0818geo

1 In the diagram below, $\overline{A E F B} \| \overline{C G D}$, and $\overline{G E}$ and $\overline{G F}$ are drawn.

If $\mathrm{m} \angle E F G=32^{\circ}$ and $\mathrm{m} \angle A E G=137^{\circ}$, what is $\mathrm{m} \angle E G F$?

1) 11°
2) 43°
3) 75°
4) 105°

2 If $\triangle A B C$ is mapped onto $\triangle D E F$ after a line reflection and $\triangle D E F$ is mapped onto $\triangle X Y Z$ after a translation, the relationship between $\triangle A B C$ and $\triangle X Y Z$ is that they are always

1) congruent and similar
2) congruent but not similar
3) similar but not congruent
4) neither similar nor congruent

3 An isosceles right triangle whose legs measure 6 is continuously rotated about one of its legs to form a three-dimensional object. The three-dimensional object is a

1) cylinder with a diameter of 6
2) cylinder with a diameter of 12
3) cone with a diameter of 6
4) cone with a diameter of 12

4 In regular hexagon $A B C D E F$ shown below, $\overline{A D}$, $\overline{B E}$, and $\overline{C F}$ all intersect at G.

When $\triangle A B G$ is reflected over $\overline{B G}$ and then rotated 180° about point $G, \triangle A B G$ is mapped onto

1) $\triangle F E G$
2) $\triangle A F G$
3) $\triangle C B G$
4) $\triangle D E G$

5 A right cylinder is cut perpendicular to its base.
The shape of the cross section is a

1) circle
2) cylinder
3) rectangle
4) triangular prism

6 Yolanda is making a springboard to use for gymnastics. She has 8 -inch-tall springs and wants to form a 16.5° angle with the base, as modeled in the diagram below.

To the nearest tenth of an inch, what will be the length of the springboard, x ?

1) 2.3
2) 8.3
3) 27.0
4) 28.2

7 In the diagram below of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}$.

If $B D=4, A D=x-6$, and $C D=x$, what is the length of $\overline{C D}$?

1) 5
2) 2
3) 8
4) 11

8 Rhombus STAR has vertices $S(-1,2), T(2,3)$, $A(3,0)$, and $R(0,-1)$. What is the perimeter of rhombus STAR?

1) $\sqrt{34}$
2) $4 \sqrt{34}$
3) $\sqrt{10}$
4) $4 \sqrt{10}$

9 In the diagram below of $\triangle H A R$ and $\triangle N T Y$, angles H and N are right angles, and $\triangle H A R \sim \triangle N T Y$.

If $A R=13$ and $H R=12$, what is the measure of angle Y, to the nearest degree?

1) 23°
2) 25°
3) 65°
4) 67°

10 In the diagram below, $\overline{A K S}, \overline{N K C}, \overline{A N}$, and $\overline{S C}$ are drawn such that $\overline{A N} \cong \overline{S C}$.

Which additional statement is sufficient to prove $\triangle K A N \cong \triangle K S C$ by AAS?

1) $\overline{A S}$ and $\overline{N C}$ bisect each other.
2) K is the midpoint of $\overline{N C}$.
3) $\overline{A S} \perp \overline{C N}$
4) $\overline{A N} \| \overline{S C}$

11 Which equation represents a line that is perpendicular to the line represented by
$y=\frac{2}{3} x+1$?

1) $3 x+2 y=12$
2) $3 x-2 y=12$
3) $y=\frac{3}{2} x+2$
4) $y=-\frac{2}{3} x+4$

12 In the diagram of $\triangle A B C$ below, points D and E are on sides $\overline{A B}$ and $\overline{C B}$ respectively, such that $\overline{D E} \| \overline{A C}$.

If $E B$ is 3 more than $D B, A B=14$, and $C B=21$, what is the length of $\overline{A D}$?

1) 6
2) 8
3) 9
4) 12

13 Quadrilateral MATH has both pairs of opposite sides congruent and parallel. Which statement about quadrilateral MATH is always true?

1) $\overline{M T} \cong \overline{A H}$
2) $\overline{M T} \perp \overline{A H}$
3) $\angle M H T \cong \angle A T H$
4) $\angle M A T \cong \angle M H T$

14 In the figure shown below, quadrilateral TAEO is circumscribed around circle D. The midpoint of $\overline{T A}$ is R, and $\overline{H O} \cong \overline{P E}$.

If $A P=10$ and $E O=12$, what is the perimeter of quadrilateral $T A E O$?

1) 56
2) 64
3) 72
4) 76

15 The coordinates of the endpoints of directed line segment $A B C$ are $A(-8,7)$ and $C(7,-13)$. If $A B: B C=3: 2$, the coordinates of B are

1) $(1,-5)$
2) $(-2,-1)$
3) $(-3,0)$
4) $(3,-6)$

16 In triangle $A B C$, points D and E are on sides $\overline{A B}$ and $\overline{B C}$, respectively, such that $\overline{D E} \| \overline{A C}$, and $A D: D B=3: 5$.

If $D B=6.3$ and $A C=9.4$, what is the length of $D E$, to the nearest tenth?

1) 3.8
2) 5.6
3) 5.9
4) 15.7

17 In the diagram below, rectangle $A B C D$ has vertices whose coordinates are $A(7,1), B(9,3), C(3,9)$, and $D(1,7)$.

Which transformation will not carry the rectangle onto itself?

1) a reflection over the line $y=x$
2) a reflection over the line $y=-x+10$
3) a rotation of 180° about the point $(6,6)$
4) a rotation of 180° about the point $(5,5)$

18 A circle with a diameter of 10 cm and a central angle of 30° is drawn below.

What is the area, to the nearest tenth of a square centimeter, of the sector formed by the 30° angle?

1) 5.2
2) 6.5
3) 13.1
4) 26.2

19 A child's tent can be modeled as a pyramid with a square base whose sides measure 60 inches and whose height measures 84 inches. What is the volume of the tent, to the nearest cubic foot?

1) 35
2) 58
3) 82
4) 175

20 In the accompanying diagram of right triangle $A B C$, altitude $\overline{B D}$ is drawn to hypotenuse $\overline{A C}$.

Which statement must always be true?

1) $\frac{A D}{A B}=\frac{B C}{A C}$
2) $\frac{A D}{A B}=\frac{A B}{A C}$
3) $\frac{B D}{B C}=\frac{A B}{A D}$
4) $\frac{A B}{B C}=\frac{B D}{A C}$

21 An equation of circle O is $x^{2}+y^{2}+4 x-8 y=-16$. The statement that best describes circle O is the
$1)$ center is $(2,-4)$ and is tangent to the x-axis
2) center is $(2,-4)$ and is tangent to the y-axis
$3)$ center is $(-2,4)$ and is tangent to the x-axis
4) center is $(-2,4)$ and is tangent to the y-axis

22 In $\triangle A B C, \overline{B D}$ is the perpendicular bisector of $\overline{A D C}$. Based upon this information, which statements below can be proven?
I. $\overline{B D}$ is a median.
II. $\overline{B D}$ bisects $\angle A B C$.
III. $\triangle A B C$ is isosceles.

1) I and II, only
2) I and III, only
3) II and III, only
4) I, II, and III

23 Triangle RJM has an area of 6 and a perimeter of 12. If the triangle is dilated by a scale factor of 3 centered at the origin, what are the area and perimeter of its image, triangle $R^{\prime} J^{\prime} M^{\prime}$?

1) area of 9 and perimeter of 15
2) area of 18 and perimeter of 36
3) area of 54 and perimeter of 36
4) area of 54 and perimeter of 108

24 If $\sin (2 x+7)^{\circ}=\cos (4 x-7)^{\circ}$, what is the value of x ?

1) 7
2) 15
3) 21
4) 30

25 In the circle below, $\overline{A B}$ is a chord. Using a compass and straightedge, construct a diameter of the circle. [Leave all construction marks.]

26 In parallelogram $A B C D$ shown below, the bisectors of $\angle A B C$ and $\angle D C B$ meet at E, a point on $\overline{A D}$.

If $\mathrm{m} \angle A=68^{\circ}$, determine and state $\mathrm{m} \angle B E C$.

27 In circle A below, chord $\overline{B C}$ and diameter $\overline{D A E}$ intersect at F.

If $\mathrm{m} \overparen{C D}=46^{\circ}$ and $\mathrm{m} \overparen{D B}=102^{\circ}$, what is $\mathrm{m} \angle C F E$?
28 Trapezoids $A B C D$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ are graphed on the set of axes below.

Describe a sequence of transformations that maps trapezoid $A B C D$ onto trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$.

29 In the model below, a support wire for a telephone pole is attached to the pole and anchored to a stake in the ground 15 feet from the base of the telephone pole. Jamal places a 6 -foot wooden pole under the support wire parallel to the telephone pole, such that one end of the pole is on the ground and the top of the pole is touching the support wire. He measures the distance between the bottom of the pole and the stake in the ground.

Jamal says he can approximate how high the support wire attaches to the telephone pole by using similar triangles. Explain why the triangles are similar.

30 Aliyah says that when the line $4 x+3 y=24$ is dilated by a scale factor of 2 centered at the point $(3,4)$, the equation of the dilated line is $y=-\frac{4}{3} x+16$. Is Aliyah correct? Explain why. [The use of the set of axes below is optional.]

31 Ian needs to replace two concrete sections in his sidewalk, as modeled below. Each section is 36 inches by 36 inches and 4 inches deep. He can mix his own concrete for $\$ 3.25$ per cubic foot.

How much money will it cost Ian to replace the two concrete sections?

32 Given: $\triangle A B C, \overline{A E C}, \overline{B D E}$ with $\angle A B E \cong \angle C B E$, and $\angle A D E \cong \angle C D E$
Prove: $\overline{B D E}$ is the perpendicular bisector of $\overline{A C}$

Fill in the missing statement and reasons below.

Statements	Reasons
$1 \triangle A B C, \overline{A E C}, \overline{B D E}$ with $\angle A B E \cong \angle C B E$, and $\angle A D E \cong \angle C D E$	1 Given
$2 \overline{B D} \cong \overline{B D}$	2
$3 \angle B D A$ and $\angle A D E$ are supplementary. $\angle B D C$ and $\angle C D E$ are supplementary.	3 Linear pairs of angles are supplementary.
4	4 Supplements of congruent angles are congruent.
$5 \overline{\triangle A B D \cong \triangle C B D}$	5 ASA
$6 \overline{A D} \cong \overline{C D}, \overline{A B} \cong \overline{C B}$	6
$7 \overline{B D E}$ is the perpendicular bisector of $\overline{A C}$.	7

33 A homeowner is building three steps leading to a deck, as modeled by the diagram below. All three step rises, $\overline{H A}, \overline{F G}$, and $\overline{D E}$, are congruent, and all three step runs, $\overline{H G}, \overline{F E}$, and $\overline{D C}$, are congruent. Each step rise is perpendicular to the step run it joins. The measure of $\angle C A B=36^{\circ}$ and $\angle C B A=90^{\circ}$.

If each step run is parallel to $\overline{A B}$ and has a length of 10 inches, determine and state the length of each step rise, to the nearest tenth of an inch. Determine and state the length of $\overline{A C}$, to the nearest inch.

34 A bakery sells hollow chocolate spheres. The larger diameter of each sphere is 4 cm . The thickness of the chocolate of each sphere is 0.5 cm . Determine and state, to the nearest tenth of a cubic centimeter, the amount of chocolate in each hollow sphere. The bakery packages 8 of them into a box. If the density of the chocolate is $1.308 \mathrm{~g} / \mathrm{cm}^{3}$, determine and state, to the nearest gram, the total mass of the chocolate in the box.

35 The vertices of quadrilateral MATH have coordinates $M(-4,2), A(-1,-3), T(9,3)$, and $H(6,8)$. Prove that quadrilateral $M A T H$ is a parallelogram. Prove that quadrilateral $M A T H$ is a rectangle. [The use of the set of axes below is optional.]

0818geo

Answer Section

1 ANS: 4
PTS: 2
REF: 081801geo NAT: G.CO.C. 9
TOP: Lines and Angles
2 ANS: 1
Distance and angle measure are preserved after a reflection and translation.
PTS: 2 REF: 081802geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: basic
3 ANS: 4 PTS: 2 REF: 081803geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
4 ANS: 1 PTS: 2 REF: 081804geo NAT: G.SRT.A. 2
TOP: Compositions of Transformations KEY: grids
5 ANS: 3 PTS: 2 REF: 081805geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
6 ANS: 4
$\sin 16.5=\frac{8}{x}$

$$
x \approx 28.2
$$

PTS: 2 REF: 081806ai NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
7 ANS: 3

$$
\begin{aligned}
x(x-6) & =4^{2} \\
x^{2}-6 x-16 & =0 \\
(x-8)(x+2) & =0 \\
x & =8
\end{aligned}
$$

PTS: 2 REF: 081807geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: altitude
8 ANS: 4
$4 \sqrt{(-1-2)^{2}+(2-3)^{2}}=4 \sqrt{10}$
PTS: 2 REF: 081808geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
9 ANS: 1
$\cos x=\frac{12}{13}$

$$
x \approx 23
$$

PTS: 2 REF: 081809ai NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
10 ANS: 4 PTS: 2
REF: 081810geo
NAT: G.SRT.B. 5
TOP: Triangle Proofs
KEY: statements

11 ANS: 1
The slope of $3 x+2 y=12$ is $-\frac{3}{2}$, which is the opposite reciprocal of $\frac{2}{3}$.
PTS: 2 REF: 081811geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: identify perpendicular lines
12 ANS: 2
$\frac{x}{x+3}=\frac{14}{21} \quad 14-6=8$

$$
\begin{aligned}
21 x & =14 x+42 \\
7 x & =42 \\
x & =6
\end{aligned}
$$

PTS: 2 REF: 081812geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
13 ANS: 4 PTS: 2 REF: 081813geo NAT: G.CO.C. 11
TOP: Parallelograms
14 ANS: 2

PTS: 2 REF: 081814geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: tangents drawn from common point, length
15 ANS: 1
$-8+\frac{3}{5}(7--8)=-8+9=17+\frac{3}{5}(-13-7)=7-12=-5$
PTS: 2 REF: 081815geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
16 ANS: 3
$\frac{x}{6.3}=\frac{3}{5} \quad \frac{y}{9.4}=\frac{6.3}{6.3+3.78}$
$x=3.78 \quad y \approx 5.9$
PTS: 2 REF: 081816geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
17
ANS: 3
PTS: 2
TOP: Mapping a Polygon onto Itself

18 ANS: 2
$\frac{30}{360}(5)^{2}(\pi) \approx 6.5$
PTS: 2 REF: 081818geo NAT: G.C.B. 5 TOP: Sectors
19 ANS: 2
$V=\frac{1}{3}\left(\frac{60}{12}\right)^{2}\left(\frac{84}{12}\right) \approx 58$
PTS: 2 REF: 081819geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
20 ANS: 2
$\overline{A B}=10$ since $\triangle A B C$ is a 6-8-10 triangle. $6^{2}=10 x$

PTS: 2 REF: 081820geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
21 ANS: 4
$x^{2}+4 x+4+y^{2}-8 y+16=-16+4+16$

$$
(x+2)^{2}+(y-4)^{2}=4
$$

PTS: 2 REF: 081821geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
22 ANS: 4 PTS: 2
TOP: Medians, Altitudes and Bisectors
23 ANS: 3
$6 \cdot 3^{2}=5412 \cdot 3=36$

PTS: 2
REF: 081823geo NAT: G.SRT.A. 2 TOP: Dilations
24 ANS: 2
$2 x+7+4 x-7=90$

$$
\begin{aligned}
6 x & =90 \\
x & =15
\end{aligned}
$$

PTS: 2
REF: 081824geo NAT: G.SRT.C. 7 TOP: Cofunctions

25
ANS:

PTS: 2
REF: 081825geo
KEY: parallel and perpendicular lines
26 ANS:

PTS: 2 REF: 081826geo NAT: G.CO.C. 11 TOP: Parallelograms
27 ANS:

PTS: 2
REF: 081827geo
NAT: G.C.A. 2
TOP: Chords, Secants and Tangents
KEY: intersecting chords, angle
28
ANS:
rotation 180° about the origin, translation 2 units down; rotation 180° about B, translation 6 units down and 6 units left; or reflection over x-axis, translation 2 units down, reflection over y-axis

PTS: 2
REF: 081828geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify

29 ANS:

$\triangle A B C \sim \triangle A E D$ by AA. $\angle D A E \cong \angle C A B$ because they are the same \angle.
$\angle D E A \cong \angle C B A$ because they are both right $\angle \mathrm{s}$.
PTS: 2 REF: 081829geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
30 ANS:
No, The line $4 x+3 y=24$ passes through the center of dilation, so the dilated line is not distinct.
$4 x+3 y=24$
$3 y=-4 x+24$
$y=-\frac{4}{3} x+8$
PTS: 2 REF: 081830geo NAT: G.SRT.A. 1 TOP: Line Dilations
31 ANS:
$2\left(\frac{36}{12} \times \frac{36}{12} \times \frac{4}{12}\right) \times 3.25=19.50$
PTS: 2 REF: 081831geo NAT: G.GMD.A. 3 TOP: Volume
KEY: prisms
32 ANS:
2 Reflexive; $4 \angle B D A \cong \angle B D C ; 6 \mathrm{CPCTC} ; 7$ If points B and D are equidistant from the endpoints of $\overline{A C}$, then B and D are on the perpendicular bisector of $\overline{A C}$.

PTS: 4 REF: 081832geo NAT: G.SRT.B. 5 TOP: Triangle Proofs
KEY: proof
33 ANS:
$\tan 36=\frac{x}{10} \quad \cos 36=\frac{10}{y} 12.3607 \times 3 \approx 37$
$x \approx 7.3 \quad y \approx 12.3607$
PTS: 4 REF: 081833geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
34 ANS:
$\frac{4 \pi}{3}\left(2^{3}-1.5^{3}\right) \approx 19.419 .4 \cdot 1.308 \cdot 8 \approx 203$
PTS: 4 REF: 081834geo NAT: G.MG.A. 2 TOP: Density

35 ANS:

$$
m_{\overline{M H}}=\frac{6}{10}=\frac{3}{5}, m_{\overline{A T}}=\frac{6}{10}=\frac{3}{5}, m_{\overline{M A}}=-\frac{5}{3}, m_{H T}=-\frac{5}{3} ; \overline{M H} \| \overline{A T} \text { and } \overline{M A} \| \overline{H T} .
$$

$M A T H$ is a parallelogram since both sides of opposite sides are parallel. $m_{M A}=-\frac{5}{3}, m_{A T}=\frac{3}{5}$. Since the slopes are negative reciprocals, $\overline{M A} \perp \overline{A T}$ and $\angle A$ is a right angle. $M A T H$ is a rectangle because it is a parallelogram with a right angle.

PTS: 6 REF: 081835geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids

