0823geo

1 A plane intersects a sphere. Which two-dimensional shape is formed by this cross section?

1) rectangle
2) square
3) triangle
4) circle

2 The endpoints of $\overline{A B}$ are $A(-5,3)$ and $B(7,-5)$. Point P is on $\overline{A B}$ such that $A P: P B=3: 1$. What are the coordinates of point P ?

1) $(-2,-3)$
2) $(1,-1)$
3) $(-2,1)$
4) $(4,-3)$

3 Zach placed the foot of an extension ladder 8 feet from the base of the house and extended the ladder 25 feet to reach the house. To the nearest degree, what is the measure of the angle the ladder makes with the ground?

1) 18
2) 19
3) 71
4) 72

4 Darnell models a cup with the cylinder below. He measured the diameter of the cup to be 10 cm and the height to be 9 cm .

If Darnell fills the cup with water to a height of 8 cm , what is the volume of the water in the cup, to the nearest cubic centimeter?

1) 628
2) 707
3) 2513
4) 2827

5 Which quadrilateral has diagonals that are always perpendicular?

1) rectangle
2) trapezoid
3) rhombus
4) parallelogram

6 Which regular polygon would carry onto itself after a rotation of 300° about its center?

1) decagon
2) octagon
3) nonagon
4) hexagon

Geometry CCSS Regents Exam 0823
www.jmap.org
7 The rectangle drawn below is continuously rotated about side S.

Which three-dimensional figure is formed by this rotation?

1) rectangular prism
2) cylinder
3) square pyramid
4) cone

8 An equation of the line perpendicular to the line whose equation is $4 x-5 y=6$ and passes through the point $(-2,3)$ is

1) $y+3=-\frac{5}{4}(x-2)$
2) $y-3=-\frac{5}{4}(x+2)$
3) $y+3=\frac{4}{5}(x-2)$
4) $y-3=\frac{4}{5}(x+2)$

9 In circle P below, diameter $\overline{A C}$ and radius $\overline{B P}$ are drawn such that $\mathrm{m} \angle A P B=110^{\circ}$.

If $A C=12$, what is the area of shaded sector $B P C$?

1) $\frac{7}{6} \pi$
2) 7π
3) 11π
4) 28π

10 In $\triangle A B C$, side $\overline{B C}$ is extended through C to D. If $\mathrm{m} \angle A=30^{\circ}$ and $\mathrm{m} \angle A C D=110^{\circ}$, what is the longest side of $\triangle A B C$?

1) $\overline{A C}$
2) $\overline{B C}$
3) $\overline{A B}$
4) $\overline{C D}$

11 Right triangle $A C T$ has $\mathrm{m} \angle A=90^{\circ}$. Which expression is always equivalent to $\cos T$?

1) $\cos C$
2) $\sin C$
3) $\tan T$
4) $\sin T$

12 A regular pyramid with a square base is made of solid glass. It has a base area of $36 \mathrm{~cm}^{2}$ and a height of 10 cm . If the density of glass is 2.7 grams per cubic centimeter, the mass of the pyramid, in grams, is

1) 120
2) 324
3) 360
4) 972

13 The equation of a circle is $x^{2}+y^{2}+12 x=-27$. What are the coordinates of the center and the length of the radius of the circle?

1) center $(6,0)$ and radius 3
2) center $(-6,0)$ and radius 3
3) center $(6,0)$ and radius 9
4) center $(-6,0)$ and radius 9

14 In triangle $A B C$ below, D is a point on $\overline{A B}$ and E is a point on $\overline{A C}$, such that $\overline{D E} \| \overline{B C}$.

If $A D=12, D B=8$, and $E C=10$, what is the length of $\overline{A C}$?

1) 15
2) 22
3) 24
4) 25

15 In the diagram below, point E is located inside square $A B C D$ such that $\triangle A B E$ is equilateral, and $\overline{C E}$ is drawn.

What is $\mathrm{m} \angle B E C$?

1) 30°
2) 60°
3) 75°
4) 90°

Geometry CCSS Regents Exam 0823
www.jmap.org
16 In the diagram below of quadrilateral $A D B E, \overline{D E}$ is the perpendicular bisector of $\overline{A B}$.

Which statement is always true?

1) $\angle A D C \cong \angle B D C$
2) $\angle E A C \cong \angle D A C$
3) $\overline{A D} \cong \overline{B E}$
4) $\overline{A E} \cong \overline{A D}$

17 What is the image of $(4,3)$ after a reflection over the line $y=1$?

1) $(-2,3)$
2) $(-4,3)$
3) $(4,-1)$
4) $(4,-3)$

18 In the diagram below, a cone has a diameter of 16 inches and a slant height of 17 inches.

What is the volume of the cone, in cubic inches?

1) 320π
2) 363π
3) 960π
4) 1280π

Geometry CCSS Regents Exam 0823
www.jmap.org
19 In the diagram below, lines ℓ and m intersect lines n and p to create the shaded quadrilateral as shown.

Which congruence statement would be sufficient to prove the quadrilateral is a parallelogram?

1) $\angle 1 \cong \angle 6$ and $\angle 9 \cong \angle 14$
2) $\angle 5 \cong \angle 10$ and $\angle 6 \cong \angle 9$
3) $\angle 5 \cong \angle 7$ and $\angle 10 \cong \angle 15$
4) $\angle 6 \cong \angle 9$ and $\angle 9 \cong \angle 11$

20 In the circle below, secants $\overline{T S R}$ and $\overline{T M H}$ intersect at $T, S R=5, H M=9, T M=3$, and $T S=x$.

Which equation could be used to find the value of x ?

1) $x(x+5)=36$
2) $x(x+5)=27$
3) $3 x=45$
4) $5 x=27$

Geometry CCSS Regents Exam 0823
www.jmap.org
21 On the set of axes below, the coordinates of three vertices of trapezoid $A B C D$ are $A(2,1), B(5,4)$, and $D(-2,3)$.

Which point could be vertex C ?

1) $(1,5)$
2) $(4,10)$
3) $(-1,6)$
4) $(-3,8)$

22 In the diagram below, $\triangle A B C \cong \triangle D E C$.

Which transformation will map $\triangle A B C$ onto $\triangle D E C$?

1) a rotation
2) a translation followed by a dilation
3) a line reflection
4) a line reflection followed by a second line reflection

23 If $\triangle T A P$ is dilated by a scale factor of 0.5 , which statement about the image, $\triangle T^{\prime} A^{\prime} P^{\prime}$, is true?

1) $\mathrm{m} \angle T^{\prime} A^{\prime} P^{\prime}=\frac{1}{2}(\mathrm{~m} \angle T A P)$
2) $\mathrm{m} \angle T^{\prime} A^{\prime} P^{\prime}=2(\mathrm{~m} \angle T A P)$
3) $T A=2\left(T^{\prime} A^{\prime}\right)$
4) $T A=\frac{1}{2}\left(T^{\prime} A^{\prime}\right)$

Geometry CCSS Regents Exam 0823
www.jmap.org
24 In the diagram below of $\triangle A B C, X$ and Y are points on $\overline{A B}$ and $\overline{A C}$, respectively, such that $\mathrm{m} \angle A Y X=\mathrm{m} \angle B$.

Which statement is not always true?

1) $\frac{A X}{A C}=\frac{X Y}{C B}$
2) $\frac{A Y}{A B}=\frac{A X}{A C}$
3) $(A Y)(C B)=(X Y)(A B)$
4) $(A Y)(A B)=(A C)(A X)$

25 On the set of axes below, congruent quadrilaterals $R O C K$ and $R^{\prime} O^{\prime} C^{\prime} K^{\prime}$ are graphed.

Describe a sequence of transformations that would map quadrilateral $R O C K$ onto quadrilateral $R^{\prime} O^{\prime} C^{\prime} K^{\prime}$.

26 In triangle $C E M, C E=3 x+10, M E=5 x-14$, and $C M=2 x-6$. Determine and state the value of x that would make $C E M$ an isosceles triangle with the vertex angle at E.

27 A flagpole casts a shadow on the ground 91 feet long, with a 53° angle of elevation from the end of the shadow to the top of the flagpole. Determine and state, to the nearest tenth of a foot, the height of the flagpole.

28 A man is spray-painting the tops of 10 patio tables. Five tables have round tops, with diameters of 4 feet, and five tables have rectangular tops, with dimensions of 4 feet by 6 feet. A can of spray paint covers 25 square feet. How many cans of spray paint must be purchased to paint all of the tabletops?

29 Using a compass and straightedge, construct a midsegment of $\triangle A H L$ below. [Leave all construction marks.]

30 Right triangle $S T R$ is shown below, with $\mathrm{m} \angle T=90^{\circ}$. Altitude $\overline{T Q}$ is drawn to $\overline{S Q R}$, and $T Q=8$.

If the ratio $S Q: Q R$ is 1:4, determine and state the length of $\overline{S R}$.

31 Line $A B$ is dilated by a scale factor of 2 centered at point A.

Evan thinks that the dilation of $\overline{A B}$ will result in a line parallel to $\overline{A B}$, not passing through points A or B. Nathan thinks that the dilation of $\overline{A B}$ will result in the same line, $\overline{A B}$. Who is correct? Explain why.

32 Josh is making a square-based fire pit out of concrete for his backyard, as modeled by the right prism below. He plans to make the outside walls of the fire pit 3.5 feet on each side with a height of 1.5 feet. The concrete walls of the fire pit are going to be 9 inches thick.

If a bag of concrete mix will fill $0.6 \mathrm{ft}^{3}$, determine and state the minimum number of bags needed to build the fire pit.

33 A telephone pole 11 meters tall needs to be stabilized with a support beam, as modeled below.

Two conditions for proper support are:

- The beam reaches the telephone pole at 70% of the telephone pole's height above the ground.
- The beam forms a 65° angle with the ground.

Determine and state, to the nearest tenth of a meter, the length of the support beam that meets these conditions for this telephone pole. Determine and state, to the nearest tenth of a meter, how far the support beam must be placed from the base of the pole to meet the conditions.

Geometry CCSS Regents Exam 0823
www.jmap.org
34 The coordinates of the vertices of quadrilateral $A B C D$ are $A(0,4), B(3,8), C(8,3)$, and $D(5,-1)$. Prove that $A B C D$ is a parallelogram, but not a rectangle. [The use of the set of axes below is optional.]

35 In the diagram below of quadrilateral $F A C T, \overline{B R}$ intersects diagonal $\overline{A T}$ at $E, \overline{A F} \| \overline{C T}$, and $\overline{A F} \cong \overline{C T}$.

Prove: $(A B)(T E)=(A E)(T R)$

0823geo

Answer Section
1 ANS: 4
PTS: 2
REF: 082301geo NAT: G.GMD.B. 4
TOP: Cross-Sections of Three-Dimensional Objects
2 ANS: 4
$-5+\frac{3}{4}(7--5)=-5+\frac{3}{4}(12)=-5+9=43+\frac{3}{4}(-5-3)=3+\frac{3}{4}(-8)=3-6=-3$
PTS: 2 REF: 082302geo NAT: G.GPE.B. 6 TOP: Directed Line Segments
3 ANS: 3
$\cos x=\frac{8}{25}$
$x \approx 71$
PTS: 2 REF: 082303geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find an Angle
4 ANS: 1
$V=\pi r^{2} h=\pi \cdot 5^{2} \cdot 8 \approx 200 \pi$
PTS: 2
REF: 082304geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cylinders
5 ANS: $2 \quad$ PTS: 2
REF: 082305geo NAT: G.CO.C. 11
TOP: Special Quadrilaterals
6 ANS: 4
$\frac{360}{6}=60$ and 300 is a multiple of 60.
PTS: 2 REF: 082306geo NAT: G.CO.A. 3 TOP: Mapping a Polygon onto Itself
7 ANS: 3 PTS: 2 REF: 082307geo NAT: G.GMD.B. 4
TOP: Rotations of Two-Dimensional Objects
8 ANS: 2
$m=\frac{-4}{-5}=\frac{4}{5}$
$m_{\perp}=-\frac{5}{4}$
PTS: 2 REF: 082308geo NAT: G.GPE.B. 5 TOP: Parallel and Perpendicular Lines
KEY: write equation of perpendicular line
9 ANS: 2
$\frac{70}{360} \cdot 6^{2} \pi=7 \pi$
PTS: 2 REF: 082309geo NAT: G.C.B. 5 TOP: Sectors

10 ANS: 1

PTS: 2
REF: 082310geo
11 ANS: 2
PTS: 2
TOP: Cofunctions
12 ANS: 2
$\frac{1}{3}(36)(10)(2.7)=324$
PTS: 2 REF: 082312geo NAT: G.MG.A. 2 TOP: Density
13 ANS: 3
$x^{2}+12 x+36+y^{2}=-27+36$
$(x+6)^{2}+y^{2}=9$
PTS: 2
REF: 082313geo
NAT: G.GPE.A. 1 TOP: Equations of Circles
KEY: completing the square
14 ANS: 4
$\frac{x}{10}=\frac{12}{8} \quad 15+10=25$
$x=15$
PTS: 2
REF: 082314geo
NAT: G.SRT.B. 5 TOP: Side Splitter Theorem
15 ANS: 3

PTS: 2
REF: 082315geo
NAT: G.CO.C. 11 TOP: Interior and Exterior Angles of Polygons

16 ANS: 1

$\triangle A D C \cong \triangle B D C$ by SAS
PTS: 2
REF: 082316geo NAT: G.SRT.B. 5 TOP: Triangle Congruency
17 ANS: 3
$3-1=2$
$1-2=-1$
PTS: 2 REF: 082317geo NAT: G.CO.A. 5 TOP: Reflections
18 ANS: 1
$r=8$, forming an 8-15-17 triple. $V=\frac{1}{3} \pi(8)^{2} 15=320 \pi$
PTS: 2 REF: 082318geo NAT: G.GMD.A. 3 TOP: Volume
KEY: cones
19 ANS: 4
$\angle 6$ and $\angle 9$ are alternate interior angles; since congruent, $\ell \| m . \angle 9$ and $\angle 11$ are corresponding angles; since congruent, $n \| p$. Both pairs of opposite sides are parallel.

PTS: 2 REF: 082319geo NAT: G.CO.C. 11 TOP: Parallelograms
20 ANS: 1 PTS: 2 REF: 082320geo NAT: G.C.A. 2
TOP: Chords, Secants and Tangents KEY: secants drawn from common point, length
21 ANS: 4
$m_{\overline{A D}}=\frac{3-1}{-2-2}=\frac{2}{-4}=-\frac{1}{2} \quad$ A pair of opposite sides is parallel.
$m_{\overline{B C}}=\frac{8-4}{-3-5}=\frac{4}{-8}=-\frac{1}{2}$
PTS: 2 REF: 082321geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
22 ANS: 2 PTS: 2 REF: 082322geo NAT: G.CO.A. 2
TOP: Identifying Transformations
23 ANS: 3
(1) and (2) are false as dilations preserve angle measure. (4) would be true if the scale factor was 2.

PTS: 2 REF: 082323geo NAT: G.SRT.A. 2 TOP: Dilations

24 ANS: 4

PTS: 2 REF: 082324geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: basic
25 ANS:

$$
\text { Rotate } 180^{\circ} \text { about }\left(-1, \frac{1}{2}\right) .
$$

PTS: 2
REF: 082325geo
NAT: G.CO.A. 5
TOP: Compositions of Transformations
26 ANS:
$5 x-14=3 x+10$
$2 x=24$

$$
x=12
$$

PTS: 2
REF: 082326geo
NAT: G.SRT.B. 5 TOP: Isosceles Triangle Theorem
27 ANS:
$\tan 53=\frac{f}{91}$

$$
f \approx 120.8
$$

PTS: 2 REF: 082327geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side
$\frac{5 \pi(2)^{2}+5(6)(4)}{25} \approx 7.38 \mathrm{cans}$
PTS: 2 REF: 082328geo NAT: G.MG.A. 3 TOP: Compositions of Polygons and Circles KEY: area

29 ANS:

PTS: 2
REF: 082329geo NAT: G.CO.D. 12 TOP: Constructions
KEY: line bisector
30 ANS:
$4 x \cdot x=8^{2} 4+4(4)=20$

$$
\begin{aligned}
4 x^{2} & =64 \\
x^{2} & =16 \\
x & =4
\end{aligned}
$$

PTS: 2 REF: 082330geo NAT: G.SRT.B. 5 TOP: Similarity
KEY: leg
31 ANS:
Nathan, because a line dilated through a point on the line results in the same line.
PTS: 2 REF: 082331geo NAT: G.SRT.A. 1 TOP: Line Dilations
32 ANS:
$\frac{(3.5)^{2}(1.5)-(2)^{2}(1.5)}{.6} \approx 20.6 .21 \mathrm{bags}$

PTS: 4 REF: 082332geo NAT: G.GMD.A. 3 TOP: Volume
KEY: compositions
33 ANS:
$\sin 65=\frac{7.7}{x} \cdot \tan 65=\frac{7.7}{y}$

$$
x \approx 8.5 \quad y \approx 3.6
$$

PTS: 4
REF: 082333geo NAT: G.SRT.C. 8 TOP: Using Trigonometry to Find a Side

34 ANS:

$\overline{A D}$ and $\overline{B C}$ have equal slope, so are parallel. $\overline{A B}$ and $\overline{C D}$ have equal slope, so are parallel. Since both pairs of opposite sides are parallel, $A B C D$ is a parallelogram. The slope of $\overline{A B}$ and $\overline{B C}$ are not opposite reciprocals, so they are not perpendicular, and so $\angle B$ is not a right angle. $A B C D$ is not a rectangle since all four angles are not right angles.

PTS: 4 REF: 082334geo NAT: G.GPE.B. 4 TOP: Quadrilaterals in the Coordinate Plane
35 ANS:

Quadrilateral $F A C T, \overline{B R}$ intersects diagonal $\overline{A T}$ at $E, \overline{A F} \| \overline{C T}$, and $\overline{A F} \cong \overline{C T}$
(Given); $F A C T$ is a parallelogram (A quadrilateral with one pair of opposite sides parallel and congruent is a parallelogram); $\overline{A C} \cong \overline{F T}$ (Opposite sides of a parallelogram are parallel); $\angle B A E \cong \angle R T E, \angle A B E \cong \angle T R E$ (Parallel lines cut by a transversal form alternate interior angles that are congruent); $\triangle A B E \sim \triangle T R E$ (AA); $\frac{A B}{A E}=\frac{T R}{T E}$ (Corresponding sides of similar triangles are proportional); $(A B)(T E)=(A E)(T R)$ (Product of the means equals the product of the extremes).

PTS: 6
REF: 082335geo
NAT: G.SRT.A. 3 TOP: Similarity Proofs

