0618geo

1 After a counterclockwise rotation about point X, scalene triangle $A B C$ maps onto $\triangle R S T$, as shown in the diagram below.

Which statement must be true?

1) $\angle A \cong \angle R$
2) $\angle A \cong \angle S$
3) $\overline{C B} \cong \overline{T R}$
4) $\overline{C A} \cong \overline{T S}$

2 In the diagram below, $\overline{A B} \| \overrightarrow{D E F}, \overline{A E}$ and $\overline{B D}$ intersect at $C, \mathrm{~m} \angle B=43^{\circ}$, and $\mathrm{m} \angle C E F=152^{\circ}$.

Which statement is true?

1) $\mathrm{m} \angle D=28^{\circ}$
2) $\mathrm{m} \angle A=43^{\circ}$
3) $\mathrm{m} \angle A C D=71^{\circ}$
4) $\mathrm{m} \angle B C E=109^{\circ}$

3 In the diagram below, line m is parallel to line n. Figure 2 is the image of Figure 1 after a reflection over line m. Figure 3 is the image of Figure 2 after a reflection over line n.

Which single transformation would carry Figure 1 onto Figure 3?

1) a dilation
2) a rotation
3) a reflection
4) a translation

4 In the diagram below, $\overline{A F}$, and $\overline{D B}$ intersect at C, and $\overline{A D}$ and $\overline{F B E}$ are drawn such that $\mathrm{m} \angle D=65^{\circ}$, $\mathrm{m} \angle C B E=115^{\circ}, D C=7.2, A C=9.6$, and $F C=21.6$.

What is the length of $\overline{C B}$?

1) 3.2
2) 4.8
3) 16.2
4) 19.2

5 Given square $R S T V$, where $R S=9 \mathrm{~cm}$. If square $R S T V$ is dilated by a scale factor of 3 about a given center, what is the perimeter, in centimeters, of the image of RSTV after the dilation?

1) 12
2) 27
3) 36
4) 108

6 In right triangle $A B C$, hypotenuse $\overline{A B}$ has a length of 26 cm , and side $\overline{B C}$ has a length of 17.6 cm . What is the measure of angle B, to the nearest degree?

1) 48°
2) 47°
3) 43°
4) 34°

7 The greenhouse pictured below can be modeled as a rectangular prism with a half-cylinder on top. The rectangular prism is 20 feet wide, 12 feet high, and 45 feet long. The half-cylinder has a diameter of 20 feet.

To the nearest cubic foot, what is the volume of the greenhouse?

1) 17,869
2) 24,937
3) 39,074
4) 67,349

8 In a right triangle, the acute angles have the relationship $\sin (2 x+4)=\cos (46)$. What is the value of x ?

1) 20
2) 21
3) 24
4) 25

9 In the diagram below, $\overline{A B}\|\overline{D F C}, \overline{E D A}\| \overline{C B G}$, and $\overline{E F B}$ and $\overline{A G}$ are drawn.

Which statement is always true?

1) $\triangle D E F \cong \triangle C B F$
2) $\triangle B A G \cong \triangle B A E$
3) $\triangle B A G \sim \triangle A E B$
4) $\triangle D E F \sim \triangle A E B$

10 The base of a pyramid is a rectangle with a width of 4.6 cm and a length of 9 cm . What is the height, in centimeters, of the pyramid if its volume is 82.8 cm^{3} ?

1) 6
2) 2
3) 9
4) 18

11 In the diagram below of right triangle $A E D$, $\overline{B C} \| \overline{D E}$.

Which statement is always true?

1) $\frac{A C}{B C}=\frac{D E}{A E}$
2) $\frac{A B}{A D}=\frac{B C}{D E}$
3) $\frac{A C}{C E}=\frac{B C}{D E}$
4) $\frac{D E}{B C}=\frac{D B}{A B}$

12 What is an equation of the line that passes through the point $(6,8)$ and is perpendicular to a line with equation $y=\frac{3}{2} x+5$?

1) $y-8=\frac{3}{2}(x-6)$
2) $y-8=-\frac{2}{3}(x-6)$
3) $y+8=\frac{3}{2}(x+6)$
4) $y+8=-\frac{2}{3}(x+6)$

13 The diagram below shows parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E.

What additional information is sufficient to prove that parallelogram $A B C D$ is also a rhombus?

1) $\overline{B D}$ bisects $\overline{A C}$.
2) $\overline{A B}$ is parallel to $\overline{C D}$.
3) $\overline{A C}$ is congruent to $\overline{B D}$.
4) $\overline{A C}$ is perpendicular to $\overline{B D}$.

14 Directed line segment $D E$ has endpoints $D(-4,-2)$ and $E(1,8)$. Point F divides $\overline{D E}$ such that $D F: F E$ is $2: 3$. What are the coordinates of F ?

1) (-3.0)
2) $(-2,2)$
3) $(-1,4)$
4) $(2,4)$

15 Triangle $D A N$ is graphed on the set of axes below. The vertices of $\triangle D A N$ have coordinates $D(-6,-1)$, $A(6,3)$, and $N(-3,10)$.

What is the area of $\triangle D A N$?

1) 60
2) 120
3) $20 \sqrt{13}$
4) $40 \sqrt{13}$

16 Triangle $A B C$, with vertices at $A(0,0), B(3,5)$, and $C(0,5)$, is graphed on the set of axes shown below.

Which figure is formed when $\triangle A B C$ is rotated continuously about $\overline{B C}$?
1)

2)

3)

4)

17 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\widehat{\mathrm{m}} \widehat{A C}=72^{\circ}$ and $\mathrm{m} \angle A E C=58^{\circ}$, how many degrees are in $\mathrm{m} \overparen{D B}$?

1) 108°
2) 65°
3) 44°
4) 14°

18 In triangle $S R K$ below, medians $\overline{S C}, \overline{K E}$, and $\overline{R L}$ intersect at M.

Which statement must always be true?

1) $3(M C)=S C$
2) $M C=\frac{1}{3}(S M)$
3) $R M=2 M C$
4) $S M=K M$

19 The regular polygon below is rotated about its center.

Which angle of rotation will carry the figure onto itself?

1) 60°
2) 108°
3) 216°
4) 540°

20 What is an equation of circle O shown in the graph below?

1) $x^{2}+10 x+y^{2}+4 y=-13$
2) $x^{2}-10 x+y^{2}-4 y=-13$
3) $x^{2}+10 x+y^{2}+4 y=-25$
4) $x^{2}-10 x+y^{2}-4 y=-25$

21 In the diagram below of $\triangle P Q R, \overline{S T}$ is drawn parallel to $\overline{P R}, P S=2, S Q=5$, and $T R=5$.

What is the length of $\overline{Q R}$?

1) 7
2) 2
3) $12 \frac{1}{2}$
4) $17 \frac{1}{2}$

22 The diagram below shows circle O with radii $\overline{O A}$ and $\overline{O B}$. The measure of angle $A O B$ is 120°, and the length of a radius is 6 inches.

Which expression represents the length of arc $A B$, in inches?

1) $\frac{120}{360}(6 \pi)$
2) $120(6)$
3) $\frac{1}{3}(36 \pi)$
4) $\frac{1}{3}(12 \pi)$

23 Line segment $C D$ is the altitude drawn to hypotenuse $\overline{E F}$ in right triangle $E C F$. If $E C=10$ and $E F=24$, then, to the nearest tenth, $E D$ is

1) 4.2
2) 5.4
3) 15.5
4) 21.8

24 Line $M N$ is dilated by a scale factor of 2 centered at the point $(0,6)$. If $\overleftrightarrow{M N}$ is represented by $y=-3 x+6$, which equation can represent $\overleftrightarrow{M^{\prime} N^{\prime}}$, the image of $\overleftrightarrow{M N}$?

1) $y=-3 x+12$
2) $y=-3 x+6$
3) $y=-6 x+12$
4) $y=-6 x+6$

25 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of triangle $A B C$ after a translation of 2 units to the right and 3 units up. Is triangle $A B C$ congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$? Explain why.

26 Triangle $A B C$ and point $D(1,2)$ are graphed on the set of axes below.

Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, after a dilation of scale factor 2 centered at point D.

27 Quadrilaterals BIKE and GOLF are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral $B I K E$ onto quadrilateral $G O L F$.

28 In the diagram below, secants $\overline{R S T}$ and $\overline{R Q P}$, drawn from point R, intersect circle O at S, T, Q, and P.

If $R S=6, S T=4$, and $R P=15$, what is the length of $\overline{R Q}$?

29 Using a compass and straightedge, construct the median to side $\overline{A C}$ in $\triangle A B C$ below. [Leave all construction marks.]

30 Skye says that the two triangles below are congruent. Margaret says that the two triangles are similar.

Are Skye and Margaret both correct? Explain why.

31 Randy's basketball is in the shape of a sphere with a maximum circumference of 29.5 inches.
Determine and state the volume of the basketball, to the nearest cubic inch.

32 Triangle $A B C$ has vertices with coordinates $A(-1,-1), B(4,0)$, and $C(0,4)$. Prove that $\triangle A B C$ is an isosceles triangle but not an equilateral triangle. [The use of the set of axes below is optional.]

33 The map of a campground is shown below.
Campsite C, first aid station F, and supply station S lie along a straight path. The path from the supply station to the tower, T, is perpendicular to the path from the supply station to the campsite. The length of path $\overline{F S}$ is 400 feet. The angle formed by path $\overline{T F}$ and path $\overline{F S}$ is 72°. The angle formed by path $T C$ and path $C S$ is 55°.

Determine and state, to the nearest foot, the distance from the campsite to the tower.

34 Shae has recently begun kickboxing and purchased training equipment as modeled in the diagram below. The total weight of the bag, pole, and unfilled base is 270 pounds. The cylindrical base is 18 inches tall with a diameter of 20 inches. The dry sand used to fill the base weighs 95.46 lbs per cubic foot.

To the nearest pound, determine and state the total weight of the training equipment if the base is filled to 85% of its capacity.

35 Given: Parallelogram $A B C D, \overline{B F} \perp \overline{A F D}$, and

Prove: $B E D F$ is a rectangle

0618geo

Answer Section

1 ANS: $1 \quad$ PTS: 2
TOP: Properties of Transformations
2 ANS: 3
PTS: 2
TOP: Lines and Angles
3 ANS: $4 \quad$ PTS: 2
TOP: Identifying Transformations
4 ANS: 3
$\triangle C F B \sim \triangle C A D \quad \frac{C B}{C F}=\frac{C D}{C A}$

$$
\begin{aligned}
\frac{x}{21.6} & =\frac{7.2}{9.6} \\
x & =16.2
\end{aligned}
$$

PTS: 2 REF: 061804geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
5 ANS: 4
$9 \cdot 3=27,27 \cdot 4=108$
PTS: 2
REF: 061805geo
NAT: G.SRT.A. 2 TOP: Dilations
6 ANS: 2
$\cos B=\frac{17.6}{26}$

$$
B \approx 47
$$

PTS: 2 REF: 061806geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
7 ANS: 1
$20 \cdot 12 \cdot 45+\frac{1}{2} \pi(10)^{2}(45) \approx 17869$

PTS: 2
REF: 061807geo
NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
8 ANS: 1
$2 x+4+46=90$
$2 x=40$
$x=20$

PTS: 2
REF: 061808geo
9 ANS: 4
AA
PTS: 2
REF: 061809geo

REF: 061801geo NAT: G.CO.B. 6
KEY: graphics
REF: 061802geo NAT: G.CO.C. 9
REF: 061803geo NAT: G.CO.A. 2
KEY: graphics

10 ANS: 1
$82.8=\frac{1}{3}(4.6)(9) h$

$$
h=6
$$

PTS: 2 REF: 061810geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
11 ANS: 2
$\triangle A C B \sim \triangle A E D$
PTS: 2
REF: 061811geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
12 ANS: 2
$m=\frac{3}{2}$
$m_{\perp}=-\frac{2}{3}$
PTS: 2
REF: 061812geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line
13 ANS: $4 \quad$ PTS: 2
REF: 061813geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
14 ANS: 2
$-4+\frac{2}{5}(1--4)=-4+\frac{2}{5}(5)=-4+2=-2-2+\frac{2}{5}(8--2)=-2+\frac{2}{5}(10)=-2+4=2$
PTS: 2 REF: 061814geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
15 ANS: 1

$(12 \cdot 11)-\left(\frac{1}{2}(12 \cdot 4)+\frac{1}{2}(7 \cdot 9)+\frac{1}{2}(11 \cdot 3)\right)=60$
PTS: 2 REF: 061815geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane 16 ANS: 3 PTS: 2 REF: 061816geo NAT: G.GMD.B. 4

TOP: Rotations of Two-Dimensional Objects

17 ANS: 3
$\frac{x+72}{2}=58$
$x+72=116$

$$
x=44
$$

PTS: 2
REF: 061817geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: intersecting chords, angle
18 ANS: 1
M is a centroid, and cuts each median 2:1.
PTS: 2 REF: 061818geo NAT: G.CO.C. 10
TOP: Centroid, Orthocenter, Incenter and Circumcenter
19 ANS: 3
$\frac{360^{\circ}}{5}=72^{\circ} 216^{\circ}$ is a multiple of 72°
PTS: 2 REF: 061819geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
20 ANS: 2

$$
\begin{aligned}
(x-5)^{2}+(y-2)^{2} & =16 \\
x^{2}-10 x+25+y^{2}-4 y+4 & =16 \\
x^{2}-10 x+y^{2}-4 y & =-13
\end{aligned}
$$

PTS: 2 REF: 061820geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: write equation, given graph
21 ANS: 4

$$
\frac{5}{7}=\frac{x}{x+5} \quad 12 \frac{1}{2}+5=17 \frac{1}{2}
$$

$5 x+25=7 x$
$2 x=25$
$x=12 \frac{1}{2}$
PTS: 2 REF: 061821geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
22
ANS: 4
$C=12 \pi \frac{120}{360}(12 \pi)=\frac{1}{3}(12 \pi)$
PTS: 2 REF: 061822geo NAT: G.C.B. 5 TOP: Arc Length
KEY: arc length

23 ANS: 1
$24 x=10^{2}$
$24 x=100$
$x \approx 4.2$
PTS: 2
REF: 061823geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
24 ANS: 2
The line $y=-3 x+6$ passes through the center of dilation, so the dilated line is not distinct.
PTS: 2 REF: 061824geo NAT: G.SRT.A. 1 TOP: Line Dilations
25 ANS:
Yes, as translations do not change angle measurements.
PTS: 2 REF: 061825geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: basic
26 ANS:
$A(-2,1) \rightarrow(-3,-1) \rightarrow(-6,-2) \rightarrow(-5,0), B(0,5) \rightarrow(-1,3) \rightarrow(-2,6) \rightarrow(-1,8)$,
$C(4,-1) \rightarrow(3,-3) \rightarrow(6,-6) \rightarrow(7,-4)$

PTS: 2 REF: 061826geo NAT: G.SRT.A. 2 TOP: Dilations
27 ANS:
Reflection across the y-axis, then translation up 5.
PTS: 2 REF: 061827geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: grids
28 ANS:

$$
\begin{aligned}
10 \cdot 6 & =15 x \\
x & =4
\end{aligned}
$$

PTS: 2
REF: 061828geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: secants drawn from common point, length
ANS:

PTS: 2
REF: 061829geo NAT: G.CO.D. 12 TOP: Constructions
KEY: line bisector
30
ANS:
Yes. The triangles are congruent because of $\operatorname{SSS}\left(5^{2}+12^{2}=13^{2}\right)$. All congruent triangles are similar.
PTS: 2
REF: 061830geo NAT: G.SRT.B. 5 TOP: Triangle Congruency

31 ANS:
$29.5=2 \pi r \quad V=\frac{4}{3} \pi \cdot\left(\frac{29.5}{2 \pi}\right)^{3} \approx 434$
$r=\frac{29.5}{2 \pi}$
PTS: 2 REF: 061831geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres
32 ANS:

Because $\overline{A B} \cong \overline{A C}, \triangle A B C$ has two congruent sides and is isosceles. Because $\overline{A B} \cong \overline{B C}$ is not true, $\triangle A B C$ has sides that are not congruent and $\triangle A B C$ is not equilateral.

PTS: 4 REF: 061832geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane
33 ANS:

$$
\begin{aligned}
\tan 72 & =\frac{x}{400} \quad \sin 55
\end{aligned} \begin{aligned}
y & \frac{400 \tan 72}{y} \\
x & =400 \tan 72 \\
y & =\frac{400 \tan 72}{\sin 55} \approx 1503
\end{aligned}
$$

PTS: 4 REF: 061833geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
ANS:
$V=\pi(10)^{2}(18)=1800 \pi \mathrm{in}^{3} 1800 \pi \mathrm{in}^{3}\left(\frac{1 \mathrm{ft}^{3}}{12^{3} \mathrm{in}^{3}}\right)=\frac{25}{24} \pi \mathrm{ft}^{3} \frac{25}{24} \pi(95.46)(0.85) \approx 266 \quad 266+270=536$
PTS: 4
REF: 061834geo NAT: G.MG.A. 2 TOP: Density
35 ANS:
Parallelogram $A B C D, \overline{B F} \perp \overline{A F D}$, and $\overline{D E} \perp \overline{B E C}$ (given); $\overline{B C} \| \overline{A D}$ (opposite sides of a \square are $\|$); $\overline{B E} \| \overline{F D}$ (parts of $\|$ lines are $\|$); $\overline{B F} \| \overline{D E}$ (two lines \perp to the same line are $\|$); BEDF is \square (a quadrilateral with both pairs of opposite sides $\|$ is a \square); $\angle D E B$ is a right $\angle(\perp$ lines form right $\angle \mathrm{s}$); BEDF is a rectangle (a \square with one right \angle is a rectangle).

PTS: 6
REF: 061835geo NAT: G.CO.C. 11 TOP: Quadrilateral Proofs

