rate r. If d = 300 when r = 50, find d when r = 40.

6. If $f(x) = (x - 3)^2$, find the value of f(0).

7. Express 200° in radian measure.

8_

8. In right triangle ABC, $\sin A = 3/5$, $\sin \angle C = 90$, and c = 10. What is the area of the triangle? 9. The reciprocal of a positive number is equal to one-fourth of the number. Find the value of the number.

 $\sqrt{18x^3}$ 10. Express $\frac{1}{\sqrt{2x}}$ in simplest form.

10_____

Express $\frac{a - b}{1 - 1}$ as an equivalent fraction in *simplest form*.

12. Find sin 28° 36' to four decimal places.

11_____ 12

13. For what value of k will the equation $x^2 - 12x + k = 0$ have equal roots?

13____

14. Evaluate: $\tan \left(\text{Arc sin } \frac{5}{13} \right)$

14_____

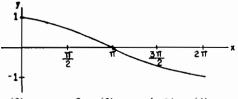
15. If
$$f(x) = 3x^0 + x^{\frac{2}{3}}$$
, find $f(8)$.

15_____

16. In triangle ABC, $\sin A = 0.27$, a = 4, and b = 8. Find the value of sin B to the nearest hundredth.

Directions (17-30): Write in the space provided on the answer sheet the numeral preceding the expression that best completes each statement or answers cach question.

17. If $\frac{12}{6a+12}$ is multiplied by $\frac{a^2-4}{a^2-5a+6}$, the result, in lowest terms, is (1) $\frac{-4}{a+6}$ (2) $\frac{-4}{6a(-5a+6)}$ (3) $\frac{2}{a-3}$


(2)
$$\frac{-4}{6a(-5a+6)}$$

$$(4) \frac{a+2}{6a(a-3)}$$

17____

- 18. The solution set of |x| = -1 is (1) {1} (2) {-1} (4) { }
- 19. If $\sec x < 0$, which statement must be true?
- (1) $\sin x < 0$ (2) $\tan x < 0$ (3) $\cos x < 0$ (4) $\cot x < 0$ 19
 - The value of $\sin^2 \pi + \cos^2 \pi$ is (1) 1 (2) 2 (3) -1 (4) 0 20____
- 21. The graph of which equation passes through the origin and is parellel to the line whose equation is y = 2x + 1? (1) y = -2x (2) y = 2x (3) y = 2x 1 (4) y = x + 221
 - 22. For which value of x is $\frac{1}{x^2-4}$ undefined?
- (2) -2 (3) -4 (4) 4(1) 0

- 22
- 23. Which equation is represented by the graph shown below?

- (1) $y = \sin 2x$ (2) $y = \cos 2x$ (3) $y = \sin \frac{1}{2}x$ (4) $y = \cos\frac{1}{2}x$ 23___
- 24. Which graph represents the solution set of the inequality $x^2 x 2 \ge 0$?

- 25. In the equation $\tan^2 x + \tan x = 0$, angle x may equal (2) 180° (3) 225° (4) 270° (1) 45° 25__
- 26. The expression $(3 + 2i)^2$, in a + bi form, is equivalent to
- (1) 5 (2) 13 (3) 5 + 12i (4) 13 + 12i26

27. If
$$\cos \theta = r$$
 and angle θ is acute, then $\sin \frac{1}{2}\theta$ equals

(1) $\sqrt{1-r^2}$ (2) $\frac{1}{2}\sqrt{1-r^2}$ (3) $\frac{\sqrt{1-r}}{2}$ (4) $\sqrt{\frac{1-r}{2}}$

28. The graph of which equation is a parabola? (1) $3x^2 + y = 10$

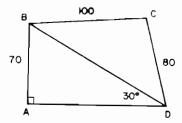
(2)
$$3x^2 + y^2 = 10$$
 (3) $3x^2 - y^2 = 10$ (4) $3x + y = 10$ 28____

- 29. When expressed as a function of a positive acute angle, $\cos(-137^\circ)$ is equivalent to $\cos(4)$ $\cos(4)$ $\cos(4)$ $\cos(4)$ $\cos(4)$ $\cos(4)$
- 30. If $m \angle A = 30$, a = 10, and b = 20, then $\triangle ABC$ (1) must be a right triangle (2) may be either an acute or an obtuse triangle (3) must be an obtuse triangle (4) cannot be constructed 30____

Part II

Answer four questions from this part. Show all work unless otherwise directed. [40]

31. a Find, to the nearest tenth, the values of x which satisfy the equation


$$3x = \frac{4}{x} - 2$$
. [8]

- b If, in the equation given in part a, x is replaced with sin θ , determine the quadrant or quadrants in which angle θ may lie. [2]
- 32. a On the same set of axes, sketch the graphs of the equations $y = -\sin \theta$ x and $y = \cos 2x$ over the interval $0 \le x \le 2\pi$. Label each graph with its equation. [4, 4]
 - b From the graphs sketched in part a, determine the number of values of x in the interval $0 \le x \le 2\pi$ which satisfy the equation $-\sin x = \cos 2x$. [2]
- 33. Write an equation or a system of equations which can be used to solve each of the following problems. In each case, state what the variable or variables represent. [Solution of the equations is not required.]
 - a A tank contains 40 liters of a solution which is 25% acid. How many liters of water must be added to make a new solution which is 20% acid? [5]
 - b The length of a rectangle is 4 units more than the width. The number of square units in the area is 4 less than the number of units in the perimeter. What are the dimensions of the rectangle? [5]

- 34. a Starting with the formula for $\sin (x + y)$, derive the formula for $\sin 2x$. [3]
 - b If $\cos A = -\frac{3}{5}$ and A lies in the second quadrant, find the value of $\sin 2A$. [3]
 - c For all values of θ for which the expressions are defined, show that the following is an identity:

$$\tan \theta + \cot \theta = \frac{1}{\cos \theta \sin \theta}$$
 [4]

- 35. a Using logarithms, find the value of \$\sqrt{0.0297}\$ to the nearest hundredth.
 - b Using logarithms, find, to the nearest tenth, the value of x if $3^x = 7$. [4]
 - c Find log₃ 81. [2]
- 36. In the accompanying diagram, $m \angle A = 90$, $m \angle BDA = 30$, AB = 70, BC = 100, and DC = 80. Find $m \angle C$ to the nearest degree. [10]

*37. a On the same set of axes, graph the following system of inequalities.

$$\{(x,y) \mid x^2 + y^2 \le 25\}$$

$$\{(x,y) \mid x - y < 0\}$$
[4, 3]

- b Label the solution set of the system with an S. [1]
- c Give the coordinates of a point in the solution set of $\{(x,y) \mid x^2 + y^2 \le 25\}$ that is *not* in the solution set of $\{(x,y) \mid x y < 0\}$.
- * This question is based on an optional topic in the syllabus.