0123geo

1 In the diagram below, a line reflection followed by a rotation maps $\triangle A B C$ onto $\triangle D E F$.

Which statement is always true?

1) $\overline{B C} \cong \overline{E F}$
2) $\overline{A C} \cong \overline{D E}$
3) $\angle A \cong \angle F$
4) $\angle B \cong \angle D$

2 A circle is continuously rotated about its diameter. Which three-dimensional object will be formed?

1) cone
2) prism
3) sphere
4) cylinder

3 In the diagram below of $\triangle C E R, \overline{L A} \| \overline{C R}$.

If $C L=3.5, L E=7.5$, and $E A=9.5$, what is the length of $\overline{A R}$, to the nearest tenth?

1) 5.5
2) 4.4
3) 3.0
4) 2.8

4 Right triangle $A B C$ is shown below.

Which trigonometric equation is always true for triangle $A B C$?

1) $\sin A=\cos C$
2) $\cos A=\sin A$
3) $\cos A=\cos C$
4) $\tan A=\tan C$

5 In the diagram of $\triangle A B C$ below, $\overline{A E}$ bisects angle $B A C$, and altitude $\overline{B D}$ is drawn.

If $\mathrm{m} \angle C=50^{\circ}$ and $\mathrm{m} \angle A B C=60^{\circ}, \mathrm{m} \angle F E B$ is

1) 35°
2) 40°
3) 55°
4) 85°

6 A jewelry company makes copper heart pendants. Each heart uses $0.75 \mathrm{in}^{3}$ of copper and there is 0.323 pound of copper per cubic inch. If copper costs $\$ 3.68$ per pound, what is the total cost for 24 copper hearts?

1) $\$ 5.81$
2) $\$ 21.40$
3) $\$ 66.24$
4) $\$ 205.08$

7 In right triangle $L M N$ shown below, $\mathrm{m} \angle M=90^{\circ}$, $M N=12$, and $L M=16$.

The ratio of $\cos N$ is

1) $\frac{12}{20}$
2) $\frac{16}{20}$
3) $\frac{12}{16}$
4) $\frac{16}{12}$

8 In $\triangle A B C$ below, $\overline{D E}$ is drawn such that D and E are on $\overline{A B}$ and $\overline{A C}$, respectively.

If $\overline{D E} \| \overline{B C}$, which equation will always be true?

1) $\frac{A D}{D E}=\frac{D B}{B C}$
2) $\frac{A D}{D E}=\frac{A B}{B C}$
3) $\frac{A D}{B C}=\frac{D E}{D B}$
4) $\frac{A D}{B C}=\frac{D E}{A B}$

9 Which polygon does not always have congruent diagonals?

1) square
2) rectangle
3) rhombus
4) isosceles trapezoid

10 If the circumference of a standard lacrosse ball is 19.9 cm , what is the volume of this ball, to the nearest cubic centimeter?

1) 42
2) 133
3) 415
4) 1065

11 Which polygon always has a minimum rotation of 180° about its center to carry it onto itself?

1)

Rectangle
2)

Isosceles
3) trapezoid

12 Circle O is drawn below with secant $\overline{B C D}$. The length of tangent $\overline{A D}$ is 24 .

If the ratio of $D C: C B$ is $4: 5$, what is the length of $\overline{C B}$?

1) 36
2) 20
3) 16
4) 4

13 The equation of a line is $3 x-5 y=8$. All lines perpendicular to this line must have a slope of

1) $\frac{3}{5}$
2) $\frac{5}{3}$
3) $-\frac{3}{5}$
4) $-\frac{5}{3}$

14 What are the coordinates of the center and length of the radius of the circle whose equation is
$x^{2}+y^{2}+2 x-16 y+49=0$?

1) center $(1,-8)$ and radius 4
2) center $(-1,8)$ and radius 4
3) center $(1,-8)$ and radius 16
4) center $(-1,8)$ and radius 16

15 In the diagram below of right triangle $M D L$, altitude $\overline{D G}$ is drawn to hypotenuse $\overline{M L}$.

If $M G=3$ and $G L=24$, what is the length of $\overline{D G}$?

1) 8
2) 9
3) $\sqrt{63}$
4) $\sqrt{72}$

16 Segment $A B$ is the perpendicular bisector of $\overline{C D}$ at point M. Which statement is always true?

1) $\overline{C B} \cong \overline{D B}$
2) $\overline{C D} \cong \overline{A B}$
3) $\triangle A C D \sim \triangle B C D$
4) $\triangle A C M \sim \triangle B C M$

17 In the diagram below of circle $O, \overline{A C}$ and $\overline{B C}$ are chords, and $\mathrm{m} \angle A C B=70^{\circ}$.

If $O A=9$, the area of the shaded sector $A O B$ is

1) 3.5π
2) 7π
3) 15.75π
4) 31.5π

18 Quadrilateral BEST has diagonals that intersect at point D. Which statement would not be sufficient to prove quadrilateral $B E S T$ is a parallelogram?

1) $\overline{B D} \cong \overline{S D}$ and $\overline{E D} \cong \overline{T D}$
2) $\overline{B E} \cong \overline{S T}$ and $\overline{E S} \cong \overline{T B}$
3) $\overline{E S} \cong \overline{T B}$ and $\overline{B E} \| \overline{T S}$
4) $\overline{E S} \| \overline{B T}$ and $\overline{B E} \| \overline{T S}$

19 The equation of line t is $3 x-y=6$. Line m is the image of line t after a dilation with a scale factor of $\frac{1}{2}$ centered at the origin. What is an equation of the line m ?

1) $y=\frac{3}{2} x-3$
2) $y=\frac{3}{2} x-6$
3) $y=3 x+3$
4) $y=3 x-3$

20 A cylindrical pool has a diameter of 16 feet and height of 4 feet. The pool is filled to $\frac{1}{2}$ foot below the top. How much water does the pool contain, to the nearest gallon? [1 $\mathrm{ft}^{3}=7.48$ gallons]

1) 704
2) 804
3) 5264
4) 6016

21 The area of $\triangle T A P$ is $36 \mathrm{~cm}^{2}$. A second triangle, $J O E$, is formed by connecting the midpoints of each side of $\triangle T A P$. What is the area of $J O E$, in square centimeters?

1) 9
2) 12
3) 18
4) 27

22 On the set of axes below, the endpoints of $\overline{A B}$ have coordinates $A(-3,4)$ and $B(5,2)$.

If $\overline{A B}$ is dilated by a scale factor of 2 centered at $(3,5)$, what are the coordinates of the endpoints of its image, $\overline{A^{\prime} B^{\prime}}$?

1) $A^{\prime}(-7,5)$ and $B^{\prime}(9,1)$
2) $A^{\prime}(-1,6)$ and $B^{\prime}(7,4)$
3) $A^{\prime}(-6,8)$ and $B^{\prime}(10,4)$
4) $\quad A^{\prime}(-9,3)$ and $B^{\prime}(7,-1)$

23 In the circle below, $\overline{A D}, \overline{A C}, \overline{B C}$, and $\overline{D C}$ are chords, $\overleftrightarrow{E D F}$ is tangent at point D, and $\overline{A D} \| \overline{B C}$.

Which statement is always true?

1) $\angle A D E \cong \angle C A D$
2) $\angle C D F \cong \angle A C B$
3) $\angle B C A \cong \angle D C A$
4) $\angle A D C \cong \angle A D E$

24 In the diagram below of $\triangle A B C, D$ and E are the midpoints of $\overline{A B}$ and $\overline{A C}$, respectively, and $\overline{D E}$ is drawn.

I. AA similarity
II. SSS similarity
III. SAS similarity

Which methods could be used to prove
$\triangle A B C \sim \triangle A D E$?

1) I and II, only
2) II and III, only
3) I and III, only
4) I, 11, and III

25 Using a compass and straightedge, construct the angle bisector of $\angle A B C$. [Leave all construction marks.]

26 On the set of axes below, $\triangle A B C$ and $\triangle D E F$ are graphed.

Describe a sequence of rigid motions that would map $\triangle A B C$ onto $\triangle D E F$.

27 As shown in the diagram below, a symmetrical roof frame rises 4 feet above a house and has a width of 24 feet.

Determine and state, to the nearest degree, the angle of elevation of the roof frame.

28 Directed line segment $A B$ has endpoints whose coordinates are $A(-2,5)$ and $B(8,-1)$. Determine and state the coordinates of P, the point which divides the segment in the ratio 3:2. [The use of the set of axes below is optional.]

29 In $\triangle A B C, A B=5, A C=12$, and $\mathrm{m} \angle A=90^{\circ}$. In $\triangle D E F, \mathrm{~m} \angle D=90^{\circ}, D F=12$, and $E F=13$. Brett claims $\triangle A B C \cong \triangle D E F$ and $\triangle A B C \sim \triangle D E F$. Is Brett correct? Explain why.

30 The volume of a triangular prism is $70 \mathrm{in}^{3}$. The base of the prism is a right triangle with one leg whose measure is 5 inches. If the height of the prism is 4 inches, determine and state the length, in inches, of the other leg of the triangle.

31 Triangle $A B C$ with coordinates $A(-2,5), B(4,2)$, and $C(-8,-1)$ is graphed on the set of axes below.

Determine and state the area of $\triangle A B C$.

32 Sally and Mary both get ice cream from an ice cream truck. Sally's ice cream is served as a cylinder with a diameter of 4 cm and a total height of 8 cm . Mary's ice cream is served as a cone with a diameter of 7 cm and a total height of 12.5 cm . Assume that ice cream fills Sally's cylinder and Mary's cone.

Who was served more ice cream, Sally or Mary? Justify your answer. Determine and state how much more is served in the larger ice cream than the smaller ice cream, to the nearest cubic centimeter.

33 Given: $\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E} \| \overline{D F}$, $\overline{E B} \| \overline{F C}, \overline{A C} \cong \overline{D B}$

Prove: $\triangle E A B \cong \triangle F D C$

34 Barry wants to find the height of a tree that is modeled in the diagram below, where $\angle C$ is a right angle. The angle of elevation from point A on the ground to the top of the tree, H, is 40°. The angle of elevation from point B on the ground to the top of the tree, H, is 80°. The distance between points A and B is 85 feet.

Barry claims that $\triangle A B H$ is isosceles. Explain why Barry is correct. Determine and state, to the nearest foot, the height of the tree.

Geometry CCSS Regents Exam 0123
www.jmap.org
35 Given: Triangle $D U C$ with coordinates $D(-3,-1)$, $U(-1,8)$, and $C(8,6)$
Prove: $\triangle D U C$ is a right triangle
Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$.
Prove quadrilateral $D U C U^{\prime}$ is a square.
[The use of the set of axes below is optional.]

0123geo

Answer Section

1 ANS: 1
The lengths of the sides of a triangle remain the same after all rotations and reflections because rotations and reflections are rigid motions which preserve distance.

PTS: 2	REF: 012301geo	NAT: G.CO.B. 6	TOP: Properties of Transformations
KEY: graphics			
ANS: 3	PTS: 2	REF: 012302 geo	NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects			
ANS: 2			
$\frac{7.5}{3.5}=\frac{9.5}{x}$			
x	≈ 4.4		

PTS: 2
REF: 012303geo
NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
4 ANS: 1
PTS: 2
REF: 012304geo NAT: G.SRT.C. 7
TOP: Cofunctions
5 ANS: 4

PTS: 2 REF: 012305geo NAT: G.CO.C. 10 TOP: Interior and Exterior Angles of Triangles
6 ANS: 2
$24 \mathrm{ht}\left(\frac{0.75 \mathrm{in}^{3}}{\mathrm{ht}}\right)\left(\frac{0.323 \mathrm{lb}}{1 \mathrm{in}^{3}}\right)\left(\frac{\$ 3.68}{\mathrm{lb}}\right) \approx \$ 21.40$
PTS: 2 REF: 012306geo NAT: G.MG.A. 2 TOP: Density
7 ANS: 1
$\sin N=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{12}{20}$
PTS: 2 REF: 012307geo NAT: G.SRT.C. 6 TOP: Trigonometric Ratios
8 ANS: 2
$\triangle A C B \sim \triangle A E D$
PTS: 2
REF: 012308geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
9 ANS: 3
PTS: 2
REF: 012309geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals

10 ANS: 2
$19.9=\pi d \quad \frac{4}{3} \pi\left(\frac{19.9}{2 \pi}\right)^{3} \approx 133$
$\frac{19.9}{\pi}=d$
PTS: 2 REF: 012310geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres
11 ANS: 1
2) 90°; 3) 360°; 4) 72°

PTS: 2 REF: 012311geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
12 ANS: 2
$24^{2}=4 x \cdot 9 x 5 \cdot 4=20$
$576=36 x^{2}$
$16=x^{2}$
$4=x$
PTS: 2 REF: 012312geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: secant and tangent drawn from common point, length
13 ANS: 4
The slope of a line in standard form is $-\frac{A}{B}$ so the slope of this line is $\frac{3}{5}$ Perpendicular lines have slope that are the opposite and reciprocal of each other.

PTS: 2 REF: 012313geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: find slope of perpendicular line
14 ANS: 2
$x^{2}+2 x+1+y^{2}-16 y+64=-49+1+64$

$$
(x+1)^{2}+(y-8)^{2}=16
$$

PTS: 2 REF: 012314geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
15 ANS: 4
$x^{2}=3 \times 24$
$x=\sqrt{72}$
PTS: 2 REF: 012315geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
16 ANS: 1
PTS: 2
TOP: Medians, Altitudes and Bisectors

17 ANS: 4
$\frac{140}{360} \cdot 9^{2} \pi=31.5 \pi$
PTS: 2 REF: 012317geo NAT: G.C.B. 5 TOP: Sectors
18 ANS: 3
3) Could be an isosceles trapezoid.

PTS: 2 REF: 012318geo NAT: G.CO.C. 11 TOP: Parallelograms
19 ANS: 4
Another equation of line t is $y=3 x-6$. $-6 \bullet \frac{1}{2}=-3$
PTS: 2 REF: 012319geo NAT: G.SRT.A. 1 TOP: Line Dilations
20 ANS: 3
$V=\pi(8)^{2}(4-0.5)(7.48) \approx 5264$
PTS: 2
REF: 012320geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
21 ANS: 1
$\frac{36}{4}=9$

PTS: 2 REF: 012321geo NAT: G.CO.C. 10 TOP: Midsegments
22 ANS: 4
$A:(-3-3,4-5) \rightarrow(-6,-1) \rightarrow(-12,-2) \rightarrow(-12+3,-2+5)$
B: $(5-3,2-5) \rightarrow(2,-3) \rightarrow(4,-6) \rightarrow(4+3,-6+5)$
PTS: 2 REF: 012322geo NAT: G.SRT.A. 1 TOP: Line Dilations
23 ANS: 2
Since $\overline{A D} \| \overline{B C}, \overparen{A B} \cong \overparen{C D} . \mathrm{m} \angle A C B=\frac{1}{2} \mathrm{~m} \overparen{A B}$

$$
\mathrm{m} \angle C D F=\frac{1}{2} \mathrm{~m} \overparen{C D}
$$

PTS: 2
REF: 012323geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: chords and tangents

24 ANS: 4

AA from diagram; SSS as the three corresponding sides are proportional; SAS as two corresponding sides are proportional and an angle is equal.

PTS: 2 REF: 012324geo NAT: G.SRT.A. 3 TOP: Similarity Proofs
25 ANS:

PTS: 2 REF: 012325geo NAT: G.CO.D. 12 TOP: Constructions
KEY: angle bisector
26 ANS:
Rotate 90° clockwise about B and translate down 4 and right 3 .
PTS: 2 REF: 012326geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
27
ANS:
$\tan ^{-1}\left(\frac{4}{12}\right) \approx 18$
PTS: 2 REF: 012327geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle

$$
\begin{aligned}
& x=-2+\frac{3}{5}(8+2)=-2+6=4 \\
& y=5+\frac{3}{5}(-1-5)=\frac{25}{5}-\frac{18}{5}=\frac{7}{5}
\end{aligned}
$$

PTS: 2
REF: 012328geo NAT: G.GPE.B. 6 TOP: Directed Line Segments

29 ANS:
Yes. $\triangle A B C$ and $\triangle D E F$ are both 5-12-13 triangles and therefore congruent by SSS. All congruent triangles are similar.

PTS: 2 REF: 012329geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: statements
30 ANS:
$\frac{1}{2}(5)(L)(4)=70$
$10 L=70$
$L=7$
PTS: 2
REF: 012330geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
31 ANS:

$$
6 \times 12-\frac{1}{2}(12 \times 3)-\frac{1}{2}(6 \times 6)-\frac{1}{2}(6 \times 3)=27
$$

PTS: 2 REF: 012331geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane 32 ANS:

Mary. Sally: $V=\pi \cdot 2^{2} \cdot 8 \approx 100.5$ Mary: $V=\frac{1}{3} \pi \cdot 3.5^{2} \cdot 12.5 \approx 160.4 \quad 160.4-100.5 \approx 60$
PTS: 4 REF: 012332geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
33 ANS:
$\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$ (given); $\angle A \cong \angle D$ (Alternate interior angles formed by parallel lines and a transversal are congruent); $\angle E B A \cong \angle F C D$ (Alternate exterior angles formed by parallel lines and a transversal are congruent); $\overline{B C} \cong \overline{B C}$ (reflexive); $\overline{A B} \cong \overline{C D}$ (segment subtraction); $\triangle E A B \cong \triangle F D C$ (ASA)

PTS: 4 REF: 012333geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: proof

34 ANS:
Since $\angle A B H$ is $100^{\circ}, \angle A H B$ is 40°. An isosceles triangle has two congruent angles. $\cos 80=\frac{x}{85}$

$$
x \approx 14.8
$$

$$
\begin{aligned}
\tan 40 & =\frac{y}{85+14.8} \\
y & \approx 84
\end{aligned}
$$

PTS: 4 REF: 012334geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side 35 ANS:
$m_{\overline{D U}}=\frac{9}{2} m_{\overline{U C}}=-\frac{2}{9}$ Since the slopes of $\overline{D U}$ and $\overline{U C}$ are opposite reciprocals, they are perpendicular and form a right angle. $\triangle D U C$ is a right triangle because $\angle D U C$ is a right angle. Each side of quadrilateral $D U C U^{\prime}$ is $\sqrt{9^{2}+2^{2}}=\sqrt{85}$. Quadrilateral $D U C U^{\prime}$ is a square because all four side are congruent and it has a right angle.

PTS: 6
REF: 012335 geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane

