Geometry CCSS Regents Exam 0623
www.jmap.org

## 0623geo

1 A square pyramid is intersected by a plane passing through the vertex and perpendicular to the base.


Which two-dimensional shape describes this cross section?

1) square
2) pentagon
3) triangle
4) rectangle

2 Trapezoid $A B C D$ is drawn such that $\overline{A B} \| \overline{D C}$. Trapezoid $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of trapezoid $A B C D$ after a rotation of $110^{\circ}$ counterclockwise about point $P$.


Which statement is always true?

1) $\angle A \cong \angle D^{\prime}$
2) $\overline{A C} \cong \overline{B^{\prime} D^{\prime}}$
3) $\overline{A^{\prime} B^{\prime}} \| \overline{D^{\prime} C^{\prime}}$
4) $\overline{B^{\prime} A^{\prime}} \cong \overline{C^{\prime} D^{\prime}}$

3 What is the volume of a right circular cone that has a height of 7.2 centimeters and a radius of 2.5 centimeters, to the nearest tenth of a cubic centimeter?

1) 37.7
2) 47.1
3) 113.1
4) 141.4

Geometry CCSS Regents Exam 0623
www.jmap.org
4 In the diagram below of right triangle $S U N$, where $\angle N$ is a right angle, $S U=13.6$ and $S N=12.3$.


What is $\angle S$, to the nearest degree?

1) $25^{\circ}$
2) $42^{\circ}$
3) $48^{\circ}$
4) $65^{\circ}$

5 In the diagram below of Circle $O$, diameter $\overline{A O B}$ and chord $\overline{C B}$ are drawn, and $\mathrm{m} \angle B=28^{\circ}$.


What is $\mathrm{m} \overparen{B C}$ ?

1) $56^{\circ}$
2) $124^{\circ}$
3) $152^{\circ}$
4) $166^{\circ}$

6 In the diagram below of parallelogram $A B C D$, diagonal $\overline{B E D}$ and $\overline{E F}$ are drawn, $\overline{E F} \perp \overline{D F C}, \mathrm{~m} \angle D A B=111^{\circ}$, and $\mathrm{m} \angle D B C=39^{\circ}$.


What is $\mathrm{m} \angle D E F$ ?

1) $30^{\circ}$
2) $51^{\circ}$
3) $60^{\circ}$
4) $120^{\circ}$

7 In the diagram below of $\triangle A C T, \overleftrightarrow{E S}$ is drawn parallel to $\overline{A T}$ such that $E$ is on $\overline{C A}$ and $S$ is on $\overline{C T}$.


Which statement is always true?

1) $\frac{C E}{C A}=\frac{C S}{S T}$
2) $\frac{C E}{E S}=\frac{E A}{A T}$
3) $\frac{C E}{E A}=\frac{C S}{S T}$
4) $\frac{C E}{S T}=\frac{E A}{C S}$

8 On the set of axes below, congruent triangles $A B C$ and $D E F$ are drawn.


Which sequence of transformations maps $\triangle A B C$ onto $\triangle D E F$ ?

1) A counterclockwise rotation of 90 degrees about the origin, followed by a translation 8 units to the right.
2) A counterclockwise rotation of 90 degrees about the origin, followed by a
3) A counterclockwise rotation of 90 degrees about the origin, followed by a reflection over the $y$-axis. translation 4 units down.
4) A clockwise rotation of 90 degrees about the origin, followed by a reflection over the $x$-axis.

9 An equation of circle $M$ is $x^{2}+y^{2}+6 x-2 y+1=0$. What are the coordinates of the center and the length of the radius of circle $M$ ?

1) center $(3,-1)$ and radius 9
2) center $(-3,1)$ and radius 9
3) center $(3,-1)$ and radius 3
4) center $(-3,1)$ and radius 3

Geometry CCSS Regents Exam 0623
www.jmap.org
10 Parallelogram $B E T H$, with diagonals $\overline{B T}$ and $\overline{H E}$, is drawn below.


What additional information is sufficient to prove that $B E T H$ is a rectangle?

1) $\overline{B T} \perp \overline{H E}$
2) $\overline{B E} \| \overline{H T}$
3) $\overline{B T} \cong \overline{H E}$
4) $\overline{B E} \cong \overline{E T}$

11 A gardener wants to buy enough mulch to cover a rectangular garden that is 3 feet by 10 feet. One bag contains 2 cubic feet of mulch and costs $\$ 3.66$. How much will the minimum number of bags cost to cover the garden with mulch 3 inches deep?

1) $\$ 3.66$
2) $\$ 10.98$
3) $\$ 14.64$
4) $\$ 29.28$

12 In the diagram below, $\triangle D O G \sim \triangle C A T$, where $\angle G$ and $\angle T$ are right angles.


Which expression is always equivalent to $\sin D$ ?

1) $\cos A$
2) $\sin A$
3) $\tan A$
4) $\cos C$

Geometry CCSS Regents Exam 0623
www.jmap.org
13 On the set of axes below, $\triangle D E F$ is the image of $\triangle A B C$ after a dilation of scale factor $\frac{1}{3}$.


The center of dilation is at

1) $(0,0)$
2) $(2,-3)$
3) $(0,-2)$
4) $(-4,0)$

14 In the diagram below of isosceles triangle $A H E$ with the vertex angle at $H, \overline{C B} \perp \overline{A E}$ and $\overline{F D} \perp \overline{A E}$.


Which statement is always true?

1) $\frac{A H}{A C}=\frac{E H}{E F}$
2) $\frac{A C}{E F}=\frac{A B}{E D}$
3) $\frac{A B}{E D}=\frac{C B}{F E}$
4) $\frac{A D}{A B}=\frac{B E}{D E}$

Geometry CCSS Regents Exam 0623
www.jmap.org
15 Rectangle $A B C D$ has two vertices at coordinates $A(-1,-3)$ and $B(6,5)$. The slope of $\overline{B C}$ is

1) $-\frac{7}{8}$
2) $\frac{7}{8}$
3) $-\frac{8}{7}$
4) $\frac{8}{7}$

16 In right triangle $A B C, \mathrm{~m} \angle A=90^{\circ}, \mathrm{m} \angle B=18^{\circ}$, and $A C=8$. To the nearest tenth, the length of $\overline{B C}$ is

1) 2.5
2) 8.4
3) 24.6
4) 25.9

17 The measure of one of the base angles of an isosceles triangle is $42^{\circ}$. The measure of an exterior angle at the vertex of the triangle is

1) $42^{\circ}$
2) $84^{\circ}$
3) $96^{\circ}$
4) $138^{\circ}$

18 In the diagram below, $\overline{A F K B} \| \overline{C H L M}, \overline{F H} \cong \overline{L H}, \overline{F L} \cong \overline{K L}$, and $\overline{L F}$ bisects $\angle H F K$.


Which statement is always true?

1) $2(\mathrm{~m} \angle H L F)=\mathrm{m} \angle C H E$
2) $2(\mathrm{~m} \angle F L K)=\mathrm{m} \angle L K B$
3) $\mathrm{m} \angle A F D=\mathrm{m} \angle B K L$
4) $\mathrm{m} \angle D F K=\mathrm{m} \angle K L F$

19 The line whose equation is $6 x+3 y=3$ is dilated by a scale factor of 2 centered at the point $(0,0)$. An equation of its image is

1) $y=-2 x+1$
2) $y=-2 x+2$
3) $y=-4 x+1$
4) $y=-4 x+2$

20 Which figure will not carry onto itself after a 120-degree rotation about its center?

1) equilateral triangle
2) regular octagon
3) regular hexagon
4) regular nonagon

Geometry CCSS Regents Exam 0623
www.jmap.org
21 Triangle $A D F$ is drawn and $\overline{B C} \| \overline{D F}$.


Which statement must be true?

1) $\frac{A B}{B C}=\frac{B D}{D F}$
2) $B C=\frac{1}{2} D F$
3) $A B: A D=A C: C F$
4) $\angle A C B \cong \angle A F D$

22 In $\triangle A B C, M$ is the midpoint of $\overline{A B}$ and $N$ is the midpoint of $\overline{A C}$. If $M N=x+13$ and $B C=5 x-1$, what is the length of $\overline{M N}$ ?

1) 3.5
2) 9
3) 16.5
4) 22

23 In the diagram below of isosceles trapezoid $S T A R$, diagonals $\overline{A S}$ and $\overline{R T}$ intersect at $O$ and $\overline{S T} \| \overline{R A}$, with nonparallel sides $\overline{S R}$ and $\overline{T A}$.


Which pair of triangles are not always similar?

1) $\triangle S T O$ and $\triangle A R O$
2) $\triangle S O R$ and $\triangle T O A$
3) $\triangle S R A$ and $\triangle A T S$
4) $\triangle S R T$ and $\triangle T A S$

24 The endpoints of $\overline{A B}$ are $A(0,4)$ and $B(-4,6)$. Which equation of a line represents the perpendicular bisector of $\overline{A B}$ ?

1) $y=-\frac{1}{2} x+4$
2) $y=-2 x+1$
3) $y=2 x+8$
4) $y=2 x+9$

Geometry CCSS Regents Exam 0623
www.jmap.org
25 In $\triangle A B C$ below, use a compass and straightedge to construct the altitude from $C$ to $\overline{A B}$. [Leave all construction marks.]


26 Triangles $A B C$ and $D E F$ are graphed on the set of axes below.


Describe a sequence of transformations that maps $\triangle A B C$ onto $\triangle D E F$.

27 Line segment $P Q$ has endpoints $P(-5,1)$ and $Q(5,6)$, and point $R$ is on $\overline{P Q}$. Determine and state the coordinates of $R$, such that $P R: R Q=2: 3$. [The use of the set of axes below is optional.]


28 A circle has a radius of 6.4 inches. Determine and state, to the nearest square inch, the area of a sector whose arc measures $80^{\circ}$.

29 A large snowman is made of three spherical snowballs with radii of 1 foot, 2 feet, and 3 feet, respectively. Determine and state the amount of snow, in cubic feet, that is used to make the snowman. [Leave your answer in terms of $\pi$.]

30 In the diagram below of right triangle $A C B$, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}, A D=2$ and $A C=6$.


Determine and state the length of $\overline{A B}$.

31 Triangle $R S T$ has vertices with coordinates $R(-3,-2), S(3,2)$ and $T(4,-4)$. Determine and state an equation of the line parallel to $\overline{R T}$ that passes through point $S$. [The use of the set of axes below is optional.]


32 Cape Canaveral, Florida is where NASA launches rockets into space. As modeled in the diagram below, a person views the launch of a rocket from observation area $A, 3280$ feet away from launch pad $B$. After launch, the rocket was sighted at $C$ with an angle of elevation of $15^{\circ}$. The rocket was later sighted at $D$ with an angle of elevation of $31^{\circ}$.


Determine and state, to the nearest foot, the distance the rocket traveled between the two sightings, $C$ and $D$.

33 A small can of soup is a right circular cylinder with a base diameter of 7 cm and a height of 9 cm . A large container is also a right circular cylinder with a base diameter of 9 cm and a height of 13 cm . Determine and state the volume of the small can and the volume of the large container to the nearest cubic centimeter. What is the minimum number of small cans that must be opened to fill the large container? Justify your answer.

Geometry CCSS Regents Exam 0623
www.jmap.org
34 Parallelogram MATH has vertices $M(-7,-2), A(0,4), T(9,2)$, and $H(2,-4)$. Prove that parallelogram MATH is a rhombus. [The use of the set of axes below is optional.] Determine and state the area of MATH.


35 Given: Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, diagonal $\overline{A C}$ intersects $\overline{E F}$ at $G$, and $\overline{D E} \cong \overline{B F}$


Prove: $G$ is the midpoint of $\overline{E F}$

## 0623geo

Answer Section
1 ANS: 2 PTS: 2 REF: 062301geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
2 ANS: 3 PTS: 2
TOP: Properties of Transformations KEY: graphics
3 ANS: 2
$V=\frac{1}{3} \pi \cdot(2.5)^{2} \cdot 7.2 \cong 47.1$

PTS: 2 REF: 062303geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
4 ANS: 1
$\cos S=\frac{12.3}{13.6}$
$S \approx 25^{\circ}$

PTS: 2
REF: 062304geo
NAT: G.SRT.C. 8
TOP: Using Trigonometry to Find an Angle
5 ANS: 2


PTS: 2
REF: 062305geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: inscribed
6 ANS: 3


PTS: 2
REF: 062306geo
NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
7 ANS: 3
PTS: 2
REF: 062307geo NAT: G.SRT.B. 5
TOP: Side Splitter Theorem
8 ANS: $1 \quad$ PTS: 2
TOP: Compositions of Transformations

9 ANS: 4
$x^{2}+6 x+y^{2}-2 y=-1$
$x^{2}+6 x+9+y^{2}-2 y+1=-1+9+1$

$$
(x+3)^{2}+(y-1)^{2}=9
$$

PTS: 2 REF: 062309geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
10 ANS: $3 \quad$ PTS: 2
REF: 062310geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
11 ANS: 3
$3 \times 10 \times \frac{3}{12}=7.5 \mathrm{ft}^{3} \frac{7.5}{2}=3.754 \times 3.66=14.64$
PTS: 2 REF: 062311geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
12 ANS: 1
PTS: 2 REF: 062312geo NAT: G.SRT.C. 7
TOP: Cofunctions
13 ANS: 2
$x_{0}=\frac{k x_{1}-x_{2}}{k-1}=\frac{\frac{1}{3}(-4)-0}{\frac{1}{3}-1}=\frac{\frac{-4}{3}}{\frac{-2}{3}}=2 \quad y_{0}=\frac{k y_{1}-y_{2}}{k-1}=\frac{\frac{1}{3}(0)--2}{\frac{1}{3}-1}=\frac{2}{\frac{-2}{3}}=-3$

PTS: 2 REF: 062313geo NAT: G.SRT.A. 2 TOP: Dilations
14 ANS: 2


PTS: 2 REF: 062314geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
15 ANS: 1
$m_{\overline{A B}}=\frac{-3-5}{-1-6}=\frac{-8}{-7}=\frac{8}{7}$
PTS: 2 REF: 062315geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
16 ANS: 4
$\sin 18=\frac{8}{x}$

$$
x \approx 25.9
$$

PTS: 2 REF: 062316geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

17 ANS: 2
$180-(180-42-42)$
PTS: 2 REF: 062317geo NAT: G.CO.C. 10 TOP: Exterior Angle Theorem
18 ANS: 4 PTS: 2
REF: 062318geo NAT: G.CO.C. 9
TOP: Lines and Angles
19 ANS: 2
$3 y=-6 x+3$
$y=-2 x+1$
PTS: 2 REF: 062319geo NAT: G.SRT.A. 1 TOP: Line Dilations
20 ANS: 3

1) $\left.\left.\frac{360}{3}=120 ; 2\right) \frac{360}{6}=60 ; 3\right) \frac{360}{8}=45$; 4) $\frac{360}{9}=40.120$ is not a multiple of 45 .

PTS: 2 REF: 062320geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
21 ANS: 4
PTS: 2
REF: 062321geo NAT: G.SRT.B. 5
TOP: Side Splitter Theorem
22 ANS: 4

$$
\begin{aligned}
2(x+13) & =5 x-1 \quad M N=9+13=22 \\
2 x+26 & =5 x-1 \\
27 & =3 x \\
x & =9
\end{aligned}
$$

PTS: 2 REF: 062322geo NAT: G.CO.C. 10 TOP: Midsegments
23 ANS: 3 PTS: 2 REF: 062323geo NAT: G.CO.C. 11
TOP: Trapezoids
24 ANS: 4

$$
\begin{aligned}
\left(\frac{-4+0}{2}, \frac{6+4}{2}\right) \rightarrow(-2,5) ; \frac{6-4}{-4-0}=\frac{2}{-4}=-\frac{1}{2} ; m_{\perp}=2 ; y-5 & =2(x+2) \\
y & =2 x+4+5 \\
y & =2 x+9
\end{aligned}
$$

PTS: 2
REF: 062324geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines KEY: perpendicular bisector

25 ANS:


PTS: 2 REF: 062325geo NAT: G.CO.D. 12 TOP: Constructions
KEY: parallel and perpendicular lines
26 ANS:
$T_{4,-4}$, followed by a $90^{\circ}$ clockwise rotation about point $D$.
PTS: 2
REF: 062326geo NAT: G.CO.A. 5
TOP: Compositions of Transformations
27 ANS:

$$
-5+\frac{2}{5}(5--5) 1+\frac{2}{5}(6-1)(-1,3)
$$



$$
\begin{array}{cc}
-5+\frac{2}{5}(10) & 1+\frac{2}{5}(5) \\
-5+4 & 1+2 \\
-1 & 3
\end{array}
$$

PTS: 2 REF: 062327geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
28 ANS:
$\frac{80}{360} \cdot \pi(6.4)^{2} \approx 29$
PTS: 2 REF: 062328geo NAT: G.C.B. 5 TOP: Sectors
29 ANS:
$\frac{4}{3} \pi \cdot(1)^{3}+\frac{4}{3} \pi \cdot(2)^{3} \frac{4}{3} \pi \cdot(3)^{3}=\frac{4}{3} \pi+\frac{32}{3} \pi+\frac{108}{3} \pi=48 \pi$
PTS: 2
REF: 062329geo NAT: G.GMD.A. 3 TOP: Volume
KEY: spheres

30 ANS:
$6^{2}=2(x+2) ; 16+2=18$
$36=2 x+4$
$32=2 x$
$16=x$

PTS: 2 REF: 062330geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
31 ANS:
$\frac{-2--4}{-3-4}=\frac{2}{-7} ; y-2=-\frac{2}{7}(x-3)$
PTS: 2 REF: 062331geo NAT: G.GPE.B. 4 TOP: Triangles in the Coordinate Plane 32 ANS:

$$
\begin{aligned}
\tan 15 & =\frac{x}{3280} ; \tan 31 \\
x & =\frac{y}{3280} ; 1970.8-878.9 \approx 1092 \\
x & \approx 878.9 \quad x
\end{aligned}
$$

PTS: 4 REF: 062332geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
33 ANS:
$\pi(3.5)^{2}(9) \approx 346 ; \pi(4.5)^{2}(13) \approx 827 ; \frac{827}{346} \approx 2.4 ; 3$ cans
PTS: 4
REF: 062333geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
34 ANS:
A rhombus has four congruent sides. Since each side measures $\sqrt{85}$, all four sides of MATH are congruent, and


MATH is a rhombus. $16 \times 8-(21+9+21+9)=68$
REF: 062334geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane

35 ANS:
Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, diagonal $\overline{A C}$ intersects $\overline{E F}$ at $G$, and $\overline{D E} \cong \overline{B F}$ (given); $A B C D$ is a parallelogram (a quadrilateral with a pair of opposite sides \|is a parallelogram); $\overline{A D} \cong \overline{C B}$ (opposite side of a parallelogram are congruent); $\overline{A E} \cong \overline{C F}$ (subtraction postulate); $\overline{A D} \| \overline{C B}$ (opposite side of a parallelogram are parallel); $\angle E A G \cong \angle F C G$ (if parallel sides are cut by a transversal, the alternate interior angles are congruent); $\angle A G E \cong \angle C G F$ (vertical angles); $\triangle A E G \cong \triangle C F G$ (AAS); $\overline{E G} \cong \overline{F G}$ (CPCTC): $G$ is the midpoint of $\overline{E F}$ (since $G$ divides $\overline{E F}$ into two equal parts, $G$ is the midpoint of $\overline{E F}$ ).

PTS: 6 REF: 062335geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs

