Geometry CCSS Regents Exam 0822
www.jmap.org

0822geo

1 In the diagram below, $\triangle A B C$ is reflected over line ℓ to create $\triangle D E F$.

If $\mathrm{m} \angle A=40^{\circ}$ and $\mathrm{m} \angle B=95^{\circ}$, what is $\mathrm{m} \angle F$?

1) 40°
2) 45°
3) 85°
4) 95°

2 The diagram below shows triangle $A B C$ with point X on side $\overline{A B}$ and point Y on side $\overline{C B}$.

Which information is sufficient to prove that $\triangle B X Y \sim \triangle B A C$?

1) $\angle B$ is a right angle.
2) $\overline{X Y}$ is parallel to $\overline{A C}$.
3) $\triangle A B C$ is isosceles.
4) $\overline{A X} \cong \overline{C Y}$

3 Quadrilateral MATH is congruent to quadrilateral $W X Y Z$. Which statement is always true?

1) $M A=X Y$
2) Quadrilateral $W X Y Z$ can be mapped onto quadrilateral MATH using a sequence of rigid motions.
3) $\mathrm{m} \angle H=\mathrm{m} \angle W$
4) Quadrilateral MATH and quadrilateral $W X Y Z$ are the same shape, but not necessarily the same size.

Geometry CCSS Regents Exam 0822
www.jmap.org
4 A quadrilateral has diagonals that are perpendicular but not congruent. This quadrilateral could be

1) a square
2) a rectangle
3) a rhombus
4) an isosceles trapezoid

5 Which regular polygon has a minimum rotation of 36° about its center that carries the polygon onto itself?

1) pentagon
2) nonagon
3) octagon
4) decagon

6 On the set of axes below, $\triangle R S T$ is the image of $\triangle A B C$ after a dilation centered at point P.

The scale factor of the dilation that maps $\triangle A B C$ onto $\triangle R S T$ is

1) $\frac{1}{3}$
2) 2
3) 3
4) $\frac{2}{3}$

7 In the diagram of $\triangle A B C$ below, $\mathrm{m} \angle C=90^{\circ}, C B=13$, and $A B=16$.

What is the measure of $\angle A$, to the nearest degree?

1) 36°
2) 39°
3) 51°
4) 54°

Geometry CCSS Regents Exam 0822
www.jmap.org
8 The Pyramid of Memphis, in Tennessee, stands 107 yards tall and has a square base whose side is 197 yards long.

What is the volume of the Pyramid of Memphis, to the nearest cubic yard?

1) 751,818
2) $1,384,188$
3) $2,076,212$
4) $4,152,563$

9 A square is graphed on the set of axes below, with vertices at $(-1,2),(-1,-2),(3,-2)$, and $(3,2)$.

Which transformation would not carry the square onto itself?

1) reflection over the y-axis
2) rotation of 180 degrees around point $(1,0)$
3) reflection over the x-axis
4) reflection over the line $y=x-1$

10 If scalene triangle $X Y Z$ is similar to triangle $Q R S$ and $\mathrm{m} \angle X=90^{\circ}$, which equation is always true?

1) $\sin Y=\sin S$
2) $\cos R=\cos Z$
3) $\cos Y=\sin Q$
4) $\sin R=\cos Z$

Geometry CCSS Regents Exam 0822
www.jmap.org
11 A plane intersects a cylinder perpendicular to its bases.

This cross section can be described as a

1) rectangle
2) triangle
3) parabola
4) circle

12 An equation of line p is $y=\frac{1}{3} x+4$. An equation of line q is $y=\frac{2}{3} x+8$. Which statement about lines p and q is true?

1) A dilation of $\frac{1}{2}$ centered at the origin will 3) Line q is not the image of line p after a map line q onto line p. dilation because the lines are not parallel.
2) A dilation of 2 centered at the origin will map line p onto line q.
3) Line q is not the image of line p after a dilation because the lines do not pass through the origin.

13 The coordinates of the endpoints of $\overline{S C}$ are $S(-7,3)$ and $C(2,-6)$. If point M is on $\overline{S C}$, what are the coordinates of M such that $S M: M C$ is $1: 2$?

1) $(-4,0)$
2) $(0,-4)$
3) $(-1,-3)$
4) $\left(-\frac{5}{2},-\frac{3}{2}\right)$

Geometry CCSS Regents Exam 0822
www.jmap.org
14 On the set of axes below, rectangle $W I N D$ has vertices with coordinates $W(-4,2), I(4,0), N(3,-4)$, and $D(-5,-2)$.

What is the area of rectangle WIND?

1) 17
2) 31
3) 32
4) 34

15 In parallelogram $A B C D$ shown below, $\overline{E B}$ bisects $\angle A B C$.

If $\mathrm{m} \angle A=40^{\circ}$, then $\mathrm{m} \angle B E D$ is

1) 40°
2) 70°
3) 110°
4) 140°

16 In right triangles $A B C$ and $R S T$, hypotenuse $A B=4$ and hypotenuse $R S=16$. If $\triangle A B C \sim \triangle R S T$, then $1: 16$ is the ratio of the corresponding

1) legs
2) volumes
3) areas
4) perimeters

Geometry CCSS Regents Exam 0822
www.jmap.org
17 Parallelogram $A B C D$ with diagonal $\overline{D B}$ is drawn below. Line segment $E F$ is drawn such that it bisects $\overline{D B}$ at M.

Which triangle congruence method would prove that $\triangle E M B \sim \triangle F M D$?

1) ASA, only
2) both ASA and AAS
3) AAS, only
4) neither ASA nor AAS

18 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at E, and chords $\overline{A B}$ and $\overline{C D}$ are drawn.

Which statement must always be true?

1) $\overline{A B} \cong \overline{C D}$
2) $\overline{A D} \cong \overline{B C}$
3) $\angle B \cong \angle C$
4) $\angle A \cong \angle C$

19 What are the coordinates of the center and the length of the radius of the circle whose equation is $x^{2}+y^{2}-12 y-20.25=0$?

1) center $(0,6)$ and radius 7.5
2) center $(0,12)$ and radius 4.5
3) center $(0,-6)$ and radius 7.5
4) center $(0,-12)$ and radius 4.5

Geometry CCSS Regents Exam 0822
www.jmap.org
20 In the diagram below, $A B C D$ is a rectangle, and diagonal $\overline{B D}$ is drawn. Line ℓ, a vertical line of symmetry, and line m, a horizontal line of symmetry, intersect at point E.

Which sequence of transformations will map $\triangle A B D$ onto $\triangle C D B$?

1) a reflection over line ℓ followed by a 180° rotation about point E
2) a reflection over line ℓ followed by a reflection over line m
3) a 180° rotation about point B
4) a reflection over $\overline{D B}$

21 The diagram below models a countertop designed for a kitchen. The countertop is made of solid oak and is 3 inches thick.

If oak weighs approximately 44 pounds per cubic foot, the approximate weight, in pounds, of the countertop is

1) 630
2) 730
3) 750
4) 870

22 In the diagram below of $\triangle A B C, \overline{T V}$ intersects $\overline{A B}$ and $\overline{A C}$ at points T and V respectively, and $\mathrm{m} \angle A T V=\mathrm{m} \angle A B C$.

If $A T=4, B C=18, T B=5$, and $A V=6$, what is the perimeter of quadrilateral $T B C V$?

1) 38.5
2) 39.5
3) 40.5
4) 44.9

Geometry CCSS Regents Exam 0822
www.jmap.org
23 A circle centered at the origin passes through $A(-3,4)$.

What is the equation of the line tangent to the circle at A ?

1) $y-4=\frac{4}{3}(x+3)$
2) $y-4=\frac{3}{4}(x+3)$
3) $y+4=\frac{4}{3}(x-3)$
4) $y+4=\frac{3}{4}(x-3)$

24 In the diagram below, quadrilateral $A B C D$ is inscribed in circle $O, \mathrm{~m} \angle A=(2 x)^{\circ}, \mathrm{m} \angle B=(x-10)^{\circ}$, and $\mathrm{m} \angle C=(x+15)^{\circ}$.

What is $\mathrm{m} \angle D$?

1) 55°
2) 70°
3) 110°
4) 135°

Geometry CCSS Regents Exam 0822
www.jmap.org
25 On the set of axes below, $\triangle D O G \cong \triangle C A T$.

Describe a sequence of transformations that maps $\triangle D O G$ onto $\triangle C A T$.

26 In right triangle $M T H$ shown below, $\mathrm{m} \angle H=90^{\circ}, H T=8$, and $H M=5$.

Determine and state, to the nearest tenth, the volume of the three-dimensional solid formed by rotating $\triangle M T H$ continuously around $\overline{M H}$.

27 Using a compass and straightedge, dilate triangle $A B C$ by a scale factor of 2 centered at C. [Leave all construction marks.]

28 A rock-climbing wall at a local park has a right triangular section that slants toward the climber, as shown in the picture below. The height of the wall is 5 meters and the slanted section begins 1.2 meters up the wall at an angle of 14 degrees.

Determine and state, to the nearest hundredth, the number of meters in the length of the section of the wall that is slanted (hypotenuse).

Geometry CCSS Regents Exam 0822

29 In the diagram below of right triangle $B A L$, altitude $\overline{A D}$ is drawn to hypotenuse $\overline{B D L}$. The length of $\overline{A D}$ is 6 .

If the length of $\overline{D L}$ is four times the length of $\overline{B D}$, determine and state the length of $\overline{B D}$.

30 Trapezoid $A B C D$, where $\overline{A B} \| \overline{C D}$, is shown below. Diagonals $\overline{A C}$ and $\overline{D B}$ intersect $\overline{M N}$ at E, and $\overline{A D} \cong \overline{A E}$.

If $\mathrm{m} \angle D A E=35^{\circ}, \mathrm{m} \angle D C E=25^{\circ}$, and $\mathrm{m} \angle N E C=30^{\circ}$, determine and state $\mathrm{m} \angle A B D$.

31 In the diagram below of circle O, the measure of inscribed angle $A B C$ is 36° and the length of $\overline{O A}$ is 4 inches.

Determine and state, to the nearest tenth of a square inch, the area of the shaded sector.

Geometry CCSS Regents Exam 0822
www.jmap.org
32 As modeled in the diagram below, a building has a height of 50 meters. The angle of depression from the top of the building to the top of the tree, T, is 13.3°. The angle of depression from the top of the building to the bottom of the tree, B, is 22.2°.

Determine and state, to the nearest meter, the height of the tree.

33 The coordinates of the vertices of quadrilateral HYPE are $H(-3,6), Y(2,9), P(8,-1)$, and $E(3,-4)$. Prove HYPE is a rectangle. [The use of the set of axes below is optional.]

34 A packing box for baseballs is the shape of a rectangular prism with dimensions of $2 \mathrm{ft} \times 1 \mathrm{ft} \times 18 \mathrm{in}$. Each baseball has a diameter of 2.94 inches.

Determine and state the maximum number of baseballs that can be packed in the box if they are stacked in layers and each layer contains an equal number of baseballs. The weight of a baseball is approximately 0.025 pound per cubic inch. Determine and state, to the nearest pound, the total weight of all the baseballs in the fully packed box.

35 Given: Quadrilateral $A B C D, \overline{A C}$ and $\overline{E F}$ intersect at $H, \overline{E F}\|\overline{A D}, \overline{E F}\| \overline{B C}$, and $\overline{A D} \cong \overline{B C}$.

Prove: $(E H)(C H)=(F H)(A H)$

0822geo

Answer Section

1 ANS: 2
$180-40-95=45$
PTS: 2 REF: 082201geo NAT: G.CO.B. 6 TOP: Properties of Transformations
KEY: graphics
2 ANS: 2
If (2) is true, $\angle A C B \cong \angle X Y B$ and $\angle C A B \cong \angle Y X B$.
PTS: 2 REF: 082202geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
3 ANS: 3 PTS: 2 REF: 082203geo NAT: G.CO.B. 6
TOP: Properties of Transformations KEY: basic
4 ANS: $2 \quad$ PTS: 2
REF: 082204geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
5 ANS: 4
$\frac{360^{\circ}}{n}=36$

$$
n=10
$$

PTS: 2 REF: 082205geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
6 ANS: 1
$\frac{1}{3}, \frac{3}{9}, \frac{\sqrt{10}}{\sqrt{90}}$
PTS: 2
REF: 082206geo NAT: G.SRT.A. 2 TOP: Dilations
7 ANS: 4
$\sin A=\frac{13}{16}$

$$
A \approx 54^{\circ}
$$

PTS: 2 REF: 082207geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
8 ANS: 2
$V=\frac{1}{3} \cdot 197^{2} \cdot 107=1,384,188$
PTS: 2 REF: 082208geo NAT: G.GMD.A. 3 TOP: Volume
KEY: pyramids
9 ANS: $1 \quad$ PTS: 2
REF: 082209geo NAT: G.CO.A. 3
TOP: Mapping a Polygon onto Itself
10 ANS: 4 PTS: 2 REF: 082210geo NAT: G.SRT.C. 7
TOP: Cofunctions
11 PNS: 1 PTS: 2 REF: 082211geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects

12 ANS: $3 \quad$ PTS: 2
REF: 082212geo NAT: G.SRT.A. 1
TOP: Line Dilations
13 ANS: 1
$-7+\frac{1}{3}(2--7)=-7+\frac{1}{3}(9)=-7+3=-43+\frac{1}{3}(-6-3)=3+\frac{1}{3}(-9)=3-3=0$
PTS: 2 REF: 082213geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
14 ANS: 4

$$
\sqrt{8^{2}+2^{2}} \times \sqrt{4^{2}+1^{2}}=\sqrt{68} \times \sqrt{17}=\sqrt{4} \sqrt{17} \times \sqrt{17}=2 \cdot 17=34
$$

PTS: 2
REF: 082214geo NAT: G.GPE.B. 7 TOP: Polygons in the Coordinate Plane
15 ANS: 3

PTS: 2
REF: 082215geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
16 ANS: 2
$\left(\frac{1}{4}\right)^{2}=\frac{1}{16}$

PTS: 2
REF: 082216geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: perimeter and area
17 ANS: 3

PTS: 2
KEY: statements
REF: 082217geo NAT: G.SRT.B. 5 TOP: Triangle Proofs

18 ANS: 4

PTS: 2
REF: 082218geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: inscribed
19 ANS: 1
$x^{2}+y^{2}-12 y+36=20.25+36 \sqrt{56.25}=7.5$

$$
x^{2}+(y-6)^{2}=56.25
$$

PTS: 2 REF: 082219geo NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
20
ANS: 2 PTS: 2 REF: 082220geo NAT: G.CO.A. 5
TOP: Compositions of Transformations KEY: identify
21 ANS: 1
$44\left(\left(10 \times 3 \times \frac{1}{4}\right)+\left(9 \times 3 \times \frac{1}{4}\right)\right)=627$
PTS: 2 REF: 082221geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
22
ANS: 4

$\frac{4}{5}=\frac{6}{x} \quad \frac{4}{9}=\frac{y}{18} 5+18+7.5+8=38.5$

$$
x=7.5 \quad y=8
$$

PTS: 2 REF: 082222geo NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
23 ANS: 2
slope of $\overline{O A}=\frac{4-0}{-3-0}=-\frac{4}{3} \quad m_{\perp}=\frac{3}{4}$
PTS: 2
REF: 082223geo NAT: G.C.A. 2 TOP: Chords, Secants and Tangents
KEY: radius drawn to tangent

24 ANS: 4

PTS: 2 REF: 082224geo NAT: G.C.A. 3 TOP: Inscribed Quadrilaterals
25 ANS:
$T_{0,5}{ }^{\circ} r_{\mathrm{y} \text {-axis }}$

PTS: 2
REF: 082225geo NAT: G.CO.A. 5 TOP: Compositions of Transformations
KEY: identify
26 ANS:
$\frac{1}{3} \pi \times 8^{2} \times 5 \approx 335.1$
PTS: 2 REF: 082226geo NAT: G.GMD.B. 4 TOP: Rotations of Two-Dimensional Objects
27 ANS:

PTS: 2 REF: 082227geo NAT: G.CO.D. 12 TOP: Constructions
KEY: congruent and similar figures
$\cos 14=\frac{5-1.2}{x}$
$x \approx 3.92$

PTS: 2
REF: 082228geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

29 ANS:

$$
\begin{aligned}
4 x \cdot x & =6^{2} \\
4 x^{2} & =36 \\
x^{2} & =9 \\
x & =3
\end{aligned}
$$

PTS: 2
REF: 082229geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
30 ANS:

PTS: 2
REF: 082230geo NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons
31 ANS:

PTS: 2
REF: 082231geo NAT: G.C.B. 5
TOP: Sectors

32 ANS:

$$
\begin{array}{rlrl}
\tan 22.2 & =\frac{50}{x} \quad \tan 13.3 & =\frac{y}{122.52} \\
x & \approx 122.52 & y & \approx 29
\end{array}
$$

$50-29=21$
PTS: 4
REF: 082232geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side KEY: advanced
ANS:

1) Quadrilateral $H Y P E$ with $H(-3,6), Y(2,9), P(8,-1)$, and $E(3,-4)$ (Given); 2) Slope of $\overline{H Y}$ and $\overline{P E}$ is $\frac{3}{5}$, slope of $\overline{Y P}$ and $\overline{E H}$ is $-\frac{5}{3}$ (Slope determined graphically); 3) $\overline{H Y} \perp \overline{Y P}, \overline{P E} \perp \overline{E H}$, $\overline{Y P} \perp \overline{P E}, \overline{E Y} \perp \overline{H Y}$ (The slopes of perpendicular lines are opposite reciprocals); 4) $\angle H, \angle Y, \angle P, \angle E$ are right angles (Perpendicular lines form right angles); 5) HYPE is a rectangle (A rectangle has four right angles).

PTS: 4
REF: 082233geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane KEY: grids ANS:
24 in $\times 12$ in $\times 18$ in $2.94 \approx 3 \frac{24}{3} \times \frac{12}{3} \times \frac{18}{3}=192 \quad 192\left(\frac{4}{3} \pi\right)\left(\frac{2.94}{2}\right)^{3}(0.025) \approx 64$
PTS: 4
REF: 082234geo NAT: G.MG.A. 2 TOP: Density

ANS:

1) Quadrilateral $A B C D, \overline{A C}$ and $\overline{E F}$ intersect at $H, \overline{E F} \| \overline{A D}$, $\overline{E F} \| \overline{B C}$, and $\overline{A D} \cong \overline{B C}$ (Given); 2) $\angle E H A \cong \angle F H C$ (Vertical angles are congruent); 3) $\overline{A D} \| \overline{B C}$ (Transitive property of parallel lines); 4) $A B C D$ is a parallelogram (Quadrilateral with a pair of sides both parallel and congruent); 5) $\overline{A B} \| \overline{C D}$ (Opposite sides of a parallelogram); 6) $\angle A E H \cong \angle C F H$ (Alternate interior angles formed by parallel lines and a transversal); 7) $\triangle A E H \sim \triangle C F H$ (AA); 8) $\frac{E H}{F H}=\frac{A H}{C H}$ (Corresponding sides of similar triangles are proportional); 8) $(E H)(C H)=(F H)(A H)$ (Product of means equals product of extremes).

PTS: 6
REF: 082235geo NAT: G.SRT.B. 5 TOP: Quadrilateral Proofs

