The University of the State of New York
 REGENTS HIGH SCHOOL EXAMINATION

GEOMETRY

Wednesday, January 25, 2023 - 9:15 a.m. to 12:15 p.m., only

Student Name: $\frac{\text { NV. SM A }}{\text { School Name: }}$

Abstract

The possession or use of any communications device is strictly prohibited when taking this examination. If you have or use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

Print your name and the name of your school on the lines above.
A separate answer sheet for Part I has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet.

This examination has four parts, with a total of 35 questions. You must answer all questions in this examination. Record your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. All work should be written in pen, except for graphs and drawings, which should be done in pencil. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale.

The formulas that you may need to answer some questions in this examination are found at the end of the examination. This sheet is perforated so you may remove it from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will not be scored.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice...

A graphing calculator, a straightedge (ruler), and a compass must be available for you to use while taking this examination.

Part I

Answer all 24 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. Record your answers on your separate answer sheet. [48]

1 In the diagram below, a line reflection followed by a rotation maps
Use this space for computations. $\triangle A B C$ onto $\triangle D E F$.

Which statement is always true?
(1) $\overline{B C} \cong \overline{E F}$
(3) $\angle A \cong \angle F$
(2) $\overline{A C} \cong \overline{D E}$
(4) $\angle B \cong \angle D$

2 A circle is continuously rotated about its diameter. Which threedimensional object will be formed?
(1) cone
(3) sphere
(2) prism
(4) cylinder

3 In the diagram below of $\triangle C E R, \overline{L A} \| \overline{C R}$.
Use this space for computations.

If $C L=3.5, L E=7.5$, and $E A=9.5$, what is the length of $\overline{A R}$, to the nearest tenth?
(1) 5.5
(3) 3.0
(2) 4.4
(4) 2.8

4 Right triangle $A B C$ is shown below.

Which trigonometric equation is always true for triangle $A B C$?
(1) $\sin A=\cos C$
(3) $\cos A=\cos C$
(2) $\cos A=\sin A$
(4) $\tan A=\tan C$

$$
\begin{aligned}
& \sin A=\frac{B C}{A C} \\
& \cos C=\frac{B C}{A C}
\end{aligned}
$$

5 In the diagram of $\triangle A B C$ below, $\overline{A E}$ bisects angle $B A C$, and altitude

Use this space for computations. $\overline{B D}$ is drawn.

If $\mathrm{m} \angle C=50^{\circ}$ and $\mathrm{m} \angle A B C=60^{\circ}, \mathrm{m} \angle F E B$ is
(1) 35°
(2) 40°
(3) 55°

6 A jewelry company makes copper heart pendants. Each heart uses $0.75 \mathrm{in}^{3}$ of copper and there is 0.323 pound of copper per cubic inch. If copper costs $\$ 3.68$ per pound, what is the total cost for 24 copper hearts?
(1) $\$ \$.81$
$(2)) \$ 21.40$
(3) $\$ 66.24$

$$
\begin{aligned}
& \text { (4) } \$ 205.08
\end{aligned}
$$

$$
\begin{aligned}
& \$ 21.40
\end{aligned}
$$

Use this space for computations.

7 In right triangle $L M N$ shown below, $\mathrm{m} \angle M=90^{\circ}, M N=12$, and

$$
\begin{aligned}
& 3-4-5 \\
& 12-16 \cdot 20
\end{aligned}
$$

The ratio of $\cos N$ is
(1) $\frac{12}{20}$
(3) $\frac{12}{16}$
(2) $\frac{16}{20}$
(4) $\frac{16}{12}$

8 In $\triangle A B C$ below, $\overline{D E}$ is drawn such that D and E are on $\overline{A B}$ and $\overline{A C}$, respectively.

If $\overline{D E} \| \overline{B C}$, which equation will always be true?
(1) $\frac{A D}{D E}=\frac{D B}{B C}$
(3) $\frac{A D}{B C}=\frac{D E}{D B}$
(2) $\frac{A D}{D E}=\frac{A B}{B C}$
(4) $\frac{A D}{B C}=\frac{D E}{A B}$

9 Which polygon does not always have congruent diagonals?
(1) square
(3.) rhombus
(2) rectangle
(4) isosceles trapezoid

Use this space for
10 If the circumference of a standard lacrosse ball is 19.9 cm , what is computations. the volume of this ball, to the nearest cubic centimeter?
(1) 42
(3) 415
(2) 133
(4) 1065

$$
\begin{aligned}
& C=\pi \cdot d \\
& \frac{c}{\pi} \leqslant d=\frac{19.9}{\pi}
\end{aligned}
$$

11 Which polygon always has a minimum rotation of 180° about its center to carry it onto itself?

Rectangle
(1) 180°

(2)

Isosceles trapezoid
(3) 360°

Regular pentagon
(4)

12 Circle O is drawn below with secant $\overline{B C D}$. The length of tangent $\overline{A D}$ is 24 .

If the ratio of $D C: C B$ is $4: 5$, what is the length of $\overline{C B}$?
(1) 36
(3) 16
(2) 20

Geometry - Jan. '23

13 The equation of a line is $3 x-5 y=8$. All lines perpendicular to this line must have a slope of
(1) $\frac{3}{5}$
(3) $-\frac{3}{5}$
(2) $\frac{5}{3}$
(4) $-\frac{5}{3}$

14 What are the coordinates of the center and length of the radius of the circle whose equation is $x^{2}+y^{2}+2 x-16 y+49=0$?
(1) center $(1,-8)$ and radius 4
(22) center $(-1,8)$ and radius 4
(3) center $(1,-8)$ and radius 16
(4) center ($-1,8$) and radius 16

Use this space for computations.

patio ns.

16 Segment $A B$ is the perpendicular bisector of $\overline{C D}$ at point M. Which statement is always true?
(1) $\overline{C B} \cong \overline{D B}$
(3) $\triangle A C D \sim \triangle B C D$
(2) $\overline{C D} \cong \overline{A B}$
(4) $\triangle A C M \sim \triangle B C M$

17 In the diagram below of circle $O, \overline{A C}$ and $\overline{B C}$ are chords, and $\mathrm{m} \angle A C B=70^{\circ}$.

$$
\frac{140}{360}\left(9^{2}\right) \pi=31.5 \pi
$$

If $O A=9$, the area of the shaded sector $A O B$ is
(1) 3.5π
(3) 15.75π
(2) 7π
(4) 31.5π

18 Quadrilateral BEST has diagonals that intersect at point D. Which

Use this space for computations. statement would not be sufficient to prove quadrilateral BEST is a parallelogram?
(1) $\overline{B D} \cong \overline{S D}$ and $\overline{E D} \cong \overline{T D}$ Diagonals bisect each other
(2) $\overline{B E} \cong \overline{S T}$ and $\overline{E S} \cong \overline{T B}$ Copposite sides are \simeq
(3) $\overline{E S} \cong \overline{T B}$ and $\overline{B E} \| \overline{T S}$ Could be isosceles trapezoid
((3)) $\overline{E S} \cong \overline{T B}$ and $\overline{B E} \| \overline{T S}$ Could be isosceles trapezoid
(4) $\overline{E S} \| \overline{B T}$ and $\overline{B E} \| \overline{T S}$ Opposite sides are II

$$
y=3 x-6
$$

19 The equation of line t is $3 x-y=6$. Line m is the image of line t after a dilation with a scale factor of $\frac{1}{2}$ centered at the origin. What is an equation of line m ?
(1) $y=\frac{3}{2} x-3$
(3) $y=3 x+3$
(2) $y=\frac{3}{2} x-6$
((4)) $y=3 x-3$
$-6 \cdot \frac{1}{2}=-3$

20 A cylindrical pool has a diameter of 16 feet and height of 4 feet.
The pool is filled to $\frac{1}{2}$ foot below the top. How much water does the pool contain, to the nearest gallon? [$1 \mathrm{ft}^{3}=7.48$ gallons]
(1) 704
(2) 804
(3) 5264
(4) 6016

$$
\begin{aligned}
& V=\pi r^{2} h \\
&=\pi(8)^{2}(4-0.5) \\
&=224 \pi \\
& 224 \pi \cdot 7.48 \approx 5264
\end{aligned}
$$

21 The area of $\triangle T A P$ is $36 \mathrm{~cm}^{2}$. A second triangle, $J O E$, is formed by connecting the midpoints of each side of $\triangle T A P$. What is the area of $\triangle O E$, in square centimeters?
(1) 9
(3) 18
(2) 12
(4) 27

Use this space for computations.

$\frac{36}{4}=9$

22 On the set of axes below, the endpoints of $\overline{A B}$ have coordinates $A(-3,4)$ and $B(5,2)$.

If $\overline{A B}$ is dilated by a scale factor of 2 centered at $(3,5)$, what are the coordinates of the endpoints of its image, $\overline{A^{\prime} B^{\prime} \text { ? }}$
(1) $A^{\prime}(-7,5)$ and $B^{\prime}(9,1)$
(2) $A^{\prime}(-1,6)$ and $B^{\prime}(7,4)$
(3) $A^{\prime}(-6,8)$ and $B^{\prime}(10,4)$
(4) $A^{\prime}(-9,3)$ and $B^{\prime}(7,-1)$
$A(-3,4) \rightarrow(-6,-1) \rightarrow(-12,-2) \rightarrow(-9,3)$
$B(5,2) \rightarrow(2,-3) \rightarrow(4,-6) \rightarrow(7,-1)$

23 In the circle below, $\overline{A D}, \overline{A C}, \overline{B C}$, and $\overline{D C}$ are chords, $\stackrel{E D F}{ }$ is

Use this space for

 computations. tangent at point D, and $\overline{A D} \| \overline{B C}$.

$$
\begin{aligned}
& \text { Since } \widehat{A D} \| \widehat{B C}, \widehat{A B} \approx \widehat{C D} \\
& \angle A C B=\frac{1}{2} M \widehat{A B} \\
& \angle C D F=\frac{1}{2} M \overparen{C D}
\end{aligned}
$$

Which statement is always true?
(1) $\angle A D E \cong \angle C A D ~=~(2) ~ \angle C D F \cong \angle A C B$
(3) $\angle B C A \cong \angle D C A$
(4) $\angle A D C \cong \angle A D E$

24 In the diagram below of $\triangle A B C, D$ and E are the midpoints of $\overline{A B}$ and $\overline{A C}$, respectively, and $\overline{D E}$ is drawn.

I. AA similarity see above
 ill. sis similarity 2 core spiondiny sides are orpporfiona) Which methods could be used to prove $\triangle A B C \sim \triangle A D E$?
(1) I and II, only
(2) II and III, only
(3) I I and III, only

Part II

Answer all 7 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [14]

25 Using a compass and straightedge, construct the angle bisector of $\angle A B C$.
[Leave all construction marks.]

26 On the set of axes below, $\triangle A B C$ and $\triangle D E F$ are graphed.

Describe a sequence of rigid motions that would map $\triangle A B C$ onto $\triangle D E F$.
Rotate 90° clockwise about B of then translate down $4 \pm$ right 3 .

27 As shown in the diagram below, a symmetrical roof frame rises 4 feet above a house and has a width of 24 feet.

Determine and state, to the nearest degree, the angle of elevation of the roof frame.

28 Directed line segment $A B$ has endpoints whose coordinates are $A(-2,5)$ and $B(8,-1)$. Determine and state the coordinates of P, the point which divides the segment in the ratio 3:2.
[The use of the set of axes below is optional.]

$$
\begin{aligned}
& \text { we o ofteseset f axes blelowis optional. } \\
&-2+\frac{3}{5}(8+2)=-2+(10)=-2+6=4 \\
& 5+\frac{3}{5}(-1-5)=5+\frac{3}{5}(-6)=5-\frac{18}{5} \\
&\left(4, \frac{7}{5}\right)=\frac{25}{5}-\frac{18}{5} \\
&=\frac{7}{5}
\end{aligned}
$$

29 In $\triangle A B C, A B=5, A C=12$, and $\mathrm{m} \angle A=90^{\circ}$. In $\triangle D E F, \mathrm{~m} \angle D=90^{\circ}$, $D F=12$, and $E F=13$. Brett claims $\triangle A B C \cong \triangle D E F$ and $\triangle A B C \sim \triangle D E F$. Is Brett correct? Explain why.

$$
\begin{aligned}
& \text { S.12-13 is a Pythagorean Triple } \\
& \triangle A B C \cong \triangle D E F\{\text { SSS } \\
& \triangle A B C \sim \triangle D B F
\end{aligned}
$$

30 The volume of a triangular prism is $70 \mathrm{in}^{3}$. The base of the prism is a right triangle with one leg whose measure is 5 inches. If the height of the prism is 4 inches, determine and state the length, in inches, of the other leg of the triangle.

$70=\frac{1}{2}(5)(L)(4)$

$$
70=10 L
$$

$$
7=L
$$

31 Triangle $A B C$ with coordinates $A(-2,5), B(4,2)$, and $C(-8,-1)$ is graphed on the set of axes below.

Determine and state the area of $\triangle A B C$.

$$
\begin{aligned}
& \text { Determine and state the area of } \triangle A B C: \\
& \text { Area of } \square C O E F: \frac{6 \times 12: 72}{12 \times 3}=(18) \\
& \text { Area of } \triangle C D B: \frac{6 \times 6}{2}=(18) \\
& \text { Area of } \triangle F N C: \frac{6 \times 3}{2}=\frac{(9)}{27} \\
& \text { Area of } \triangle A B B: \frac{6}{2}
\end{aligned}
$$

Part III

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

32 Sally and Mary both get ice cream from an ice cream truck. Sally's ice cream is served as a cylinder with a diameter of 4 cm and a total height of 8 cm . Mary's ice cream is served as a cone with a diameter of 7 cm and a total height of 12.5 cm . Assume that ice cream fills Sally's cylinder and Mary's cone.

Who was served more ice cream, Sally or Mary? Justify your answer.

$$
\begin{gathered}
\pi(2)^{2}(8) \approx 100.5 \frac{1}{3}(\pi)(3.5)^{2}(12.5) \approx 160.4 \\
M a v y
\end{gathered}
$$

Determine and state how much more is served in the larger ice cream than the smaller ice cream, to the nearest cubic centimeter.

$$
16.4-100.5 \approx 60
$$

33 Given：$\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$

Prove：$\triangle E A B \cong \triangle F D C$
（1）$\triangle A E B, \triangle D F C, \overline{A B C D},(1)$ Given

$$
\overrightarrow{A E}\left\|\frac{D F}{}, \overrightarrow{E B}\right\| F C, A C \cong \overline{C B}
$$

（2）$\angle A \cong \angle D$
（3）$\angle E B A \cong \angle F C D$
（2）Alternate interior angles Formed by 11 lines a a transussol are congruent
（3）Alternate exterior angles formed by ll lines ϕ a transversal are $⿻ 丷 ⿻ 二 丨 刂 刀 . ~$
（4）$\overline{B C} \cong \widehat{B C}$
（g）$\overline{A D} \cong \overline{C D}$
（6）$\triangle R A B \cong \triangle F C$
（4）reflexive
（5）subtraction postulate
（6）ASA

Geometry－Jan．＇23

34 Barry wants to find the height of a tree that is modeled in the diagram below, where $\angle C$ is a right angle. The angle of elevation from point A on the ground to the top of the tree, H, is 40°. The angle of elevation from point B on the ground to the top of the tree, H, is 80°. The distance between points A and B is 85 feet.

Barry claims that $\triangle A B H$ is isosceles. Explain why Barry is correct. Since $\angle A B N$ is $100^{\circ}, \angle A A B$ is 40°. An is scales \triangle has two congruent angles.

Determine and state, to the nearest foot, the height of the tree.
$\cos 80=\frac{x}{85}$
$x \approx 14.8$
$\tan 40=\frac{y}{99,8}$
$y \approx 84$

Part IV
Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided to determine your answer. Note that diagrams are not necessarily drawn to scale. A correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [6]

35 Given: Triangle $D U C$ with coordinates $D(-3,-1), U(-1,8)$, and $C(8,6)$

Prove: $\triangle D U C$ is a right triangle
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& m_{\sigma 0}=\frac{8-(1)}{1-(-3)}=\frac{9}{2} \quad \text { Opposite reciprocals } \\
& M_{\overline{0}}=\frac{8-6}{-1-8}=\frac{2}{-9} \quad \overline{D U} \perp U 0 \\
& \Delta \text { DUe is a right } \triangle \text { because } \angle D U C \\
& \text { is a right } L
\end{aligned}
$$

Question 35 continued

Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$. Prove quadrilateral $D U C U^{\prime}$ is a square.

Since all four sides are congruent * $\angle D U C$ is a right angle, DUCO' is a square

