The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION

GEOMETRY

Tuesday	y , June 20, 2	2023 — 9:15 a.ı	m. to 12:15 p.m., only	7
	MV	5/61		
Student Name:	/ / / / /	13 00 1		PARLER
School Name: _	JMA1), mc.	·	

The possession or use of any communications device is strictly prohibited when taking this examination. If you have or use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

Print your name and the name of your school on the lines above.

A separate answer sheet for **Part I** has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet.

This examination has four parts, with a total of 35 questions. You must answer all questions in this examination. Record your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in **Parts II**, **III**, and **IV** directly in this booklet. All work should be written in pen, except graphs and drawings, which should be done in pencil. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale.

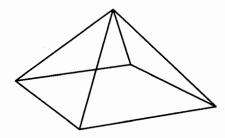
The formulas that you may need to answer some questions in this examination are found at the end of the examination. This sheet is perforated so you may remove it from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will *not* be scored.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice ...

A graphing calculator, a straightedge (ruler), and a compass must be available for you to use while taking this examination.


DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN.

Part I

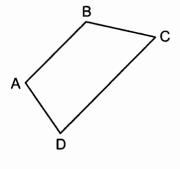
Answer all 24 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. Record your answers on your separate answer sheet. [48]

1 A square pyramid is intersected by a plane passing through the vertex and perpendicular to the base.

Use this space for computations.

Which two-dimensional shape describes this cross section?


(1) square


(3) pentagon

(2) triangle

(4) rectangle

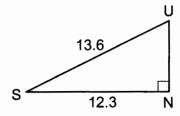
2 Trapezoid ABCD is drawn such that $\overline{AB} \parallel \overline{DC}$. Trapezoid A'B'C'D' is the image of trapezoid ABCD after a rotation of 110° counterclockwise about point P.

Which statement is always true?

- $(1) \ \angle A \cong \angle D'$
- (3) $\overline{A'B'} \parallel \overline{D'C'}$
- $(2) \ \overline{AC} \cong \overline{B'D'}$

 $(4) \ \overline{B'A'} \cong \overline{C'D'}$

3 What is the volume of a right circular cone that has a height of 7.2 centimeters and a radius of 2.5 centimeters, to the *nearest tenth of a cubic centimeter*?


Use this space for computations.

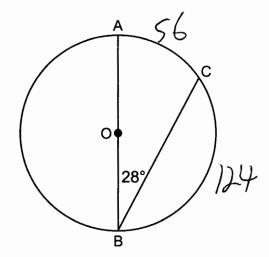
(1) 37.7

(2) 47.1

- (3) 113.1
- (4) 141.4

 $V = \frac{1}{3} \pi r^{2} h$ $= \frac{1}{3} \pi (2.5)^{2} (7.2)$ $= \frac{1}{3} \pi (2.5)^{2} (7.2)$

 $cos 5 = \frac{12.5}{13.6}$ $5 \approx 25$


What is $m \angle S$, to the *nearest degree*?

(1) 25°

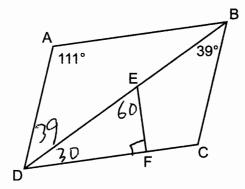
(3) 48°

(2) 42°

- $(4) 65^{\circ}$
- **5** In the diagram below of circle O, diameter \overline{AOB} and chord \overline{CB} are drawn, and $m \angle B = 28^{\circ}$.

What is \widehat{BC} ?

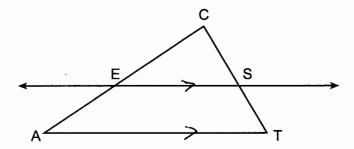
(1) 56°


(3) 152°

(2) 124°

(4) 166°

Use this space for computations.


6 In the diagram below of parallelogram ABCD, diagonal \overline{BED} and \overline{EF} are drawn, $\overline{EF} \perp \overline{DFC}$, m $\angle DAB = 111^{\circ}$, and m $\angle DBC = 39^{\circ}$.

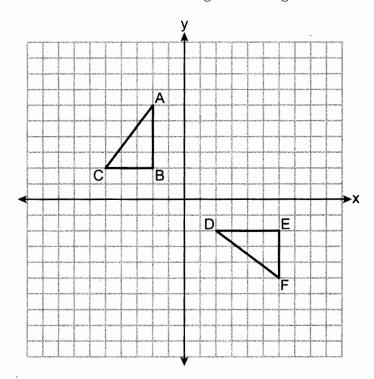
What is $m \angle DEF$?

- (1) 30°
- (2) 51°

- (3) 60°
- (4) 120
- 7 In the diagram below of $\triangle ACT$, \overrightarrow{ES} is drawn parallel to \overrightarrow{AT} such that E is on \overrightarrow{CA} and S is on \overrightarrow{CT} .

Which statement is always true?

(1) $\frac{CE}{CA} = \frac{CS}{ST}$

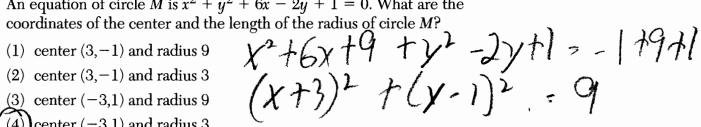

 $(3)\frac{CE}{EA} = \frac{CS}{ST}$

(2) $\frac{CE}{ES} = \frac{EA}{AT}$

 $(4) \ \frac{CE}{ST} = \frac{EA}{CS}$

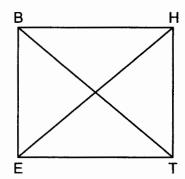
Use this space for computations.

8 On the set of axes below, congruent triangles *ABC* and *DEF* are drawn.


Which sequence of transformations maps $\triangle ABC$ onto $\triangle DEF$?

- (1) A counterclockwise rotation of 90 degrees about the origin, followed by a translation 8 units to the right.
 - (2) A counterclockwise rotation of 90 degrees about the origin, followed by a reflection over the *y*-axis.
 - (3) A counterclockwise rotation of 90 degrees about the origin, followed by a translation 4 units down.
- (4) A clockwise rotation of 90 degrees about the origin, followed by a reflection over the x-axis.

9 An equation of circle M is $x^2 + y^2 + 6x - 2y + 1 = 0$. What are the


[5]

- (4) center (-3,1) and radius 3

10 Parallelogram *BETH*, with diagonals \overline{BT} and \overline{HE} , is drawn below.

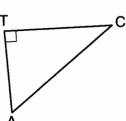
Use this space for computations.

Which additional statement is sufficient to prove that *BETH* is a rectangle?

- (1) $\overline{BT} \perp \overline{HE}$
- (2) $\overline{BE} \parallel \overline{HT}$

- $\overline{BT} \cong \overline{HE}$
 - $(4) \ \overline{BE} \cong \overline{ET}$

11 A gardener wants to buy enough mulch to cover a rectangular garden that is 3 feet by 10 feet. One bag contains 2 cubic feet of mulch and that is 3 feet by 10 feet. One bag contains 2 cubic feet of indical and costs \$3.66. How much will the minimum number of bags cost to cover the garden with mulch 3 inches deep?

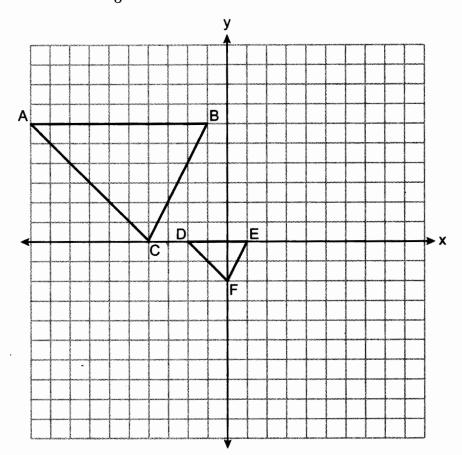

(1) \$3.66

(2) \$10.98

(4) \$29.28

12 In the diagram below, $\triangle DOG \sim \triangle CAT$, where $\angle G$ and $\angle T$ are right angles.

Which expression is always equivalent to $\sin D$?


 $\cos A$

(3) $\tan A$

 \cdot (2) $\sin A$

 $(4) \cos C$

13 On the set of axes below, $\triangle DEF$ is the image of $\triangle ABC$ after a dilation of scale factor $\frac{1}{3}$.

The center of dilation is at

$$(1)$$
 $(0,0)$

$$(3)$$
 $(0,-2)$

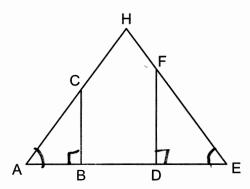
$$(2)$$
 $(2,-3)$

Geometry - June '23

$$(4)$$
 $(-4,0)$

$$x_{0} = \frac{Kx_{1} - X_{2}}{K - 1}$$

$$x_{0} = \frac{\frac{1}{5}(-4) - 0}{\frac{1}{5}(-1)}$$


$$x_{0} = \frac{-\frac{4}{3}}{-\frac{2}{3}}$$

$$x_{0} = \frac{-\frac{4}{3}}{2}$$

$$y_{0}: \frac{k}{k} \frac{y_{1}-y_{1}}{k-1}$$
 $y_{0}: \frac{1}{3}(0)-2$
 $y_{0}: \frac{1}{3}(0)-2$
 $y_{0}: \frac{1}{3}(0)-2$
 $y_{0}: \frac{1}{3}(0)-2$

[OVER]

14 In the diagram below of isosceles triangle AHE with the vertex angle at H, $\overline{CB} \perp \overline{AE}$ and $\overline{FD} \perp \overline{AE}$.

Which statement is always true?

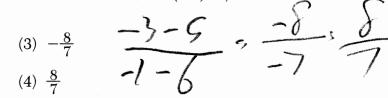
$$(1) \ \frac{AH}{AC} = \frac{EH}{EF}$$

$$(3) \ \frac{AB}{ED} = \frac{CB}{FE}$$

$$(2) \underbrace{AC}_{EF} = \underbrace{AB}_{ED}$$

$$(4) \ \frac{AD}{AB} = \frac{BE}{DE}$$

15 Rectangle ABCD has two vertices at coordinates A(-1,-3) and B(6,5). The slope of \overline{BC} is

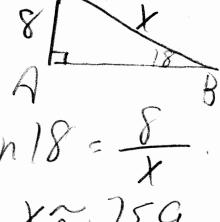

$$(1)$$
 $-\frac{7}{8}$

 $(2) \frac{7}{8}$

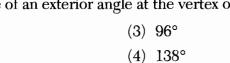
$$(3) -\frac{8}{7}$$

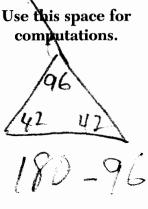
$$(3) -\frac{1}{2}$$

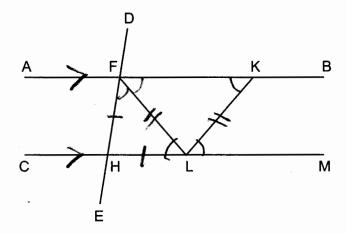
$$(4) \frac{8}{7}$$


16 In right triangle ABC, $m \angle A = 90^{\circ}$, $m \angle B = 18^{\circ}$, and AC = 8.

To the *nearest tenth*, the length of \overline{BC} is


(1) 2.5


(2) 8.4



17 The measure of one of the base angles of an isosceles triangle is 42° . The measure of an exterior angle at the vertex of the triangle is

18 In the diagram below, $\overline{AFKB} \parallel \overline{CHLM}$, $\overline{FH} \cong \overline{LH}$, $\overline{FL} \cong \overline{KL}$, and \overline{LF} bisects $\angle HFK$.

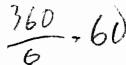
Which statement is always true?

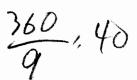
(1) 42°

(1)
$$2(m\angle HLF) = m\angle CHE$$
 (3) $m\angle AFD = m\angle BKL$
(2) $2(m\angle FLK) = m\angle LKB$ (4) $m\angle DFK = m\angle KLF$

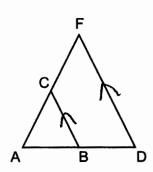
19 The line whose equation is 6x + 3y = 3 is dilated by a scale factor of 2 centered at the point (0,0). An equation of its image is

(1)
$$y = -2x + 1$$
 (2) $y = -4x + 1$ (4) $y = -4x + 2$


Use this space for computations.

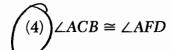

20 Which figure will not carry onto itself after a 120-degree rotation

about its center? 360 110 (1) equilateral triangle 3 (3)



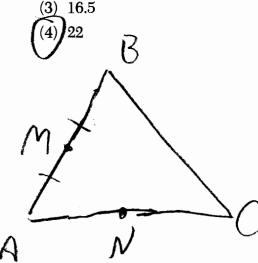
- (2) regular hexagon
- (4) regular nonagon

21 Triangle ADF is drawn and $\overline{BC} \parallel \overline{DF}$.



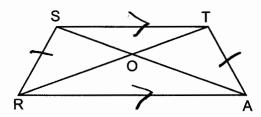
Which statement must be true?

$$(1) \ \frac{AB}{BC} = \frac{BD}{DF}$$

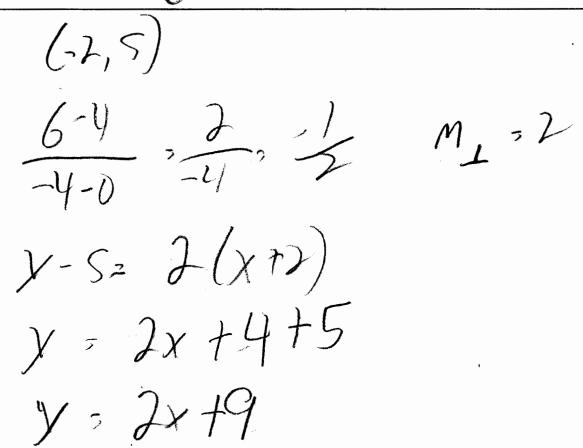

(3)
$$AB:AD = AC:CF$$

$$(2) BC = \frac{1}{2}DF$$

22 In $\triangle ABC$, M is the midpoint of \overline{AB} and N is the midpoint of \overline{AC} . If MN = x + 13 and BC = 5x - 1, what is the length of \overline{MN} ?

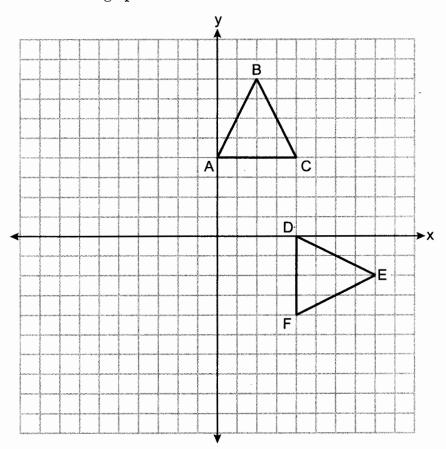

- (1) 3.5
- (2) 9

2(x+13) = 5x-1 2x+26 = 5x-1 27= 3x 9= x


Use this space for computations.

23 In the diagram below of isosceles trapezoid STAR, diagonals \overline{AS} and \overline{RT} intersect at O and $\overline{ST} \parallel \overline{RA}$, with nonparallel sides \overline{SR} and \overline{TA} .

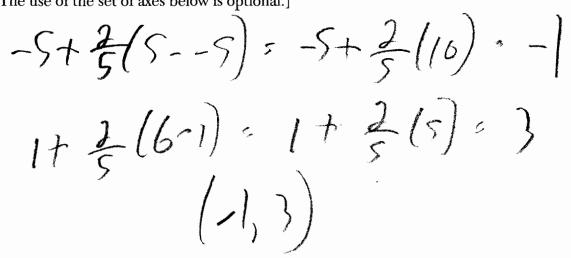
Which pair of triangles are not always similar?

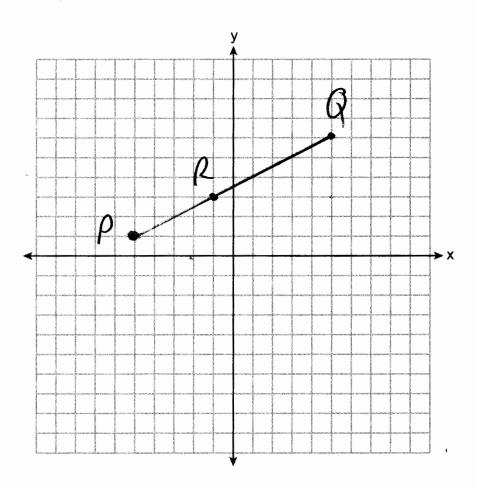

- (1) $\triangle STO$ and $\triangle ARO$
- (3) $\triangle SRA$ and $\triangle ATS$
- (2) $\triangle SOR$ and $\triangle TOA$
- (4) $\triangle SRT$ and $\triangle TAS$
- **24** The endpoints of \overline{AB} are A(0,4) and B(-4,6). Which equation of a line represents the perpendicular bisector of \overline{AB} ?
 - (1) $y = -\frac{1}{2}x + 4$
- (3) y = 2x + 8
- (2) y = -2x + 1
- (4) y = 2x + 9

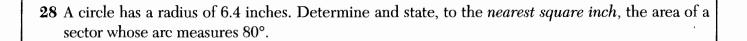
Answer all 7 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [14]

25 In $\triangle ABC$ below, use a compass and straightedge to construct the altitude from C to AB. [Leave all construction marks.]

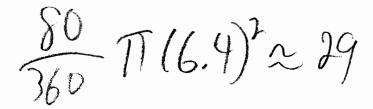
26 Triangles *ABC* and *DEF* are graphed on the set of axes below.

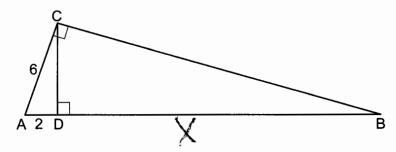



Describe a sequence of transformations that maps $\triangle ABC$ onto $\triangle DEF$.


Ty,-4, followed by 9 90° clockwise rotation about wint D,

27 Line segment PQ has endpoints P(-5,1) and Q(5,6), and point R is on \overline{PQ} . Determine and state the coordinates of R, such that PR:RQ = 2:3.


[The use of the set of axes below is optional.]


[15]

29 A large snowman is made of three spherical snowballs with radii of 1 foot, 2 feet, and 3 feet, respectively. Determine and state the amount of snow, in cubic feet, that is used to make the snowman.

[Leave your answer in terms of π .]

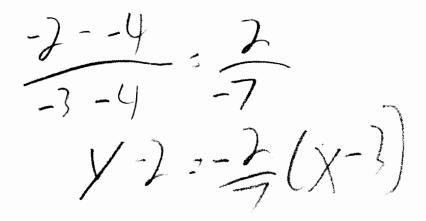
30 In the diagram below of right triangle ACB, altitude \overline{CD} is drawn to hypotenuse \overline{AB} , AD = 2 and AC = 6.

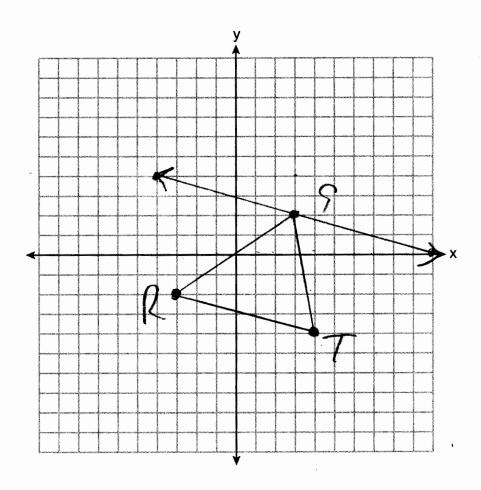
Determine and state the length of \overline{AB} .

$$6^{2} = \lambda(x+2)$$

$$36 = \lambda(x+1)$$

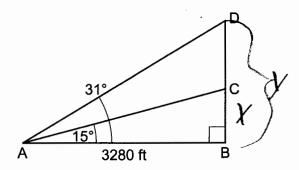
$$31 = 2x$$


$$16 \leq x$$


$$16 \leq x$$

$$AB = 16t = 18$$

31 Triangle RST has vertices with coordinates R(-3,-2), S(3,2) and T(4,-4). Determine and state an equation of the line parallel to \overline{RT} that passes through point S.


[The use of the set of axes below is optional.]

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided for each question to determine your answer. Note that diagrams are not necessarily drawn to scale. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

32 Cape Canaveral, Florida is where NASA launches rockets into space. As modeled in the diagram below, a person views the launch of a rocket from observation area A, 3280 feet away from launch pad B. After launch, the rocket was sighted at C with an angle of elevation of 15°. The rocket was later sighted at D with an angle of elevation of 31°.

Determine and state, to the nearest foot, the distance the rocket traveled between the two sightings, C and D.

$$tan^{3}l = \frac{y}{3280}$$

$$\propto 1092$$

33 A small can of soup is a right circular cylinder with a base diameter of 7 cm and a height of 9 cm. A large container is also a right circular cylinder with a base diameter of 9 cm and a height of 13 cm.

Determine and state the volume of the small can and the volume of the large container to the nearest cubic centimeter.

$$TT(3.5)^{2}(9) \approx 346$$

$$TT(4.5)^{2}(13) \approx 827$$

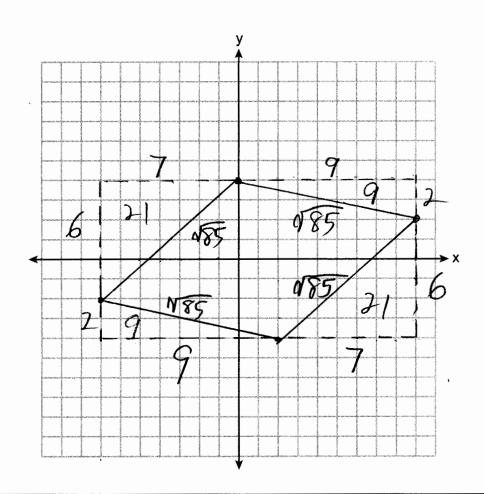
What is the minimum number of small cans that must be opened to fill the large container? Justify your answer.

$$\frac{827}{346} \propto 2.4$$

$$3 \text{ cans}$$

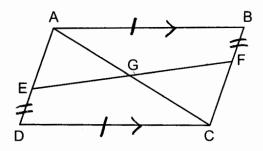
34 Parallelogram *MATH* has vertices M(-7,-2), A(0,4), T(9,2), and H(2,-4).

Prove that parallelogram *MATH* is a rhombus.


[The use of the set of axes below is optional.]

Arhombus has four congruent sides. Since each side measures 185, all Four sides of MATH are congruent

Determine and state the area of MATH.


A MATH is a rhombus.

16.8-(21+9+21+9)=68

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. Utilize the information provided to determine your answer. Note that diagrams are not necessarily drawn to scale. A correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [6]

35 Given: Quadrilateral ABCD, $\overline{AB} \cong \overline{CD}$, $\overline{AB} \parallel \overline{CD}$, diagonal \overline{AC} intersects \overline{EF} at G, and $\overline{DE} \cong \overline{BF}$

Prove: G is the midpoint of \overline{EF} David ABCD, AB & CO, AB 11CO WGiven diagonal ACintersects Efat 6. TOFEBF DA quadrilateral with a pair of opposite sides that are 119 = is a parallelogion DARCD is a parallel ogram 30pposite sides of a parallelogram ore = 多和全個 D Subtraction postulate AF & CF Opposite sides of a parallelogram are 11
If parallel lines are cut by a transversal NO 11 CB LEAG = LFCG the alternate interior angles are LAGE & LCGF Vertical angles AAEG ≅ △CFG DOPCTC Tince G divides, EF into two equal Gis the midpoint office) Work space for question 35 is continued on the next page.