The University of the State of New York
 REGENTS HIGH SCHOOL EXAMINATION
 GEOMETRY

Wednesday, January 24, 2024 - 9:15 a.m. to 12:15 p.m., only

Student Name:

\qquad

School Name: \qquad
The possession or use of any communications device is strictly prohibited when taking this examination. If you have or use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

Print your name and the name of your school on the lines above.
A separate answer sheet for Part I has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet.

This examination has four parts, with a total of 35 questions. You must answer all questions in this examination. Record your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. All work should be written in pen, except graphs and drawings, which should be done in pencil. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale.

The formulas that you may need to answer some questions in this examination are found at the end of the examination. This sheet is perforated so you may remove it from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will not be scored.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

[^0]
Part I

Answer all 24 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. Record your answers on your separate answer sheet. [48]

1 Which expression is equal to $\sin 30^{\circ}$?

Use this space for computations.

(1) $\tan 30^{\circ}$
(3) $\cos 60^{\circ}$
(2) $\sin 60^{\circ}$
(4) $\cos 30^{\circ}$

2 In the diagram of $\triangle S R A$ below, $\overline{K P}$ is drawn such that $\angle S K P \cong \angle S R A$.

If $S K=10, S P=8$, and $P A=6$, what is the length of $\overline{K R}$, to the nearest tenth?
(1) 4.8
(3) 8.0
(2) 7.5
(4) 13.3

3 A rectangle is graphed on the set of axes below.

A reflection over which line would carry the rectangle onto itself?
(1) $y=2$
(3) $y=\frac{1}{2} x-3$
(2) $y=10$
(4) $y=-\frac{1}{2} x+7$

4 The surface of the roof of a house is modeled by two congruent rectangles with dimensions 40 feet by 16 feet, as shown below.

Roofing shingles are sold in bundles. Each bundle covers $33 \frac{1}{3}$ square feet. What is the minimum number of bundles that must be purchased to completely cover both rectangular sides of the roof?
(1) 20
(3) 39
(2) 2
(4) 4

5 Which equation represents a line that is perpendicular to the line

Use this space for computations.

 whose equation is $y-3 x=4$?(1) $y=-\frac{1}{3} x-4$
(3) $y=-3 x+4$
(2) $y=\frac{1}{3} x+4$
(4) $y=3 x-4$

6 A vertical mine shaft is modeled in the diagram below. At a point on the ground 50 feet from the top of the mine, a ventilation tunnel is dug at an angle of 47°.

What is the length of the tunnel, to the nearest foot?
(1) 47
(3) 68
(2) 54
(4) 73

7 On the set of axes below, $\triangle B L U$ has vertices with coordinates $B(-3,-2), L(-2,5)$, and $U(1,1)$.

What is the area of $\triangle B L U$?
(1) 11
(3) 14
(2) 12.5
(4) 17.1

8 In the diagram below, $\triangle C A R$ is mapped onto $\triangle B U S$ after a sequence of rigid motions.

Use this space for computations.

If $A R=3 x+4, R C=5 x-10, C A=2 x+6$, and $S B=4 x-4$, what is the length of $\overline{S B}$?
(1) 6
(3) 20
(2) 16
(4) 28

9 In the diagram below, $\triangle G H J$ is dilated by a scale factor of $\frac{1}{2}$ centered at point B to map onto $\triangle C D F$.

B•

If $\mathrm{m} \angle D F C=40^{\circ}$, what is $\mathrm{m} \angle H J G$?
(1) 20°
(3) 60°
(2) 40°
(4) 80°

10 Directed line segment $A J$ has endpoints whose coordinates are $A(5,7)$ and $J(-10,-8)$. Point E is on $\overline{A J}$ such that $A E: E J$ is $2: 3$. What are the coordinates of point E ?
(1) $(1,-1)$
(3) $(-4,-2)$
(2) $(-5,-3)$
(4) $(-1,1)$

11 A tipping platform is a ramp used to unload trucks, as shown in the diagram below.

The truck is on a 75 -foot-long ramp. The ramp is tipped at an angle of 30°. What is the height of the upper end of the ramp, x, to the nearest tenth of a foot?
(1) 68.7
(3) 43.3
(2) 65.0
(4) 37.5

12 In the diagram below of right triangle $M E T$, altitude $\overline{E S}$ is drawn to

Use this space for computations. hypotenuse $\overline{M T}$.

If $M E=6$ and $S M=4$, what is $M T$?
(1) 9
(3) 5
(2) 8
(4) 4

13 In the diagram below of square $C A S H$, diagonals $\overline{A H}$ and $\overline{C S}$ intersect at Z.

Which statement is true?
(1) $\mathrm{m} \angle A C Z>\mathrm{m} \angle Z C H$
(3) $\mathrm{m} \angle A Z C=\mathrm{m} \angle S H C$
(2) $m \angle A C Z<m \angle A S Z$
(4) $\mathrm{m} \angle A Z C=m \angle Z C H$

14 In the diagram below of circle O, secants $\overline{C F D}$ and $\overline{C H E}$ are drawn

Use this space for computations. from external point C.

If $\mathrm{m} \overparen{D E}=136^{\circ}$ and $\mathrm{m} \angle C=44^{\circ}$, then $\mathrm{m} \overparen{F H}$ is
(1) 46°
(3) 68°
(2) 48°
(4) 88°

15 A right circular cylinder has a diameter of 8 inches and a height of 12 inches. Which two-dimensional figure shows a cross section that is perpendicular to the base and passes through the center of the base?

(1)

(2)

(3)

16 On the set of axes below, $\overleftrightarrow{A B}$ is drawn and passes through $A(-2,6)$

Use this space for computations. and $B(4,0)$.

If $\overrightarrow{C D}$ is the image of $\overleftrightarrow{A B}$ after a dilation with a scale factor of $\frac{1}{2}$ centered at the origin, which equation represents $\overrightarrow{C D}$?
(1) $y=-x+4$
(3) $y=-\frac{1}{2} x+4$
(2) $y=-x+2$
(4) $y=-\frac{1}{2} x+2$

17 In parallelogram $A B C D$ with $\overline{A C} \perp \overline{B D}, A C=12$ and $B D=16$. What is the perimeter of $A B C D$?
(1) 10
(3) 40
(2) 24
(4) 56

18 In the diagram of $\triangle C A T$ below, $\mathrm{m} \angle A=90^{\circ}$ and altitude $\overline{A E}$ is drawn from vertex A.

Which statement is always true?
(1) $\frac{C E}{A E}=\frac{A E}{E T}$
(3) $\frac{A C}{C E}=\frac{A T}{E T}$
(2) $\frac{A E}{C E}=\frac{A E}{E T}$
(4) $\frac{C E}{A C}=\frac{A C}{E T}$

19 A sandbox in the shape of a rectangular prism has a length of 43 inches and a width of 30 inches. Jack uses bags of sand to fill the sandbox to a depth of 9 inches. Each bag of sand has a volume of 0.5 cubic foot. What is the minimum number of bags of sand that must be purchased to fill the sandbox?
(1) 14
(3) 7
(2) 13
(4) 4

20 Parallelogram EATK has diagonals $\overline{E T}$ and $\overline{A K}$. Which information is

Use this space for computations.

 always sufficient to prove EATK is a rhombus?(1) $\overline{E A} \perp \overline{A T}$
(3) $\overline{E T} \cong \overline{A K}$
(2) $\overline{E A} \cong \overline{A T}$
(4) $\overline{E T} \cong \overline{A T}$

21 In the diagram below, $\overleftrightarrow{A B C D} \| \overleftrightarrow{E H K}$, and $\overleftrightarrow{M B H P}$ and $\overleftrightarrow{N C H L}$ are drawn such that $\overline{B C} \cong \overline{B H}$.

If $\mathrm{m} \angle N C D=62^{\circ}$, what is $\mathrm{m} \angle P H K$?
(1) 118°
(3) 62°
(2) 68°
(4) 56°

22 Triangles YEG and POM are two distinct non-right triangles such that $\angle G \cong \angle M$. Which statement is sufficient to prove $\triangle Y E G$ is always congruent to $\triangle P O M$?
(1) $\angle E \cong \angle O$ and $\angle Y \cong \angle P$
(2) $\overline{Y G} \cong \overline{P M}$ and $\overline{Y E} \cong \overline{P O}$
(3) There is a sequence of rigid motions that maps $\angle E$ onto $\angle O$ and $\overline{Y E}$ onto $\overline{P O}$.
(4) There is a sequence of rigid motions that maps point Y onto point P and $\overline{Y G}$ onto $\overline{P M}$.

23 In the diagram of triangles $A B D$ and $C B E$ below, sides $\overline{A D}$ and $\overline{C E}$

Use this space for computations. intersect at F, and $\angle A D B \cong \angle C E B$.

Which statement can not be proven?
(1) $\triangle A D B \cong \triangle C E B$
(3) $\triangle A D B \sim \triangle C E B$
(2) $\angle E A F \cong \angle D C F$
(4) $\triangle E A F \sim \triangle D C F$

24 A small town is installing a water storage tank in the shape of a cylinder. The tank must be able to hold at least 100,000 gallons of water. The tank must have a height of exactly 30 feet.
[1 cubic foot holds 7.48 gallons of water]
What should the minimum diameter of the tank be, to the nearest foot?
(1) 12
(3) 65
(2) 24
(4) 75

Part II

Answer all 7 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [14]

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

27 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle $C A T$ where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$. [Leave all construction marks.]

C A

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

Part III

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°.
Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$. Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

Part IV

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided to determine your answer. Note that diagrams are not necessarily drawn to scale. A correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [6]

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

Question 35 continued

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

Scrap Graph Paper - this sheet will not be scored.

-																											
													-			-						-					
-																											
								-																			
-																											
-																											
-																											
-																											
-	,																										
-																											
-	-																										
											-																

Scrap Graph Paper - this sheet will not be scored.

High School Math Reference Sheet

1 inch $=2.54$ centimeters	1 kilometer $=0.62$ mile	1 cup $=8$ fluid ounces
1 meter $=39.37$ inches	1 pound $=16$ ounces	1 pint $=2$ cups
1 mile $=5280$ feet	1 pound $=0.454$ kilogram	1 quart $=2$ pints
1 mile $=1760$ yards	1 kilogram $=2.2$ pounds	1 gallon $=4$ quarts
1 mile $=1.609$ kilometers	1 ton $=2000$ pounds	1 gallon $=3.785$ liters
		1 liter $=0.264$ gallon
	1 liter $=1000$ cubic centimeters	

Triangle	$A=\frac{1}{2} b h$
Parallelogram	$A=b h$
Circle	$A=\pi r^{2}$
Circle	$C=\pi d$ or $C=2 \pi r$
General Prisms	$V=B h$
Cylinder	$V=\pi r^{2} h$
Sphere	$V=\frac{4}{3} \pi r^{3}$
Cone	$V=\frac{1}{3} \pi r^{2} h$
Pyramid	$V=\frac{1}{3} B h$

Pythagorean Theorem	$a^{2}+b^{2}=c^{2}$
Quadratic Formula	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Arithmetic Sequence	$a_{n}=a_{1}+(n-1) d$
Geometric Sequence	$a_{n}=a_{1} r^{n-1}$
Geometric Series	$S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r}$ where $r \neq 1$
Radians	1 radian $=\frac{180}{\pi}$ degrees
Degrees	1 degree $=\frac{\pi}{180}$ radians
Exponential Growth/Decay	$A=A_{0} e^{k\left(t-t_{0}\right)}+B_{0}$

GEOMETRY

The State Education Department / The University of the State of New York
Regents Examination in Geometry - January 2024
Scoring Key: Part I (Multiple-Choice Questions)

Examination	Date	Question Number	Scoring Key	Question Type	Credit
Geometry	January '24	1	3	MC	2
Geometry	January '24	2	2	MC	2
Geometry	January '24	3	1	MC	2
Geometry	January '24	4	3	MC	2
Geometry	January '24	5	1	MC	2
Geometry	January '24	6	4	MC	2
Geometry	January '24	7	2	MC	2
Geometry	January '24	8	3	MC	2
Geometry	January '24	9	2	MC	2
Geometry	January '24	10	4	MC	2
Geometry	January '24	11	4	MC	2
Geometry	January '24	12	1	MC	2
Geometry	January '24	13	3	MC	2
Geometry	January '24	14	2	MC	2
Geometry	January '24	15	4	MC	2
Geometry	January '24	16	2	MC	2
Geometry	January '24	17	3	MC	2
Geometry	January '24	18	1	MC	2
Geometry	January '24	19	1	MC	2
Geometry	January '24	20	2	MC	2
Geometry	January '24	21	4	MC	2
Geometry	January '24	22	3	MC	2
Geometry	January '24	23	1	MC	2
Geometry	January '24	24	2	MC	2

Regents Examination in Geometry - January 2024
Scoring Key: Parts II, III, and IV (Constructed-Response Questions)

Examination	Date	Question Number	Scoring Key	Question Type	Credit
Geometry	January '24	$\mathbf{2 5}$	-	CR	2
Geometry	January '24	$\mathbf{2 6}$	-	CR	2
Geometry	January '24	$\mathbf{2 7}$	-	CR	2
Geometry	January '24	$\mathbf{2 8}$	-	CR	2
Geometry	January '24	$\mathbf{2 9}$	-	CR	2
Geometry	January '24	$\mathbf{3 0}$	-	CR	2
Geometry	January '24	$\mathbf{3 1}$	-	CR	2
Geometry	January '24	$\mathbf{3 2}$	-	CR	4
Geometry	January '24	$\mathbf{3 3}$	-	CR	4
Geometry	January '24	$\mathbf{3 4}$	-	CR	4
Geometry	January '24	$\mathbf{3 5}$	-	CR	6

Key
MC = Multiple-choice question
$C R=$ Constructed-response question

The chart for determining students' final examination scores for the January 2024 Regents Examination in Geometry will be posted on the Department's web site at: https://www.nysedregents.org/geometryre/ on the day of the examination. Conversion charts provided for the previous administrations of the Regents Examination in Geometry must NOT be used to determine students' final scores for this administration.

FOR TEACHERS ONLY

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION
GEOMETRY

Wednesday, January 24, 2024 - 9:15 a.m. to 12:15 p.m., only

RATING GUIDE

Updated information regarding the rating of this examination may be posted on the New York State Education Department's web site during the rating period. Check this web site at: https://www.nysed.gov/state-assessment/high-school-regents-examinations and select the link "Scoring Information" for any recently posted information regarding this examination. This site should be checked before the rating process for this examination begins and several times throughout the Regents Examination period.

The Department is providing supplemental scoring guidance, the "Model Response Set," for the Regents Examination in Geometry. This guidance is intended to be part of the scorer training. Schools should use the Model Response Set along with the rubrics in the Scoring Key and Rating Guide to help guide scoring of student work. While not reflective of all scenarios, the Model Response Set illustrates how less common student responses to constructed response questions may be scored. The Model Response Set will be available on the Department's web site at: https://www.nysedregents.org/geometryre/.

Mechanics of Rating

The following procedures are to be followed for scoring student answer papers for the Regents Examination in Geometry. More detailed information about scoring is provided in the publication Information Booklet for Scoring the Regents Examination in Geometry.

Do not attempt to correct the student's work by making insertions or changes of any kind. In scoring the constructed-response questions, use check marks to indicate student errors. Unless otherwise specified, mathematically correct variations in the answers will be allowed. Units need not be given when the wording of the questions allows such omissions.

Each student's answer paper is to be scored by a minimum of three mathematics teachers. No one teacher is to score more than approximately one-third of the constructedresponse questions on a student's paper. Teachers may not score their own students' answer papers. On the student's separate answer sheet, for each question, record the number of credits earned and the teacher's assigned rater/scorer letter.

Schools are not permitted to rescore any of the constructed-response questions

 on this exam after each question has been rated once, regardless of the final exam score. Schools are required to ensure that the raw scores have been added correctly and that the resulting scale score has been determined accurately.Raters should record the student's scores for all questions and the total raw score on the student's separate answer sheet. Then the student's total raw score should be converted to a scale score by using the conversion chart that will be posted on the Department's web site at: https://www.nysed.gov/state-assessment/high-school-regents-examinations by Wednesday, January 24, 2024. Because scale scores corresponding to raw scores in the conversion chart may change from one administration to another, it is crucial that, for each administration, the conversion chart provided for that administration be used to determine the student's final score. The student's scale score should be entered in the box provided on the student's separate answer sheet. The scale score is the student's final examination score.

General Rules for Applying Mathematics Rubrics

I. General Principles for Rating

The rubrics for the constructed-response questions on the Regents Examination in Geometry are designed to provide a systematic, consistent method for awarding credit. The rubrics are not to be considered all-inclusive; it is impossible to anticipate all the different methods that students might use to solve a given problem. Each response must be rated carefully using the teacher's professional judgment and knowledge of mathematics; all calculations must be checked. The specific rubrics for each question must be applied consistently to all responses. In cases that are not specifically addressed in the rubrics, raters must follow the general rating guidelines in the publication Information Booklet for Scoring the Regents Examination in Geometry, use their own professional judgment, confer with other mathematics teachers, and/or contact the State Education Department for guidance. During each Regents Examination administration period, rating questions may be referred directly to the Education Department. The contact numbers are sent to all schools before each administration period.

II. Full-Credit Responses

A full-credit response provides a complete and correct answer to all parts of the question. Sufficient work is shown to enable the rater to determine how the student arrived at the correct answer.
When the rubric for the full-credit response includes one or more examples of an acceptable method for solving the question (usually introduced by the phrase "such as"), it does not mean that there are no additional acceptable methods of arriving at the correct answer. Unless otherwise specified, mathematically correct alternative solutions should be awarded credit. The only exceptions are those questions that specify the type of solution that must be used; e.g., an algebraic solution or a graphic solution. A correct solution using a method other than the one specified is awarded half the credit of a correct solution using the specified method.

III. Appropriate Work

Full-Credit Responses: The directions in the examination booklet for all the constructed-response questions state: "Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc." The student has the responsibility of providing the correct answer and showing how that answer was obtained. The student must "construct" the response; the teacher should not have to search through a group of seemingly random calculations scribbled on the student paper to ascertain what method the student may have used.
Responses With Errors: Rubrics that state "Appropriate work is shown, but..." are intended to be used with solutions that show an essentially complete response to the question but contain certain types of errors, whether computational, rounding, graphing, or conceptual. If the response is incomplete; i.e., an equation is written but not solved or an equation is solved but not all of the parts of the question are answered, appropriate work has not been shown. Other rubrics address incomplete responses.

IV. Multiple Errors

Computational Errors, Graphing Errors, and Rounding Errors: Each of these types of errors results in a 1 -credit deduction. Any combination of two of these types of errors results in a 2 -credit deduction. No more than 2 credits should be deducted for such mechanical errors in a 4 -credit question and no more than 3 credits should be deducted in a 6 -credit question. The teacher must carefully review the student's work to determine what errors were made and what type of errors they were.
Conceptual Errors: A conceptual error involves a more serious lack of knowledge or procedure. Examples of conceptual errors include using the incorrect formula for the area of a figure, choosing the incorrect trigonometric function, or multiplying the exponents instead of adding them when multiplying terms with exponents.
If a response shows repeated occurrences of the same conceptual error, the student should not be penalized twice. If the same conceptual error is repeated in responses to other questions, credit should be deducted in each response.
For 4- and 6 -credit questions, if a response shows one conceptual error and one computational, graphing, or rounding error, the teacher must award credit that takes into account both errors. Refer to the rubric for specific scoring guidelines.

Part II

For each question, use the specific criteria to award a maximum of 2 credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.
(25) [2] 314, and correct work is shown.
[1] Appropriate work is shown, but one computational or rounding error is made. or
[1] Appropriate work is shown, but one conceptual error is made.
or
[1] 314, but no work is shown.
[0] A zero response does not contain enough relevant course-level work to receive any credit, does not satisfy the criteria for one or more credits, or is a correct response that was obtained by an obviously incorrect procedure.
(26) [2] 1285, and correct work is shown.
[1] Appropriate work is shown, but one computational or rounding error is made. or
[1] Appropriate work is shown, but one conceptual error is made.
or
[1] 1285, but no work is shown.
[0] A zero response does not contain enough relevant course-level work to receive any credit, does not satisfy the criteria for one or more credits, or is a correct response that was obtained by an obviously incorrect procedure.
(27) [2] A correct construction is drawn showing all appropriate arcs.
[1] Appropriate work is shown, but one construction error is made.
or
[1] Appropriate work is shown, but the right angle is not constructed at vertex C.
[0] A drawing that is not an appropriate construction is shown.

or

[0] A zero response does not contain enough relevant course-level work to receive any credit, does not satisfy the criteria for one or more credits, or is a correct response that was obtained by an obviously incorrect procedure.
[2] A correct sequence of rigid motions is written.
[1] An appropriate sequence of rigid motions is written, but one conceptual error is made.
or
[1] An appropriate sequence of rigid motions is written, but it is incomplete or partially correct.
[0] A zero response does not contain enough relevant course-level work to receive any credit, does not satisfy the criteria for one or more credits, or is a correct response that was obtained by an obviously incorrect procedure.
[2] Yes is indicated, and a complete and correct explanation is written.
[1] An appropriate explanation is written, but one computational error is made. or
[1] An appropriate explanation is written, but one conceptual error is made. or
[1] Yes, and an incomplete or partially correct explanation is written. or
[1] Appropriate work is shown, but the explanation is missing or incorrect.
[0] Yes, and the explanation is missing, or incorrect.
or
[0] A zero response does not contain enough relevant course-level work to receive any credit, does not satisfy the criteria for one or more credits, or is a correct response that was obtained by an obviously incorrect procedure.
[2] $(-8,-6)$ and 12 , and correct work is shown.
[1] Appropriate work is shown, but one computational error is made.
or
[1] Appropriate work is shown, but one conceptual error is made.
or
[1] Correct work is shown to find $(x+8)^{2}+(y+6)^{2}=144$.
or
[1] Correct work is shown to find $(-8,-6)$ or 12 .
or
[1] $(-8,-6)$ and 12 , but no work is shown.
[0] $(-8,-6)$ or 12 , but no work is shown.
or
[0] A zero response does not contain enough relevant course-level work to receive any credit, does not satisfy the criteria for one or more credits, or is a correct response that was obtained by an obviously incorrect procedure.
(31) [2] 37, and correct work is shown.
[1] Appropriate work is shown, but one computational or rounding error is made. or
[1] Appropriate work is shown, but one conceptual error is made.
or
[1] A correct relevant trigonometric equation is written, but no further correct work is shown.
or
[1] 37, but no work is shown.
[0] A zero response does not contain enough relevant course-level work to receive any credit, does not satisfy the criteria for one or more credits, or is a correct response that was obtained by an obviously incorrect procedure.

Part III

For each question, use the specific criteria to award a maximum of 4 credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.
(32) [4] 377, and correct work is shown.
[3] Appropriate work is shown, but one computational or rounding error is made.
or
[3] Correct work is shown to find the lengths of $\overline{A D}$ and $\overline{D B}$, but no further correct work is shown.
[2] Appropriate work is shown, but two or more computational or rounding errors are made.
or
[2] Appropriate work is shown, but one conceptual error is made.
or
[2] Correct work is shown to find the length of $\overline{A D}$ or $\overline{D B}$, but no further correct work is shown.
[1] Appropriate work is shown, but one conceptual error and one computational or rounding error are made.

or

[1] At least one correct relevant trigonometric equation is written, but no further correct work is shown.
or
[1] 377, but no work is shown.
[0] A zero response does not contain enough relevant course-level work to receive any credit, does not satisfy the criteria for one or more credits, or is a correct response that was obtained by an obviously incorrect procedure.
[4] 712 and 23 , and correct work is shown.
[3] Appropriate work is shown, but one computational or rounding error is made. or
[3] Correct work is shown to find the volume of the candle, but no further correct work is shown.
[2] Appropriate work is shown, but two or more computational or rounding errors are made.
or
[2] Appropriate work is shown, but one conceptual error is made when determining the volume of the candle.
[1] Appropriate work is shown, but one conceptual error is made when determining the volume of the candle and one computational or rounding error are made.
or
[1] Correct work is shown to find the height of the candle, but no further correct work is shown.
or
[1] 712 and 23 , but no work is shown.
[0] A zero response does not contain enough relevant course-level work to receive any credit, does not satisfy the criteria for one or more credits, or is a correct response that was obtained by an obviously incorrect procedure.
(34) [4] A complete and correct proof that includes a concluding statement is written.
[3] A proof is written that demonstrates a thorough understanding of the method of proof and contains no conceptual errors, but one statement and/or reason is missing or incorrect.

or

[3] $\triangle A B F \cong \triangle C D E$ or $\triangle C B E \cong \triangle A D F$ is proven, but no further correct relevant work is shown.
[2] A proof is written that demonstrates a good understanding of the method of proof and contains no conceptual errors, but two statements and/or reasons are missing or incorrect.

or

[2] A proof is written that demonstrates a good understanding of the method of proof, but one conceptual error is made.
[1] Some correct relevant statements about the proof are made, but one conceptual error and one statement and/or reason are missing or incorrect.
or
[1] Only one correct relevant statement and reason are written.
[0] The "given" and/or the "prove" statements are rewritten in the style of a formal proof, but no further correct relevant statements are written.
or
[0] A zero response does not contain enough relevant course-level work to receive any credit, does not satisfy the criteria for one or more credits, or is a correct response that was obtained by an obviously incorrect procedure.

Part IV

For this question, use the specific criteria to award a maximum of 6 credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.
[6] Correct work is shown to prove MATH is a trapezoid. Point $Y(7,3)$ is stated, and correct work is shown to prove MYTH is a rectangle. Correct concluding statements are written.
[5] Appropriate work is shown, but one computational or graphing error is made. or
[5] Appropriate work is shown, but one concluding statement is missing or incorrect.
or
[5] Correct proofs are written, but $Y(7,3)$ is not stated. Correct concluding statements are written.
[4] Appropriate work is shown, but two computational or graphing errors are made. or
[4] Appropriate work is shown, but one conceptual error is made in proving MYTH is a rectangle.
or
[4] Appropriate work is shown, but both concluding statements are missing or incorrect.

or

[4] Point $Y(7,3)$ is stated, and correct work is shown to prove MYTH is a rectangle and a correct concluding statement is written. No further correct work is shown.
[3] Appropriate work is shown, but three or more computational or graphing errors are made.
or
[3] Appropriate work is shown, but one conceptual error is made in proving MYTH is a rectangle and one computational or graphing error is made.
or
[3] Correct work is shown to prove MATH is a trapezoid and a correct concluding statement is written. Point $Y(7,3)$ is stated. No further correct work is shown.
or
[3] Correct work is shown to prove MYTH is a rectangle and a correct concluding statement is written. No further correct work is shown.
[2] Correct work is shown to prove MATH is a trapezoid and a correct concluding statement is written. No further correct work is shown.
[1] Correct work is shown to prove MATH is a trapezoid, but the concluding statement is missing or incorrect. No further correct work is shown.

or

[1] Point $Y(7,3)$ is stated, but no further correct work is shown.
[0] A zero response does not contain enough relevant course-level work to receive any credit, does not satisfy the criteria for one or more credits, or is a correct response that was obtained by an obviously incorrect procedure.

M ap to the Learning Standards G eometry
 J anuary 2024

Question	Type	Credits	Cluster
1	MultipleChoice	2	G-SRT.C
2	MultipleChoice	2	G-SRT.B
3	MultipleChoice	2	G-CO.A
4	MultipleChoice	2	G-MG.A
5	MultipleChoice	2	G-GPE.B
6	MultipleChoice	2	G-SRT.C
7	MultipleChoice	2	G-GPE.B
8	MultipleChoice	2	G-CO.B
9	MultipleChoice	2	G-SRT.A
10	MultipleChoice	2	G-GPE.B
11	MultipleChoice	2	G-SRT.C
12	MultipleChoice	2	G-SRT.B
13	MultipleChoice	2	G-CO.C
14	MultipleChoice	2	G-C.A
15	MultipleChoice	2	G-GMD.B
16	MultipleChoice	2	G-SRT.A
17	MultipleChoice	2	G-CO.C
18	MultipleChoice	2	G-SRT.B
19	MultipleChoice	2	G-MG.A
20	MultipleChoice	2	G-CO.C
21	MultipleChoice	2	G-CO.C
22	MultipleChoice	2	G-CO.B
23	MultipleChoice	2	G-CO.C
24	MultipleChoice	2	G-MG.A
25	Constructed Response	2	G-GMD.B
26	Constructed Response	2	G-C.B
27	Constructed Response	2	G-CO.D
28	Constructed Response	2	G-CO.B
29	Constructed Response	2	G-SRT.B
30	Constructed Response	2	G-GPE.A
31	Constructed Response	2	G-SRT.C
32	Constructed Response	4	G-SRT.C
33	Constructed Response	4	G-MG.A
34	Constructed Response	4	G-CO.C
35	Constructed Response	6	G-GPE.B

Regents Examination in Geometry

January 2024

Chart for Converting Total Test Raw Scores to
 Final Examination Scores (Scale Scores)

The Chart for Determining the Final Examination Score for the January 2024 Regents Examination in Geometry will be posted on the Department's web site at: https://www.nysed.gov/state-assessment/high-school-regents-examinations on Wednesday, January 24, 2024. Conversion charts provided for previous administrations of the Regents Examination in Geometry must NOT be used to determine students' final scores for this administration.

Online Submission of Teacher Evaluations of the Test to the Department

Suggestions and feedback from teachers provide an important contribution to the test development process. The Department provides an online evaluation form for State assessments. It contains spaces for teachers to respond to several specific questions and to make suggestions. Instructions for completing the evaluation form are as follows:

1. Go to https://www.nysed.gov/state-assessment/teacher-feedback-state-assessments.
2. Select the test title.
3. Complete the required demographic fields.
4. Complete each evaluation question and provide comments in the space provided.
5. Click the SUBMIT button at the bottom of the page to submit the completed form.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

Wednesday, January 24, 2024 - 9:15 a.m. to 12:15 p.m., only

MODEL RESPONSE SET

Table of Contents
Question 25 2
Question 26 9
Question 27. 16
Question 28. 22
Question 29. 33
Question 30. 41
Question 31 48
Question 32 56
Question 33. 66
Question 34 76
Question 35. 85

Question 25

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi\left(5^{2}\right)(12) \\
& =\frac{1}{3} \pi(25)(12) \\
& =\frac{1}{3} 300 \pi \\
& =\frac{1}{3}(942.4777961) \\
& =314.159 \\
& =314
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 25

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \\
& V=\frac{1}{3} \pi 5^{2}(12) \\
& V=314
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 25

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.

Score 1: The student did not show work when determining the volume.

Question 25

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$. come

$$
\begin{aligned}
& V=1 / 3 \pi r^{2} h \\
& V=1 / 3 \pi(5)^{2}(12) \\
& V=1 / 3 \pi 25(12) \\
& V=\frac{\pi 25(12)}{3} \\
& V=\frac{78.539(12)}{3} \\
& V=\frac{942.47}{3}
\end{aligned}
$$

Score 1: The student made one rounding error.

Question 25

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.

$$
\begin{aligned}
& v=\frac{1}{3} \pi r^{2} h \\
& v=\frac{1}{3} \pi(5)^{2} \cdot 12 \\
& v=942.47 \\
& v=942
\end{aligned}
$$

Score 1: The student made a computational error by not multiplying by $\frac{1}{3}$.

Question 25

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.
$\mathrm{V}=\mathrm{Bh}$

$V=300 \mathrm{~cm}^{3}$
$L=2 \pi r$
$C=2 \pi(13)$

Score 0: The student did not show enough relevant course-level work to receive any credit.

Question 25

25 In isosceles triangle $A B C$ shown below, $\overline{A B} \cong \overline{A C}$, and altitude $\overline{A D}$ is drawn.

The length of $\overline{A D}$ is 12 cm and the length of $\overline{B C}$ is 10 cm .
Determine and state, to the nearest cubic centimeter, the volume of the solid formed by continuously rotating $\triangle A B C$ about $\overline{A D}$.

$$
\begin{aligned}
& V=\frac{1}{3} B h \\
& V=\frac{1}{3}(10)(12) \\
& V=40 \mathrm{~cm}
\end{aligned}
$$

Score 0: The student did not show enough relevant course-level work to receive any credit.

Question 26

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

$$
\begin{aligned}
& \frac{\not x}{360} \times \pi r^{2}=A \text { of sector } \\
& \frac{102}{360} \times \pi 38^{2}=A \text { of sector } \\
& \frac{102}{360} \times \pi 1444=A \text { of sector } \\
& \frac{102}{360} \times 4536.4598=A \text { of sector } \\
& 1285.3303=A \text { of sector } \\
& 1285 \mathrm{mi}^{2}=A \text { of sector }
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 26

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

$$
\begin{aligned}
\text { Acrucher } & \pi r^{2} \\
& =\pi(38)^{2} \quad 1444 \pi \cdot \frac{102}{360} \\
& =1444 \pi
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 26

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

Score 2: The student gave a complete and correct response.

Question 26

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

$$
A=\left(\frac{\theta}{360}\right) \pi r^{2}
$$

$$
A=\left(\frac{102}{360}\right) \pi 38^{2}
$$

$$
x=409 . \sqrt{3}
$$

the area of the sector is 409 miles ${ }^{2}$

Score 1: The student made a computational error by leaving π out.

Question 26

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

$$
\begin{aligned}
& A=\pi r^{2} \frac{x}{360} \\
& A=\pi(38)^{2}\left(\frac{102}{360}\right) \\
& A=33.8244809 \\
& A=34 \mathrm{mi}^{2}
\end{aligned}
$$

Score 1: The student made a computational error by not squaring 38.

Question 26

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

$$
x=67.64498880
$$

Score 1: The student determined the arc length of the sector.

Question 26

26 The diagram below models the projection of light from a lighthouse, L. The sector has a radius of 38 miles and spans 102°.

Determine and state the area of the sector, to the nearest square mile.

$$
\begin{array}{rlrl}
A & =\pi 38^{2} & 360-102=258 \\
& =4536.46 & & 4536.46 \div 258
\end{array}
$$

$$
\text { A sect }=17.6
$$

Score 0: The student did not show enough relevant course-level work to receive any credit.

Question 27

27 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle $C A T$ where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$. [Leave all construction marks.]

Score 2: The student gave a complete and correct response.

Question 27

27 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle $C A T$ where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$. [Leave all construction marks.]

Score 2: The student gave a complete and correct response.

Question 27

27 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle $C A T$ where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$. [Leave all construction marks.]

Score 1: The student constructed an isosceles triangle, but not a right triangle.

Question 27

27 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle $C A T$ where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$.
[Leave all construction marks.]

Score 1: The student constructed an isosceles triangle, but did not construct a right angle at C.

Question 27

27 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle $C A T$ where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$.
[Leave all construction marks.]

Score 0: The student did not construct $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$.

Question 27

27 Segment $C A$ is drawn below. Using a compass and straightedge, construct isosceles right triangle $C A T$ where $\overline{C A} \perp \overline{C T}$ and $\overline{C A} \cong \overline{C T}$. [Leave all construction marks.]

Score 0: A drawing that is not an appropriate construction is shown.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

Rolate $\triangle A B C 90^{\circ}$ counterclocknise abour the
 orgin

Score 2: The student gave a complete and correct response.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.
(rsi, A frarslatat. on of $-7,-3$ mapping $A \rightarrow 0$
then a counterclockwise rotation of 90 o about point D,

Score 2: The student gave a complete and correct response.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

$$
\begin{aligned}
& \triangle A B C \text { reflects over y-axis then translate one } \\
& \text { unit up had one uniat right }
\end{aligned}
$$

Score 1: The student mapped $\triangle A B C$ onto $\triangle F E D$.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

Translation 7 right and 3 up so that D lies On A. Rotation around point A of 90° clockurse.

Score 1: The student mapped $\triangle D E F$ onto $\triangle A B C$.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

$$
\begin{aligned}
& \text { 1. Translate up } 1 \text { unit } \\
& \text { 2. Trans late left Lint } \\
& \text { 3. Ferlectian gut the y-Axis }
\end{aligned}
$$

Score 1: The student mapped $\triangle A B C$ onto $\triangle F E D$.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

$$
\text { rotation } 90^{\circ} \text { counter clock wise }
$$

Score 1: The student did not state the center of rotation.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.
a 90° rotation
counter clacturion
$A=-5,5$
B - -6
$\cdot 1,6$

Score 1: The student did not state the center of rotation.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.
rotation around $(0,0), 90^{\circ}$

Score 1: The student did not state the direction of the rotation.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

$$
\begin{aligned}
& \text { Reflect } \triangle P G C \text { airs sin } x=\frac{1}{2} \\
& \text { Translate up } 1
\end{aligned}
$$

Score 1: The student mapped $\triangle A B C$ onto $\triangle F E D$.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.
Rotation of 270° counterclockwise

Score 0: The student did not state the center of rotation and stated an incorrect direction of the rotation.

Question 28

28 On the set of axes below, congruent triangles $A B C$ and $D E F$ are graphed.

Describe a sequence of rigid motions that maps $\triangle A B C$ onto $\triangle D E F$.

$$
\begin{aligned}
& y \text {-axis reflection and then a linetraslataina } \\
& \text { of }(x+1, y-1) \text {. }
\end{aligned}
$$

Score 0: The student gave a completely incorrect response.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

Score 2: The student gave a complete and correct response.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.
 A in common due to
same angle,
A

$$
\begin{aligned}
& \frac{4.1}{9,02}=\frac{5,6}{12,32} \\
& \frac{5}{11}=\frac{5}{11}
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

$$
\frac{9.02}{4.1}=\frac{12.32}{5.6}
$$

$$
50.512=50.512 d
$$

$\triangle A B E$ is \sim to $\triangle A D C$ because sole lengths are proportional by scale factor $k=2.2$

Score 1: The student wrote an incomplete explanation.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

$$
\begin{aligned}
& 2.2=\frac{12.32}{5.6}=\frac{9.02}{4.2}=2.2 \\
& \text { Yes beca, } \\
& \text { and } A C \& A E \text { hare the sane } A D \\
& \text { ratio. }
\end{aligned}
$$

Score 1: The student wrote an incomplete explanation.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

$\triangle A D C$ be it does not check with the side splttrer menton.

Score 1: The student made an error when determining the proportional segments.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

Score 0: The student did not show enough correct relevant work to receive any credit.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why.

$$
\frac{5.6}{3.42}=\frac{4.1}{8.22}
$$

$\triangle A B E$ is similar to $\triangle A D C$ because the sides are proportional.

Score 0: The student gave a completely incorrect response.

Question 29

29 In $\triangle A D C$ below, $\overline{E B}$ is drawn such that $A B=4.1, A E=5.6, B C=8.22$, and $E D=3.42$.

Is $\triangle A B E$ similar to $\triangle A D C$? Explain why. $\triangle A B E$ is similarto $\triangle A D C$
because consecutive angles
are

Score 0: The student gave a completely incorrect response.

Geometry - Jan. '24

Question 30

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

$$
\begin{gathered}
x^{2}+16 x+y^{2}+12 y-44=0 \\
+44+44 \\
\frac{10}{2}=(8)^{2}=64 \\
\frac{12}{2}=(6)^{2}=36\left(x^{2}+16 x+y^{2}+12 y=44\right. \\
(x+8)(x+8)+(y+6)(y+6)=144 \\
\left(x+64+y^{2}+12 y+36=44+64+36\right. \\
{\left[\begin{array}{l}
(x+8)^{2}+(y+6)^{2}=144 \\
\text { (enter }=(-8,-6)] \\
\text { Radius }=12
\end{array}\right]}
\end{gathered}
$$

Score 2: The student gave a complete and correct response.

Question 30

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

$$
\begin{aligned}
& x^{2}+16 x+64+y^{2}+12 y+36=44+164+36 \\
& (x+8)^{2}+(y+6)^{2}=144 \\
& \text { center: }(-8,-6) \\
& \text { radius: } 12
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 30

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

$$
\begin{aligned}
& x^{2}+16 x+64+y^{2}+12 y-44=0 \\
& x^{2}+16 x+y^{2}+12 y=20
\end{aligned}
$$

Score 1: The student determined the coordinates of the center of the circle.

Question 30

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

$$
\begin{aligned}
& x^{2}+16 x+64+y^{2}+12 y+36=-44+36+64 \\
& \qquad(x+8)^{2}+(y+6)^{2}=56 \\
& \text { Center: }(-8,-6) \\
& \text { Radius }=\sqrt{56}
\end{aligned}
$$

Score 1: The student made an error when determining the length of the radius of the circle.

Question 30

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

$$
\begin{gathered}
x^{2}+16 x+64+y^{2}+124+36=44+36+64 \\
(x+8)^{2}+(y+6)^{2}=144
\end{gathered}
$$

$$
\begin{aligned}
& \text { Center }(-8,-6) \\
& \text { radius }=72
\end{aligned}
$$

Score 1: The student made an error when determining the length of the radius of the circle.

Question 30

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+\overline{12 y-44}=0$.

$$
\left.\left(\frac{1}{2}\right) \right\rvert\, 16
$$

$$
\begin{array}{cl}
x^{2}+16 x+64=0 & y^{2}+12 y+36=0 \\
(x+4)(x+4)=0 & (y+6)(y+2)=0 \\
x+4=0 & y+6=0 \\
\frac{-4-4}{x=-4} & y=-6
\end{array}
$$

Score 0: The student did not show enough correct relevant work to receive any credit.

Question 30

30 Determine and state the coordinates of the center and the length of the radius of the circle represented by the equation $x^{2}+16 x+y^{2}+12 y-44=0$.

$$
\begin{aligned}
& x^{2}+16 x\left(\frac{16)^{2}}{2}\right)^{2}+y^{2} 124(x) x^{2}=-44 \\
& x^{2}+16 x+64+y^{2}+12 y+36=-44 \\
&-8 \\
& x^{2}+16 x+y^{2}+12 y=56 \\
&(x+8)+(y+6)=56
\end{aligned}
$$

Score 0: The student did not show enough correct relevant work to receive any credit.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

$$
\begin{gathered}
\sin x=\frac{3}{5} \quad \sin -1\left(\frac{3}{5}\right) \\
36.869897 \\
m \angle S \sim 37^{\circ}
\end{gathered}
$$

Score 2: The student gave a complete and correct response.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.
$180-143=37^{\circ}$

$$
\begin{aligned}
& M L S=37^{\circ} \text { becousy } \angle S=\angle J L M \text { and } \angle J C M \text { is } \\
& 37^{\circ} \text { base } 53+90=103 \text { and } 180-143.37^{\circ} .
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

$$
\begin{aligned}
& \cos _{\left(\cos ^{-1} J\right.} J=\frac{3}{5}\left(\cos ^{-1}\right) \quad 90-53.130102=36.869 \\
& \operatorname{MLS}=53.130102 \\
& M \angle S=37^{\circ}
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}^{\boldsymbol{A} \boldsymbol{H}}$

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

$$
\begin{aligned}
& \cos J=3 / 5 \\
& \cos ^{-1}(3 / 5) \quad \text { since } \triangle \operatorname{sBc} \sim \Delta C M J \\
& m<s=53^{\circ}
\end{aligned}
$$

Score 1: The student made an error in determining the measure of $\angle S$.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

$$
\begin{aligned}
& m \angle S=37^{\circ} \text { bc triangles } \\
& \text { equal } 180^{\circ} \text { and } 180-143=37^{\circ}
\end{aligned}
$$

Score 1: The student determined the measure of $\angle S$, but did not show work to determine 143°.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

Score 0: The student gave a completely incorrect response.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

$$
\begin{aligned}
& m<S \text { is } \frac{3}{5} \text { because } \\
& \text { the angles } J \text { an } S \text { are } \\
& \text { similar. }
\end{aligned}
$$

Score 0: The student gave a completely incorrect response.

Question 31

31 In the diagram below, $\triangle S B C \sim \triangle C M J$ and $\cos J=\frac{3}{5}$.

Determine and state $\mathrm{m} \angle S$, to the nearest degree.

$\sin A$.

Score 0: The student gave a completely incorrect response.

Geometry - Jan. '24

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°.
Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

$$
\begin{array}{rlrl}
\tan 75 & =\frac{4}{85} & \tan 35 & =\frac{x}{85} \\
& =317.224 \\
& =59.517 \\
& \frac{59.234}{376.741} \approx & =377
\end{array}
$$

Score 4: The student gave a complete and correct response.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°. Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

$$
\begin{gathered}
\tan 35^{\circ}=\frac{y}{85} \\
y=\tan 35^{\circ}(85) \\
y=59.5
\end{gathered}
$$

$$
\tan 75^{\circ}=\frac{x}{85}
$$

$$
x=\tan 75(85)
$$

$$
x=317.2
$$

$$
317.2+59.5=376.7
$$

Score 4: The student gave a complete and correct response.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°.
Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

Score 3: The student made one rounding error.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°.
Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

Score 3: The student made one rounding error.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°.
Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

$$
\begin{aligned}
& \text { SOH CA H TIA } \\
& \begin{array}{l}
\frac{\operatorname{Tn} 35}{1} \neq \frac{x}{85} \\
x=59.51764075
\end{array} \\
& \frac{\tan 45}{1} \neq \frac{y}{85} \\
& y=85
\end{aligned}
$$

Score 3: The student made a transposition error in labeling the measure of $\angle A C D$ as 45°.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°. Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

$$
\begin{aligned}
& \tan 75=\frac{x}{85} \\
& \tan 75(85)=x
\end{aligned}
$$

$$
x=317.22
$$

Score 2: The student determined the length of $\overline{A D}$.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°. Alt

Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

$\frac{\cos (35)}{1}=\frac{85}{x}$
$85 \tan (75)=y$
$\frac{\cos (35) x}{\cos (35)}=\frac{85}{\cos (35)}$

$$
\begin{aligned}
y= & 317.2243186 \\
& +103.70584 \\
& =\frac{420.9901586}{}
\end{aligned}
$$

$$
=103.76584
$$

421 meters

Score 2: The student made a conceptual error when determining the length of $\overline{D B}$.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°. Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

Score 2: The student determined the length of $\overline{D B}$.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. She stands at point C, 85 meters from point D, and locates points A and B on either side of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°. Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

$$
\tan 75^{\circ}=\frac{x}{85}
$$

Score 1: The student wrote correct trigonometric equations, but no further correct work was shown.

Question 32

32 Trish is a surveyor who was asked to estimate the distance across a pond. S. he stands at point C, 85 meters from point D, and locates points A and B on eithegside of the pond such that A, D, and B are collinear.

Trish approximates the measure of angle $D C B$ to be 35° and the measure of angle $A C D$ to be 75°.
Determine and state the distance across the pond, $\overline{A B}$, to the nearest meter.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& 90^{2}=355^{2}+b^{2} \\
& 8100=1025+b^{2} \\
& 125-1255 b^{225} \\
& \sqrt{b^{2}}=\sqrt{6875} \\
& b=82.9
\end{aligned}
$$

Score 0: The student gave a completely incorrect response.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle to the nearest cubic centimeter.

$$
\begin{array}{ll}
12: 2=6 & V=\frac{1}{3} B h \\
a^{2}+6^{2}=c^{2} & V=\frac{1}{3}(1 \times \omega)(h) \\
x^{2}+6^{2}=16^{2} & V=\frac{1}{3}(12 x 12)(14.83239697) \\
x^{2}+\frac{36}{-36}=\frac{256}{36} & V=\frac{1}{3}(144)(14.83239697) \\
\sqrt{x^{2}}=\sqrt{20} & V=\frac{1}{3}(2,135.865164) \\
x=14.83239697 & V=711.9550545
\end{array} \rightarrow V \mathrm{~m}^{3}
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce,

$$
\begin{aligned}
& w=0.032 \cdot 712 \\
& w=22.184 \\
& w \approx 23
\end{aligned}
$$

Score 4: The student gave a complete and correct response.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

$$
\begin{aligned}
V=\frac{1}{3} B h \\
v=\frac{1}{3}(12)(12)(14.832) \times h_{1}^{16} \\
712 \mathrm{~cm}^{3}
\end{aligned} \quad \begin{aligned}
& 6^{2}+x^{2}=16^{2} \\
& 36+x^{2}=256 \\
&-36 \\
& \sqrt{x}=\sqrt{220} \\
& x=14.83
\end{aligned}
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

Score 3: The student found the volume of the candle, but did not find the weight of the candle.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

$$
\begin{array}{ll}
16^{2}-6^{2}=x= & \text { pyramid } v=\frac{1}{3} \text { Bn } \\
256-36=x^{2} & v=\frac{1}{3}\left(12^{2}\right) \cdot 14.832=711.936 \\
x^{2}=220 \quad x=14.932 & v=712
\end{array}
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

Score 3: The student labeled the wrong unit of weight.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

$$
\begin{aligned}
& V=\frac{1}{3} B h \\
& V=\frac{1}{3}(144)(16) \\
& V=\frac{1}{3}(2304) \\
& V=768 \mathrm{~cm}^{3}
\end{aligned}
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

$$
0.032(768)
$$

24.576 ounces

Score 2: The student made a conceptual error using 16 as the height.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

$$
\frac{720}{.032}=22,500
$$

Score 2: The student rounded the height which led to an incorrect volume. The student made an error in determining the weight.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

$$
\begin{aligned}
& V=\frac{1}{3} B h \\
& V=\frac{1}{3} \cdot 144 \cdot \sqrt{29 r} \\
& V=820.22 \\
& V=820
\end{aligned}
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

$$
(.032)(820)=26.2
$$

Score 2: The student made an error when determining the height and made a rounding error when determining the weight.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

$$
\left.\begin{array}{rlr}
6^{2}+h^{2} & =16^{2} & V
\end{array} \begin{array}{rl}
36 & =B h \\
36 & =256 \\
h^{2} & =220 \\
h & =\sqrt{220}
\end{array}\right)(12-12)(\sqrt{220})
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

Score 2: The student found the height of the pyramid correctly, but used an incorrect formula when determining the volume. No further correct work is shown.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

Score 1: The student found an incorrect volume, but found an appropriate weight.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

Score 0: The student did not show enough relevant course-level work to receive any credit.

Question 33

33 A candle in the shape of a right pyramid is modeled below. Each side of the square base measures 12 centimeters. The slant height of the pyramid measures 16 centimeters.

Determine and state the volume of the candle, to the nearest cubic centimeter.

$$
\begin{aligned}
& V=\frac{1}{3} b h \\
& V=\frac{1}{3}(12)(16) \\
& V=64 \mathrm{~cm}^{3}
\end{aligned}
$$

The wax used to make the candle weighs 0.032 ounce per cubic centimeter. Determine and state the weight of the candle, to the nearest ounce.

Score 0: The student gave a completely incorrect response.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

Statements	Reasons	
(1) Quad $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \\| \overline{C D}$	(1) given	

(5) $\overline{B E} \cong \overline{D F}$
(2) $A B C D$ is a p-gram
(3) $\overline{B C} \| \overline{A D}$
(5) (4) $\overline{B C} \cong \overline{A D}$
(A) (5) $41 \cong 42$
(6) $\triangle B C E \cong \triangle D A F$
(7) $\overline{C E} \cong \overline{A F}$
(2) if a quad has one pair of opp sides 11 and \cong, it is a p-gram
(3) opp sides of a p-gram arell
(4) OPP sides of a pgram are $\stackrel{\sim}{=}$
(5) if lines are II and cut by a transv., cut. int, y's are \cong
(6) $S A S \cong S A S$
(7) CPCTC

Score 4: The student gave a complete and correct response.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

$$
\begin{aligned}
& \text { 2). } \overline{B E+E E}=\overline{B F} \\
& \text { 2.5). } \overline{E F} \cong \overline{E F} \\
& \text { 3). } \overline{B E}+\overline{E F} \cong \overline{D F}+\overline{E F} \\
& \text { 2). A segmeat is } \\
& \begin{array}{l}
\text { 2. croul to the Sam } \\
\text { of its parts } \\
\text { 2.5). Reflexive }
\end{array} \\
& \text { 3). Addition } \\
& \text { 4). } \overline{B F} \cong \overline{D E} \text { 4). Subs titution Poperty of } E_{\text {quu }} \text { ity } \\
& \text { 5). } \Varangle A B E \cong=\{(O F \\
& \text { 5) when If lines are cat } \\
& \text { 5). by a tratsulesal alt. } \\
& \text { int. } x^{\prime} s \text { are } \cong \\
& \text { 6) } \triangle A B F \approx \triangle C D E \text { 6). } S A S \text { Congetect theorem } \\
& \text { 7). } \overline{C E} \cong \overline{A F} \text { 7). Cores. parte of } \cong \triangle \text { 's }
\end{aligned}
$$

Score 4: The student gave a complete and correct response.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

Statements	Reasons	
(1) Quad $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \\| \overline{C D}$,	(1) givens	

(1) Quad $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, $\overline{B D}$ is a diagonal, $\overline{B E} \cong \overline{D F}$.
(2) $: A B F \cong=\triangle D E$
(3) $\overline{E F} \cong \bar{F} \bar{F}$.
(4) $\overline{B E}+\overline{E F} \cong \overline{D F}+\overline{F E}$ or $\overline{B F} \cong \overline{D E}$
(5) $\triangle A F B \cong D C E D$
(6) $\overline{A F} \cong \overline{C E}$
(2) when parallel lines are cut by a transversal, they form two congruent alternate interior angles
(3) reflexive property
(4) addition
(5) $S A S \cong S A S$
(b) CPCTC

Score 4: The student gave a complete and correct response.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

1) $A B C D$ is a quadrilateral:
$\overline{A B}$ is \cong and $I I$ to $\overline{C D}$;
$\overline{C E}$ and $\overline{A F}$ are drawn
to diegonel $\overline{B D}$ sothet $\overline{B E} \cong \frac{D F}{D F}$
2) $A B C D$ is a parallelogram
3) $\overline{A D} \cong \overline{B C}$
4) $\angle C D B \cong \angle A B D$
5) $\angle C D A \cong \angle C B A$
6) $\angle C D A-\angle C D B \cong \angle C B A-$
$\angle A B D$ or

$$
\begin{aligned}
& \angle B D A \cong \angle C B D \\
& \text { 7) } \triangle F D A \cong \triangle E B B C \\
& \text { 8) } \overline{C E} \cong A F
\end{aligned}
$$

2) When ane pair of opposite sides of a quedrileterol are parallel and congruent the quad is a parallelogram 3) opposite sides of a parallelogram are congruent
3) Aft. Int. angles
4) opposite angles ofparallelogram are congruent
5) When 2 congruent quantities are subtracted from 2 congruent quantities the results are congruent.
6) SAS
7) CPCTC

Score 3: The student had an incomplete reason in step 4.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

1) Quad $A B C D, \overline{A B}$ is \cong and 11 to $\overline{C D}$. Segments $C E$ and $\overline{A F}$ are drawn to diagonal $\overline{B D}$ Such that $\overline{B E} \cong \overline{D F}$
2) Quad $A B C P$ is a program
3) $\overline{B C}$ and $\overline{A D} \cong$
4) $\angle 1 \cong \angle 2$
5) $\triangle B C E \cong \triangle D A F$
b) $\overline{C E} \cong \overline{A F}$
6) Given
7) opp. sides \simeq and $/ / \rightarrow$ p.gram
8) opp. sides \subseteq in p.gram
9) If 11 limes \rightarrow alt. int. L's
10) $S A S$
b) $C P C T C$

Score 3: The student had one missing statement and reason to prove step 4.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

1. Quad $A B C D, \overline{A B}=\overline{C D}, \overline{A B} \| \overline{C D}$, I. Given $\overline{C E}+\overline{A F}$ are drawn to diagaua $\overline{B D}$ $\overline{B E} \geq \overline{D F}$
2. $A B C D$ is a parallelogram
3. $41 \cong 22$
4. $\overline{B C} \cong \overline{A D}$
5. $\triangle A D F \cong \triangle C B E$
6. $\overline{C E} \cong \overline{A F}$
7. If one pair of apposite sides of a quad are loud II, it is a parallelogram.
8. Alternate interior angles are?
9. opposite Sides of a \triangle are \because.
10. SAS ESAS
11. CPLTC

Score 2: The student had one missing statement and reason to prove step 3 and an incomplete reason in step 3 .

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

(1) Quad $A B C D, \overline{A B} \equiv \overline{C D}$
(1) Given
$\overline{A B} \| \overline{C D} \overline{C E}+\overline{A F}$ drawn to
diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$
(2) $\overline{B E}+\overline{X E F} \cong \overline{D F}+\overline{E F}$
\& Additur Property

$$
\bar{B} F \cong \overline{S E}
$$

(3) $\angle A B F \cong \angle C D E$
(3) If 2 lines il, then

Alternate Interior L 's \cong
(4) $\triangle B A F \cong \triangle D C E$
(4) SAS
(5) $\overline{C E} \cong \overline{A F}$
(5) Sides of $\cong \Delta^{\prime}$'s

Score 2: The student had a missing statement and reason to prove step 2 and had an incorrect reason in step 5 .

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

1. Real ABCD

$$
\frac{A B}{A B} \| C D
$$

$$
B E=\sqrt{F E} \quad \text { SEM }
$$

2. $\triangle A B F \equiv \subset C D E(a \equiv \alpha)$
3. $\triangle A B F \cong \triangle C D E$

$$
\text { 4. } \overline{C E}=\overline{A F}
$$

Given
2. Parallel lines form \cong alternate interior angles
3. $B S A \cong S S A$
4. Segments are ㄹ.

Score 1: The student had only one correct relevant statement and reason in step 2.

Question 34

34 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$.
Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$

statements	reasons
1.) $\overline{A B}$ is congruent and parallel to $\overline{C D} \cdot \overline{B E}=\overline{D F}$	1.) Given
2.) $\angle A \cong \angle C$	2.) alternate interior angles congruent
3.) $\angle B ; \angle D$ are vight angles	3.) def of perpendicular lines
4.) $\angle B \cong \angle D$	4.) all right angles congruent
5.) $\overline{C E} \cong \overline{A F}$	5.) Opposite sides ave both payallel and congruent

Score 0: The student gave a completely incorrect response.

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& \mu \mu-4 / 8 \\
&=-1 / 2 \quad \begin{array}{l}
\text { Since the slopes of } \overline{M A} \\
\text { and } \\
\text { ST }
\end{array} \\
& \text { and are equal, } \overline{M A}
\end{aligned}
$$

Quadilatroal MATH is a trapezoid because it has a pair of parallel sides.

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.
$y(7.3)$

Question 35 is continued on the next page.
Score 6: The student gave a complete and correct response.

Question 35 continued．

Prove that quadrilateral MYTH is a rectangle．［The use of the set of axes below is optional．］

Slope of 所 $=-1 / 2$
Slop or $\overline{A M}=2$
Slop of $\overline{T y}=2$ Ny aud MT are marla．

Binaud \bar{T} are parallel．
$\therefore M y H$ is a pandlelyaum．
Since shoes of It and $\overline{\text { Mn }}$ are memphis reapocale，mt \perp m，so curve M
 is a right angle．
Than MyTH is a retarded beaus it is a papalllognem wist a nigltamgle．

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\begin{array}{ll}
m \overline{M A}=\frac{7-5}{-1-3}=\frac{2}{-4}=-\frac{1}{2} \\
m \overline{H T}=\frac{-7-3}{2--6}=\frac{-4}{8}=-\frac{1}{2} \quad & \begin{array}{l}
\text { Pare Slope } \\
\text { Parallel Lines } \\
m \overline{A T}=\frac{5--7}{3-2}=\frac{12}{1}=12
\end{array} \quad \begin{array}{l}
\text { MATH is a trapezoid } \\
\text { Because it has I Pair } \\
m \overline{M H}=\frac{7--3}{-1--6}=\frac{10}{5}=2
\end{array} \quad \text { of Parallel sides. }
\end{array}
$$

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
y(7,3)
$$

Question 35 is continued on the next page.
Score 6: The student gave a complete and correct response.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

$$
\begin{aligned}
& d \overline{M Y}=\sqrt{(7--1)^{2}+(3-7)^{2}}=\sqrt{64+16}=\sqrt{80} \\
& d \overline{H T}=\sqrt{(2--6)^{2}+(7--3)^{2}}=\sqrt{64+16}=\sqrt{80} \\
& d \overline{M H}=\sqrt{(-1--6)^{2}+(7--3)^{2}}=\sqrt{25+100}=\sqrt{125} \\
& d \overline{Y T}=\sqrt{(7-2)^{2}+(3--7)^{2}}=\sqrt{25+100}=\sqrt{125}
\end{aligned} \text { Same length }
$$

MYTH is a parallel gram bbc it has 2 Pairs of \cong opposite sides.
$\overline{M A} \perp \overline{M H} b / c$ negative reciprocals slopes, $\therefore L M$ is a right angle. MYTH is a rectangle bile it is a parallelogram with a right

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& \text { Slope of line } \overline{M A}=-\frac{2}{4}=-\frac{1}{2} \\
& \text { Slope of line } \overline{H T}=-\frac{4}{8}=-\frac{1}{2}
\end{aligned}>\overline{M A} \| \overline{H T}
$$

MATH is a trapezond because it
has one pair of parallel sides

$$
\sqrt{B A} \text { and } \overline{H T} \text {. }
$$

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
V,(7,3)
$$

Question 35 is continued on the next page.

Score 5: The student wrote a partially correct concluding statement when proving the rectangle.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]
Slope of $\overline{M Y}=-\frac{4}{8}=-\frac{1}{2} \quad$ All the sides ore percalicullor slope of $\overline{H T}=-1$ to each other because trey Slope \& $\overline{H M}=\frac{10}{5}=2$ have opposite reciprocal angles are right angles MITH. slope of $\overline{T y}=\frac{10}{5}=2 \quad \frac{\text { has }}{2} \frac{2}{\text { my }} 11 \mathrm{HT}$ and $\overline{\mathrm{HM}} 11 \overline{T Y}$. A rectangle has all right angles and 2 pares or paroled lies so MyTh is
a rectangle

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$. Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]
Quabrialeral MATH is a trapczad if it has a pair of $1 /$ sides,

Quadrilateral MATH is atrapezo.d bes
it has one pair of $/ 1$ sides
State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
\begin{aligned}
& \overline{m A} \frac{7-5}{-1-3}-\frac{2}{4} \\
& y(7,3)
\end{aligned}
$$

Question 35 is continued on the next page.
Score 5: The student wrote a partially correct concluding statement when proving the rectangle.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]
Quadrilateral MYTH is a rectangle if all 4 angles are rt f

$$
\begin{aligned}
& \overline{H T} \frac{-3+7}{-6-2} \frac{4}{-6}-\frac{2}{4}-\frac{1}{2} \overline{M y} \frac{3-7}{7+1}-\frac{4}{8}=-\frac{2}{4}=-\frac{1}{2} \\
& \overline{Y T} \frac{3+7}{7-1} \frac{10}{5}=\frac{2}{1} \quad \overline{M H}=\frac{7+3}{-1+6} \quad \frac{10}{5} \quad \frac{2}{1}
\end{aligned}
$$

Quadritateral $\frac{M Y T H \text { is a rectange because all } 4 \text { sides are neg }}{H T}$ reciprocals bc FT and MY are $-\frac{1}{2}$ and $\frac{Y T}{}$ and $\overline{M H}$ are $\frac{P}{1}$ therefore neg rec. create 1 lines and 1 lines form rt t oo Quadribleral MyTH isar rectangle,

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\left.\begin{array}{l}
m \overline{m A}=-\frac{1}{2} \\
m \overline{H T}=\frac{-1}{2}
\end{array}\right\} \text { same } \overline{m A} / / \overline{H T}
$$

Since quad MATH has only one set
of parallel sides, it is a trapezoid.

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
(7,3)
$$

Question 35 is continued on the next page.
Score 4: The student made a conceptual error when proving the rectangle.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

$$
\begin{aligned}
& d \overline{m y}=\sqrt{(7-1)^{2}+(3-7)^{2}}=\sqrt{80} \\
& d H m=\sqrt{\left((1-6)^{2}+(7-3)^{2}\right.}=\sqrt{125} \\
& d \overline{H T}=\sqrt{(2-6)^{2}+(-7-3)^{2}}=\sqrt{80} \\
& d \overline{T Y}=\sqrt{(7-2)^{2}+(3-7)^{2}}=\sqrt{125}
\end{aligned}
$$

It is a rectangle
because the opposite sides are equal.

Geometry - Jan. '24

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
\text { Slope } \overline{M A}= & \frac{5-7}{3(-1)} \quad \text { Slope } \overline{T H}
\end{aligned}=\frac{-3-(-7)}{-6-2}
$$

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
y(7,3)
$$

Question 35 is continued on the next page.
Score 4: The student made a conceptual error when proving the rectangle.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

$$
\begin{aligned}
M T & =\sqrt{(-1-2)^{2}+(7-(-7))^{2}} & H Y & =\sqrt{(7-(-6))^{2}+(3-(-3))^{2}} \\
& =\sqrt{(-3)^{2}+(14)^{2}} & & =\sqrt{13^{2}+6^{2}} \\
& =\sqrt{9+196} & & =\sqrt{169+36} \\
& =\sqrt{205} & & \sqrt{205}
\end{aligned}
$$

Since the diagonals of quad MYTH are \equiv, it is a rectangle.

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]
Slope $\overline{m a} \frac{5-7}{3+1}=\frac{2}{4}=-\frac{1}{2}>$ parallel $\quad \therefore$ Quad MATH
Slope TH $\frac{-3+7}{-6-2}=\frac{4}{-8}=-\frac{1}{2}>$ parallel is a trapezoid because it has onepairof11
sides.

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
\text { point } K=(7,3)
$$

Question 35 is continued on the next page.
Score 4: The student made a conceptual error when proving the rectangle.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

$$
\begin{aligned}
& \text { m Slope of } \overline{M A}=\frac{1}{2} \\
& m(-1,7)+(2,-7) \\
& \text { Sloteositi }=\frac{1}{2} \\
& \text { Slopeof M11: } \frac{-3-7}{-6+1}=\frac{10}{5}=2 \\
& \text { Slope of } \bar{T}: \frac{-7-3}{2-7}=\frac{10}{5}=2 \\
& \text { Slope } \overline{m T}=\frac{-7.7}{2+1}: \frac{-14}{3} \\
& \text { Quad Milit } \\
& \text { is a rectangle } \\
& \text { because it has } \\
& 1 \text { diagenalsadid } \\
& 2 \text { pairs fl sides }
\end{aligned}
$$

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

Trapezoids are a quadrilateral with ane set of parralel lines,
$\overline{M A}$ and $\overline{H T}$ ane parallel.

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
(7,3)
$$

Question 35 is continued on the next page.
Score 3: The student made one conceptual and one computational error when proving the rectangle.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]
slope $\begin{aligned} & \overline{M Y}=-4 / 8 \\ & \overline{H T}=-4 / 8=-1 / 2\end{aligned}$

Slope $\begin{aligned} \overrightarrow{M H} & =\frac{10}{5} \\ M & =\frac{10}{5}=1 / 3 .\end{aligned}$

Rectangles are quadribeterents with two sets of parallel lives, MY 11 HT and MHIITy. They also require four 90° angles, since the angle.

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

plan

Show set of cap. $\left.\begin{array}{l}m_{\overline{M F}}=-\frac{2}{4}=-\frac{1}{2} \\ \text { one }\end{array}\right\} \overline{M A} \| \overline{H T}$ because
one set of $\mathrm{cqp} \cdot \mathrm{M}_{\overline{H T}}=-\frac{4}{8}=\frac{-1}{2}$, their slopes are $=$
sides
are 11 .

$$
\begin{aligned}
& m \overline{M H}=\frac{10}{5}=2 \int \overline{M H X H A T} \text { because ines } \\
& m \overline{A T}=12 \\
& \text { sloes are nt equal. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MATH is a } \\
& \text { trapezoid because } \\
& \text { there is only one } \\
& \text { pair of opp: sides } \\
& \text { Il. }
\end{aligned}
$$

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$. $M A=\frac{-2}{4}=\frac{-1}{2}$

$$
(7,3)
$$

Question 35 is continued on the next page.
Score 3: The student made a conceptual error in proving the rectangle and did not write a concluding statement.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

$$
\begin{array}{rlrl}
d \overline{M Y} \sqrt{(7+1)^{2}+(3-7)^{2}} & d M T \sqrt{(2+6)^{2}+(-7+3)^{2}} \\
= & =\sqrt{(8)^{2}+(-4)^{2}} & & =\sqrt{(8)^{2}+(-4)^{2}} \\
& =\sqrt{64+16} & & =\sqrt{64+16} \\
& =\sqrt{80} & & =\sqrt{80}
\end{array}
$$

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$ ，and $H(-6,-3)$ ．
Prove that quadrilateral MATH is a trapezoid．
［The use of the set of axes on the next page is optional．］

$$
\begin{aligned}
& \overline{M A}=\text { Slope of } 2 / 4=1 / 2>11 \\
& \bar{\pi} H=\text { Slope of } 4 / 8=1 / 2
\end{aligned}
$$

Quadralateral MATt is a trapezoid，because in order to be a trapazoid you must hame 1 pair of opposite sides not one 11．In MA It both MA and Th ore parallel．As well as opposite sides．Therefore quadritotery．M去Tlt
is a trapizoid

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$ ．

$$
\begin{aligned}
& \text { If } A \text { is the midpoint of } \overline{M Y} \text {, then } Y \text { would } \\
& \text { be booted at } p+(7,3) \text {. }
\end{aligned}
$$

Question 35 is continued on the next page．

Score 2：The student made a computational error in determining the slopes of $\overline{M A}$ and $\overline{T H}$ ． The student found the coordinates of Y ．No further correct work was shown．

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]
It is a rectangle bile ir rectangle has all 4 sides congruent. The opposite sides $\sqrt{1}$ and $\overline{M H}$ are 11 anal opposite sides My and HT ore $11: \therefore$ there are 2 sets of opposite sides that are II. Makekiry My Ha
rectarcye.

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
(7,3)
$$

Question 35 is continued on the next page.

Score 2: The student found the coordinates of point Y and found the slopes of the sides, but did not prove the MATH was a trapezoid and MYTH was a rectangle.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

$$
\begin{aligned}
& \text { Slope }(\overline{M Y})=-4 / 8=-1 / 2 \\
& \text { slope }(\overline{H T})=-4 / 8=-1 / 2 \\
& \text { slope }(\overline{H M})=10 / 5=2 \\
& \text { slope }(T Y)=10 / 5=2
\end{aligned}
$$

Geometry - Jan. '24

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\begin{array}{ll}
\overline{H T} \frac{-3+(+7)}{-6-2}=\frac{4}{-8}=\left(\frac{2}{-4}\right. & \overline{M A}=\frac{5-7}{3+(+)}=\left(\frac{-2}{4}\right) \\
\overline{H M}=\frac{-3-7}{-6+(-1)}=\frac{-10}{-5}=\left(\frac{2}{4}\right) & \overline{T A}=\frac{-7-5}{2-3}=\frac{-12}{-1}=\left(\frac{12}{1}\right)
\end{array}
$$

The slope of $\overline{H T}\left(\frac{2}{4}\right)$ is opposite reciple to $\overline{M A}\left(\frac{-2}{4}\right)$, therefore parallel). The slopes of HTM

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

Question 35 is continued on the next page.

Score 1: The student found the slopes of the sides of MATH. No further correct work was shown.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& m \overline{H T}=\frac{-7--3}{2-6}=\frac{-4}{8}=\frac{-1}{2} \\
& m \overline{M A}=\frac{5-7}{3-1}=\frac{-2}{4}=\left(\frac{-1}{2}\right.
\end{aligned} \quad \begin{aligned}
& \text { same } \\
& \text { slope }
\end{aligned}
$$

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

Question 35 is continued on the next page.

Score 1: The student found the slopes of $\overline{H T}$ and $\overline{M A}$. No further correct work was shown.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$. Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& \frac{5-7}{3--1} \quad \frac{-2}{4} \\
& \frac{-3++7}{-6-2} \\
& \frac{-7}{-7-7}=\frac{2}{3} \\
& \frac{-14}{-3-5}-\frac{8}{9}
\end{aligned}
$$

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
\begin{aligned}
& \text { The points } M \text { and } T \text { show } \\
& \text { that it is a trapezoid since } \\
& \text { both all equal when plotted on a } \\
& \text { graph. }
\end{aligned}
$$

Question 35 is continued on the next page.

Score 0: The student did not show enough relevant course-level work to receive any credit.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]

Question 35

35 Quadrilateral MATH has vertices with coordinates $M(-1,7), A(3,5), T(2,-7)$, and $H(-6,-3)$.
Prove that quadrilateral MATH is a trapezoid.
[The use of the set of axes on the next page is optional.]

State the coordinates of point Y such that point A is the midpoint of $\overline{M Y}$.

$$
y(6,3)
$$

Question 35 is continued on the next page.
Score 0: The student had a completely incorrect response.

Question 35 continued.

Prove that quadrilateral MYTH is a rectangle. [The use of the set of axes below is optional.]
Quadrilater MYTH is a rectangle
because it has \cong sides and os
from the traperecid.

Geometry - Jan. '24

Regents Examination in Geometry - January 2024

Chart for Converting Total Test Raw Scores to Final Exam Scores (Scale Scores)

(Use for the January 2024 exam only.)

Raw Score	Scale Score	Performance Level	Raw Score	Scale Score	Performance Level	Raw Score	Scale Score	Performance Level
80	100	5	53	79	3	26	61	2
79	98	5	52	78	3	25	60	2
78	97	5	51	78	3	24	59	2
77	96	5	50	77	3	23	57	2
76	95	5	49	77	3	22	56	2
75	94	5	48	76	3	21	55	2
74	93	5	47	76	3	20	53	1
73	92	5	46	75	3	19	51	1
72	91	5	45	75	3	18	50	1
71	90	5	44	74	3	17	48	1
70	90	5	43	74	3	16	46	1
69	89	5	42	73	3	15	44	1
68	88	5	41	73	3	14	42	1
67	87	5	40	72	3	13	40	1
66	87	5	39	72	3	12	38	1
65	86	5	38	71	3	11	36	1
64	86	5	37	70	3	10	33	1
63	85	5	36	70	3	9	31	1
62	84	4	35	69	3	8	28	1
61	83	4	34	68	3	7	25	1
60	83	4	33	67	3	6	22	1
59	82	4	32	67	3	5	19	1
58	82	4	31	66	3	4	16	1
57	81	4	30	65	3	3	12	1
56	80	4	29	64	2	2	9	1
55	80	4	28	63	2	1	4	1
54	79	3	27	62	2	0	0	1

To determine the student's final examination score (scale score), find the student's total test raw score in the column labeled "Raw Score" and then locate the scale score that corresponds to that raw score. The scale score is the student's final examination score. Enter this score in the space labeled "Scale Score" on the student's answer sheet.

Schools are not permitted to rescore any of the open-ended questions on this exam after each question has been rated once, regardless of the final exam score. Schools are required to ensure that the raw scores have been added correctly and that the resulting scale score has been determined accurately.

Because scale scores corresponding to raw scores in the conversion chart change from one administration to another, it is crucial that for each administration the conversion chart provided for that administration be used to determine the student's final score. The chart above is usable only for this administration of the Regents Examination in Geometry.

[^0]: Notice ...
 A graphing calculator, a straightedge (ruler), and a compass must be available for you to use while taking this examination.

