The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION

GEOMETRY

The possession or use of any communications device is strictly prohibited when taking this examination．If you have or use any communications device，no matter how briefly，your examination will be invalidated and no score will be calculated for you．

Print your name and the name of your school on the lines above．
A separate answer sheet for Part I has been provided to you．Follow the instructions from the proctor for completing the student information on your answer sheet．

This examination has four parts，with a total of 35 questions．You must answer all questions in this examination．Record your answers to the Part I multiple－choice questions on the separate answer sheet．Write your answers to the questions in Parts II，III，and IV directly in this booklet． All work should be written in pen，except for graphs and drawings，which should be done in pencil．Clearly indicate the necessary steps，including appropriate formula substitutions，diagrams， graphs，charts，etc．Utilize the information provided for each question to determine your answer． Note that diagrams are not necessarily drawn to scale．

The formulas that you may need to answer some questions in this examination are found at the end of the examination．This sheet is perforated so you may remove it from this booklet．

Scrap paper is not permitted for any part of this examination，but you may use the blank spaces in this booklet as scrap paper．A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required．You may remove this sheet from this booklet．Any work done on this sheet of scrap graph paper will not be scored．

When you have completed the examination，you must sign the statement printed at the end of the answer sheet，indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination．Your answer sheet cannot be accepted if you fail to sign this declaration．

Notice．．．

A graphing calculator，a straightedge（ruler），and a compass must be available for you to use while taking this examination．

Part I

Answer all 24 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. Record your answers on your separate answer sheet. [48]

1 After a counterclockwise rotation about point X, scalene triangle $A B C$ maps onto $\triangle R S T$, as shown in the diagram below.

Use this space for computations.

Which statement must be true?
(1) $\angle A \cong \angle R$
(3) $\overline{C B} \cong \overline{T R}$ (Le)tations preserve angle
(2) $\angle A \cong \angle S$
(4) $\overline{C A} \cong \overline{T S}$
measure.

2 In the diagram below, $\overline{A B} \| \overrightarrow{D E F}, \overline{A E}$ and $\overline{B D}$ intersect at C, $\mathrm{m} \angle B=43^{\circ}$, and $\mathrm{m} \angle C E F=152^{\circ}$.

Which statement is true?
(1) $m \angle D=28^{\circ}$
(3) $\mathrm{m} \angle A C D=71^{\circ}$
(2) $\mathrm{m} \angle A=43^{\circ}$
(4) $\mathrm{m} \angle B C E=109^{\circ}$

3 In the diagram below, line m is parallel to line n. Figure 2 is the image

Use this space for computations.

 of Figure 1 after a reflection over line m. Figure 3 is the image of Figure 2 after a reflection over line n.

Which single transformation would carry Figure 1 onto Figure 3?
(1) a dilation
(2) a rotation
(3) a reflection

4 In the diagram below, $\overline{A F}$ and $\overline{D B}$ intersect at C , and $\overline{A D}$ and $\overline{F B E}$ are drawn such that $\mathrm{m} \angle D=65^{\circ}, \mathrm{m} \angle C B E=115^{\circ}, D C=7.2$, $A C=9.6$, and $F C=21.6$.

What is the length of $\overline{C B}$?
(1) 3.2
((3) 16.2
(2) 4.8
(4) 19.2
$\triangle C F B \sim \triangle C A D$ $C B=C D$ CF CA

$$
\frac{x}{21.6}=\frac{7.2}{9.6}
$$

$x=16.2$ [OVER]

5 Given square $R S T V$, where $R S=9 \mathrm{~cm}$. If square $R S T V$ is dilated by

Use this space for computations.

 a scale factor of 3 about a given center, what is the perimeter, in centimeters, of the image of RSTV after the dilation?(1) 12
(2) 27
(3) 36

$$
\begin{gathered}
R S=9.3=27 \\
\text { perimeter }=27.4=108
\end{gathered}
$$

6 In right triangle $A B C$, hypotenuse $\overline{A B}$ has a length of 26 cm , and side $\overline{B C}$ has a length of 17.6 cm . What is the measure of angle B, to the nearest degree?
(12) 48°
(3) 43°
(4) 34°

$$
\cos B=\frac{17.6}{26}
$$

$$
B=\cos ^{-1} \frac{16}{26}
$$

7 The greenhouse pictured below can be modeled as a rectangular prism with a half-cylinder on top. The rectangular prism is 20 feet wide, 12 feet high, and 45 feet long. The half-cylinder has a diameter of 20 feet.

$$
7(\cdot) \cdot \frac{1}{2}+(10)^{2}(45)
$$

To the nearest cubic foot, what is the volume of the greenhouse?
(1) 17,869
(3) 39,074
(2) 24,937
(4) 67,349

8 In a right triangle, the acute angles have the relationship

Use this space for computations. $\sin (2 x+4)=\cos (46)$.

What is the value of x ?
((1)) 20
(3) 24
(2) 21
(4) 25

$$
2 y+4+46=90
$$

$$
2 x=40
$$

9 In the diagram below, $\overline{A B}\|\overline{D F C}, \overline{E D A}\| \overline{C B G}$, and $\overline{E F B}$ and $\overline{A G}$ are drawn.

Which statement is always true?
(1) $\triangle D E F \cong \triangle C B F$
(2) $\triangle B A G \cong \triangle B A E$
(3) $\triangle B A G \sim \triangle A E B$
(4) $\triangle D E F \sim \triangle A E B \quad / /$

10 The base of a pyramid is a rectangle with a width of 4.6 cm and a length of 9 cm . What is the height, in centimeters, of the pyramid if its volume is $82.8 \mathrm{~cm}^{3}$?
(1)
(2) 2
(3) 9
(4) 18
$y=\frac{1}{3}+(\hat{y}$
(o) $\left.\sigma=\frac{1}{3}(4 \cdot b)(a)\right)$
$(0 \therefore)$

11 In the diagram below of right triangle $A E D, \overline{B C} \| \overline{D E}$.

Use this space for computations.

$\triangle A C B \sim A R E D$

Which statement is always true?
(1) $\frac{A C}{B C}=\frac{D E}{A E}$
(3) $\frac{A C}{C E}=\frac{B C}{D E}$
(2) $\frac{A B}{A D}=\frac{B C}{D E}$
(4) $\frac{D E}{B C}=\frac{D B}{A B}$

12 What is an equation of the line that passes through the point $(6,8)$ and is perpendicular to a line with equation $y=\frac{3}{2} x+5$?
(1) $y-8=\frac{3}{2}(x-6)$
(3) $y+8=\frac{3}{2}(x+6)$
(2) $y-8=-\frac{2}{3}(x-6)$
(4) $y+8=-\frac{2}{3}(x+6)$

13 The diagram below shows parallelogram $A B C D$ with diagonals $\overline{A C}$

Use this space for computations.

 and $\overline{B D}$ intersecting at E.

What additional information is sufficient to prove that parallelogram $A B C D$ is also a rhombus?
(1) $\overline{B D}$ bisects $\overline{A C}$.
(3) $\overline{A C}$ is congruent to $\overline{B D}$.
(2) $\overline{A B}$ is parallel to $\overline{C D}$.
(4) $\overline{A C}$ is perpendicular to $\overline{B D}$.

14 Directed line segment $D E$ has endpoints $D(-4,-2)$ and $E(1,8)$.
Point F divides $\overline{D E}$ such that $D F: F E$ is 2:3. What are the coordinates of F ?
$\left(\begin{array}{l}(1)) \\ (-3,0) \\ (-2,2)\end{array}\right.$
(3) $(-1,4) X$:
(4) $(2,4)$

15 Triangle $D A N$ is graphed on the set of axes below. The vertices of $\triangle D A N$ have coordinates $D(-6,-1), A(6,3)$, and $N(-3,10)$.

Use this space for

 computations.

What is the area of $\triangle D A N$?
(1) 60
(3) $20 \sqrt{13}$
(2) 120
(4) $40 \sqrt{13}$

$$
(12 \times 11)-\left(\frac{1}{2}(12.47)+\frac{1}{2}(7.9)+\frac{1}{2}(10.3)\right)
$$

16 Triangle $A B C$, with vertices at $A(0,0), B(3,5)$, and $C(0,5)$, is graphed

Use this space for computations. on the set of axes shown below.

Which figure is formed when $\triangle A B C$ is rotated continuously about $\overline{B C}$?

(1)

(2)

(4)

17 In the diagram below of circle O, chords $\overline{A B}$ and $\overline{C D}$ intersect at E.

If $\mathrm{m} \overparen{A C}=72^{\circ}$ and $\mathrm{m} \angle A E C=58^{\circ}$, how many degrees are in $\mathrm{m} \overparen{D B}$?
(1) 108°
(3) 44°
(2) 65°
(4) 14°

18 In triangle $S R K$ below, medians $\overline{S C}, \overline{K E}$, and $\overline{R L}$ intersect at M.

Which statement must always be true?
(1) $\beta(M C)=S C$
(3) $R M=2 M C$
(2) $M C=\frac{1}{3}(S M)$
(4) $S M=K M$

Use this space for
19 The regular polygon below is rotated about its center. computations.

$$
\frac{360}{5}: 72
$$

Which angle of rotation will carry the figure onto itself?
(1) 60°
(3) 216° is a multiple of 72°
(2) 108°
(4) 540°

20 What is an equation of circle O shown in the graph below?

(1) $x^{2}+10 x+y^{2}+4 y=-13$
(3) $x^{2}+10 x+y^{2}+4 y=-25$
(2) $x^{2}-10 x+y^{2}-4 y=-13$
(4) $x^{2}-10 x+y^{2}-4 y=-25$

$$
\begin{gathered}
x^{2}-10 x+25+y^{2}-4 y+4=-13+25+4 \\
(x-5)^{2}+(y-2)^{2}=16
\end{gathered}
$$

Geometry - June '18

Use this space for
21 In the diagram below of $\triangle P Q R, \overline{S T}$ is drawn parallel to $\overline{P R}, P S=2$, computations. $S Q=5$, and $T R=5$.

What is the length of $\overline{Q R}$?
(1) 7
(3) $12 \frac{1}{2}$
(2) 2
(4) $17 \frac{1}{2}$

$5 x+25=7 x$

$121 / 2=x$

22 The diagram below shows circle O with radii $\overline{O A}$ and $\overline{O B}$. The measure
 of angle $A O B$ is 120°, and the length of a radius is 6 inches.

Which expression represents the length of arc $A B$, in inches?

120,121

(1) $\frac{120}{360}(6 \pi)$
(3) $\frac{1}{3}(36 \pi)$
(2) 120(6)

360
$\frac{1}{3} \cdot 12 \pi$

23 Line segment $C D$ is the altitude drawn to hypotenuse $\overline{E F}$ in right computations. triangle $E C F$. If $E C=10$ and $E F=24$, then, to the nearest tenth, $E D$ is
(1) 4.2
(3) 15.5
(2) 5.4
(4) 21.8

24 Line $M N$ is dilated by a scale factor of 2 centered at the point $(0,6)$. If $\overleftrightarrow{M N}$ is represented by $y=-3 x+6$, which equation can represent $\overleftrightarrow{M^{\prime} N^{\prime}}$, the image of $\overleftrightarrow{M N}$?
(1) $y=-3 x+12$
(3) $y=-6 x+12$
(2) $y=-3 x+6$
(4) $y=-6 x+6$

$$
\begin{aligned}
& \text { Dilation of a line contoured at a } \\
& \text { point on the live results in the } \\
& \text { same line }
\end{aligned}
$$

Part II
Answer all 7 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [14]

25 Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of triangle $A B C$ after a translation of 2 units to the right and 3 units up. Is triangle $A B C$ congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$? Explain why.

$$
\begin{aligned}
& \text { Yes, because translations preserve c } \\
& \text { angle measure }
\end{aligned}
$$

26 Triangle $A B C$ and point $D(1,2)$ are graphed on the set of axes below.

Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$, after a dilation of scale factor 2 centered at point D.

$$
\begin{aligned}
& A(-2,1) \rightarrow(-3,-1) \rightarrow(-6,-2) \rightarrow(-5,0) \\
& B(0,5) \rightarrow(-1,3) \rightarrow(-2,6) \rightarrow(-1,8) \\
& C(4,-1) \rightarrow(3,-3) \rightarrow(6,-6) \rightarrow(7,-4)
\end{aligned}
$$

Geometry - June '18

27 Quadrilaterals BIKE and GOLF are graphed on the set of axes below.

Describe a sequence of transformations that maps quadrilateral BIKE onto quadrilateral GOLF .

$$
\begin{aligned}
& \text { Reflection across the } y \text {-axis, then } \\
& \text { translation up } 5 \text {. }
\end{aligned}
$$

28 In the diagram below, secants $\overline{R S T}$ and $\overline{R Q P}$, drawn from point R, intersect circle O at S, T, Q, and P.

If $R S=6, S T=4$, and $R P=15$, what is the length of $\overline{R Q}$?

$$
\begin{aligned}
W E & =W E \\
10(6) & =15 x \\
4 & =x
\end{aligned}
$$

29 Using a compass and straightedge, construct the median to side $\overline{A C}$ in $\triangle A B C$ below. [Leave all construction marks.]

30 Skye says that the two triangles below are congruent. Margaret says that the two triangles are similar.

Are Skye and Margaret both correct? Explain why.

$$
\begin{aligned}
& \text { Yes. The triangles are congruent because } \\
& \text { of SSS. All congruent triangles are } \\
& \text { similar. }
\end{aligned}
$$

31 Randy's basketball is in the shape of a sphere with a maximum circumference of 29.5 inches. Determine and state the volume of the basketball, to the nearest cubic inch.

$$
\begin{aligned}
C & =2 \pi r \\
29.5 & =2 \pi r \\
r & =\frac{29.5}{2 \pi} \\
V & =\frac{4}{3} \pi\left(\frac{29.5}{2 \pi}\right)^{3} \\
V & \approx 434
\end{aligned}
$$

Part III
Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

32 Triangle $A B C$ has vertices with coordinates $A(-1,-1), B(4,0)$, and $C(0,4)$. Prove that $\triangle A B C$ is an isosceles triangle but not an equilateral triangle. [The use of the set of axes below is optional.]

$$
\begin{aligned}
& \text { Because } \overline{A B} \cong \overline{A C} \text {, } \triangle A B C \text { has two congruent } \\
& \text { sides }+ \text { is isosceles. } \\
& \text { Because } \overline{A B} \neq \overline{B C}, \triangle A B C \text { has sides that } \\
& \text { are not congruent } \triangle A B C \text { is not } \\
& \text { equilateral. }
\end{aligned}
$$

33 The map of a campground is shown below. Campsite C, first aid station F, and supply station S lie along a straight path. The path from the supply station to the tower, T, is perpendicular to the path from the supply station to the campsite. The length of path $\overline{F S}$ is 400 feet. The angle formed by path $\overline{T F}$ and path $\overline{F S}$ is 72°. The angle formed by path $\overline{T C}$ and path $\overline{C S}$ is 55°.

Determine and state, to the nearest foot, the distance from the campsite to the tower.

$$
\begin{aligned}
\tan 72 & =\frac{x}{400} \\
x & =400 \tan 72
\end{aligned}
$$

$$
\begin{aligned}
\sin 55 & =\frac{400 \tan 72}{y} \\
y & =\frac{400 \tan 72}{\sin 55}
\end{aligned}
$$

$$
y \approx 1503
$$

34 She has recently begun kickboxing and purchased training equipment as modeled in the diagram below. The total weight of the bag, pole, and unfilled base is 270 pounds. The cylindrical base is 18 inches tall with a diameter of 20 inches. The dry sand used to fill the base weighs 95.46 lbs per cubic foot.

To the nearest pound, determine and state the total weight of the training equipment if the base

$$
\begin{aligned}
V=\pi(1))^{2} \cdot 18 & =1800 \pi \mathrm{in}^{3}\left(\frac{1 \mathrm{ft}^{3}}{12^{3} \mathrm{in}^{3}}\right) \\
& =\frac{25}{24} \pi \mathrm{Ft}^{3} \\
\frac{25}{24} \pi .95 .46 \cdot .85 \approx \frac{266}{} & \frac{+270}{536}
\end{aligned}
$$

Part IV
Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for the question to determine your answer. Note that diagrams are not necessarily drawn to scale. A correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [6]

